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Abstract

We model the learning of classifications as a combina-
tion of abstraction and class assignment. We discuss
the problem of selecting the most suitable of multi-
ple abstractions for this purpose. Weaker abstractions
perform better on training sets, but typically do not
generalize very well. Stronger abstractions often gen-
eralize better, but may fail to include important prop-
erties. We introduce the relative information gain as
a criterion to determine an optimal balance between
precision and generality of abstractions. Experimental
results with abstractions used for the classification of
terms indicate the success of this approach.

Introduction

Any real-world application of artificial intelligence
starts with the selection of a certain abstraction for the
objects it wants to reason or argue about. The choice
of a suitable level of abstraction can very well be cru-
cial for the success of an application. Too high levels
of abstraction may ignore certain important properties,
while an abstraction that is too weak will burden an
implementation with many unnecessary details.

While basic modeling decisions have to be made by
human beings, machine learning can be used to au-
tomatically find useful abstractions for many tasks,
in particular for the classification of objects repre-
sented in some given data format. In fact, many sym-
bolic machine learning algorithms create an abstrac-
tion function that partitions the space of all objects
into a (usually finite) number of subsets and assign
the most frequent class of objects in a training set
to all new objects mapped into this class. Examples
are the large family of decision tree learning algorithms
from ID3 to C4.5(Quinlan 1996; 1992) or CN2-1ike algo-
rithms (Clark & Niblett 1989) that construct hypothe-
ses as conjunctions of elementary feature tests. The
quality of the generated classifiers depends on the level
of the selected abstraction. On the one hand, a very
weak abstraction (as an extreme example, consider the
case of using no abstraction, i.e. learning by hard) will
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perform very good on a given training set. However,
it is unlikely to generalize well to new examples. On
the other hand, an abstraction that is to strong may ig-
nore important information and result in a suboptimal
classification.

Typically, the abstractions used in standard sym-
bolic machine learning algorithms are generated by suc-
cessively examining individual and at least conceptu-
ally independent features of the objects to be classi-
fied. Most induction tree algorithms use a greedy al-
gorithm, repeatedly partitioning the set of training ex-
amples while optimizing the information gain of each
split. CN2, on the other hand, performs a heuristic
greedy search on the space of all possible hypotheses.
For both kinds of algorithms, there is no satisfiable cri-
terion about when to stop refining the abstraction. For
decision trees, the tree is typically grown until the sub-
sets of the training sets generated by the tree contain
only examples from a single class, and is then pruned
using heuristic criteria. For CN2, an arbitrary signif
icance level is used to stop refining hypotheses if no
sufficiently significant new features can be added.

This weakness in determining the optimal level of ab-
straction also shows if some features of an object are not
binary, but discrete or even continuous. In this case,
there are multiple ways to select a feature test: Either
using a single threshold value for a binary split or mul-
tiple thresholds for a more refined split. A refined split
typically yields more information, but often leads to less
accuracy on unknown examples. This is acknowledged
e.g. in (Quinlan 1992), and a proposed solution is to al-
ways replace a possible multi-way split with a number
of binary splits. This may, however, result in unneces-
sary large trees and in suboptimal feature selection.

For our application of machine learning, classification
of search decisions for the automated theorem prover
E (Schulz 1999; 2000), we needed to find and com-
pare different abstractions for first-order tc~vns, recur-
sive structures built over a finite set of symbols. Nat-
ural abstractions are initial parts of the terms (see the
experiments section below), however, these diffe.rent ab-
stractions are in no way independent fi’om each other,
and a weaker abstraction always yields more informa-
tion on a test set. We therefore had to find an objective
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criterion to prefer one abstraction to the other.
If we consider a pre-classified set of training examples

and a given partition of this set, the partition always
contains two different kinds of information: Information
that helps us to determine the class of an object, and
superfluous information only introduced by the parti-
tion. The core idea of our approach is to not greed-
ily optimize for information gain (towards the desired
classification), but to compare the useful infbrmation
gained from an abstraction to the additional amount of
information necessary to compute the abstraction.

We will formalize this notion in the following sections
and present experimental results that demonstrate the
success of this approach.

Abstractions
Let D (the domain) be a set of objects. An abstraction
of D is a tuple (A, d), were d is an (usually finite) 
(of abstraction values) and A is a surjective mapping
A : D ~ d. An abstraction induces a partitioning of the
domain, D = ~e,~A~, where A7 = {z 6 DIA(x) = i}.
We also say A(x) is the abstraction of x (under A).

Now consider two abstractions (A, d) and (A’, d’) 
the same domain D. We say (A, d) is weaker (than
(At, D’)), if [d[ > Id’l- We say CA, d) is more precise, if
there exist a function f : d --~ d’ so that f o A -= A’,
and that it is strictly more precise, if f is not injective.
Note that. an abstraction that is strictly more precise
than another also is weaker, but not necessarily vice
versa.

We will usually consider d to be implicitly given. Ex-
amples of abstractions are e.g. the test of a multi-valued
feature or the mapping of trees to fixed size initial parts
of tlm trees.

Note that from ~l information-theoretical point of
view, the application of a finite abstraction corresponds
to a probabilistic experiment with the possible results of
the abstraction values. Given a representative sample
of objects (a training set)) T, we can estimate the prob-
ability distribution of the experiment using the relative
frequency, i.e. P(i) = (IT N ATI)/ITI for all i e d. The
relative frequemcy is not always the best estimator for
probabilities, however, it is widely used and in many
cases ’adequate. If we know more about the probability
distribution of the domain, better estimators may be
available.

Entropy and Information Gain
We give a short introduction to information theory as
originally introduced by Shannon (Shannon & Weavex
1949) and introduced to machine learning by Quinlan.
Let A = {al .... ,a,~} be aa experiment with the possi-
ble results or observations al,..., an and let P : A -+ R
be a probability distribution on the results of A (i.e.
P(ai) is the probability of observing ai as the result

1More exactly, we have to deal with multi-sets here.
However, given stm~dard terminology (Dershowitz & Manna
1979), the notation is identical.

of A). The amount of information gained fi’om the
observation of an event (or the information content of
this event) is l(ai) = -log2(P(ai)). The entropy of
A is the expected information gain of performing A,

= ~i=l P(ai)I(ai).H(A) n
If we consider more than one experiment, they may

not be completely independend. The outcome of one
experiment may already tell us something about the
expected outcome of the other. Formally, let A =
{al,..., an} and B = {b~,..., bin} be two experiments
with probability distributions P, and Pb. P(alb) is
the conditional probability of a under the condition
b. The conditional information content of a result ai
under the condition b# is I(a~lbj) = -log~(P(aL[b:i)).
The conditional entropy of A under the condition b~ is
Y(AIbj) = ~,L1 P(aitbj)I(ailbJ)’

If we want to determine the value of an experiment
B (e.g. a feature test or, more generally, the applica-
tion of an abstraction function) for getting information
about the outcome of A (the class of aa object), 
again need to average over the possible outcomes of
B to determine the remaining entropy of A. Our ex-
pected information gain f~orn the experiment B then is
exactly the difference in the entropy of A and the re-
maining entropy of A after performing B. Formally,
the remainder ent~vpy of A (after peribrming B) 
H(A[B) = ~1 Pb(bl)H(AIbj) ’ and the (expected) in-

formation gain of performing B (to determine the result
to A) is G(AIB) = H(A) - H(A{B).

Relative Information Gain

The expected inibrmation gain is e.g. used by Quinlan
in C4.5 to select the feature test that yields the most
useful information at each stage of the decision tree. In
many cases this works quite well, becmme the features
are conceptually independent fi’om each other and often
only weakly correlated in a statistical sense. However,
if we consider the more general case of different, ab-
stractions, it becomes clear that maximal infbrmation
gain is not necessarily optimal. Consider a simple case
of classifying integer tmmbers from tile set (I,..., 10}
into even and odd numbers. Both the optimal abstrac-
tion (corresponding to the partitioning into the desired
classes) and the identity fimction result in optimal clas-
sification on this set,, and hence yield the same amount
of information with respect, to the task. However, the
first one is clearly superior for classifying unknown mnn-
hers - a fact that is also intuitively clear. The reason
for this is that in order to determine the abstraction
of a number under the identity abstraction needs a lot
more information - in our example, the correct c.lassi-
fication needs one bit, while the determination of the
exact number needs about 3.33 bits. The 2.33 bit not
contributing to the correct classification do make ttu
abstraction more precis, and hence do lead to a los
of generality. In the general case, weaker abstractior
are likely to yield less information but to generalize he
ter. A more precise abstraction always yiekts at le~

MACHINE LEA/ININ8



the same amount of information than a less precise one,
and is likely to yield more.

To find an optimal balance between useful informa-
tion gain and generality of an abstraction, we do not
need to optimize the useful information gain, but the
ratio of useful and useless information. Formally, we
define the relative information gain of an experiment
B to determine the outcome of another experiment A
as R(AIB) = G(AIB)/(H(B) - G(AIB)). For the bor-
derline case, where B exactly determines A and this ex-
pression is undefined, we assume a value of +c¢, which
is held to be bigger than any real number.

Now consider a training set B = B1 Y ... t~ B,~ of
pre-classified examples from a domain D, and a set of
abstractions A = {A1,...,An} for D. Both B and
the Ai define probabilistic experiments (via the rela-
tive frequencies) as described above. We say Ai is an
information-optimal abstraction from A (with respect
to B), if R(AilB) = maxAje.4R(AjlB).

We believe that the experimental results in the fol-
lowing sections justify our belief that an information-
optimal abstraction indeed strikes an excellent balance
between precision and generality.

Simple Term Classification

In this section, we will introduce fiat term space map-
ping for the classification of terms. For information
about general term space mapping, a class of learn-
ing algorithms for the classification and evaluation of
terms, see (Schulz 2000). A more detailed discussion
of first order terms can also be found there or in any
introductory text on logic, e.g. (Chang & Lee 1973).

Terms and Term Abstractions

Let F be a (finite) set of function symbols with as-
sociated arities (written as f/n if f is a symbol of
arity n), and let V be an enumerable set of variable
symbols, F N V = {~. The set Term(F,V) of terms
over F and V is defined recursively: Each x 6 V is
term. If" f/n ¯ F and tl,...,t,~ ¯ Term(F,V), then
f(tt,...,t,,) ¯ Term(F, V). In this context, we can
usually just treat variables as additional function sym-
bols of arity 0. A term without any variables is called
ground.

It is easy to see that terms can be represented as or-
dered, labeled trees. More generally, we can represent a
term as a labeled, ordered, directed acyclic graph. This
gives us the ability to share some identical subterms in
a term. If no subterm is replicated in a graph repre-
sentation of a term t, we call this graph the maximally
shared graph representation of t.

We now define a variety of abstractions on terms.
First, the arity of the top hmction symbol of a term
is such an abstraction. The top term of t at level i,
top(t, i), is the term resulting if we replace every node
reachable from the root node by a path of length i in
the tree representation of t with a fresh variable. The
alternate top term, of t at level i, top’(t, i), is the term
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resulting if we replace every distinct subterm at a node
reachable from the root node by a path of length i in
the tree representation of t with a fresh variable. The
compact shared top term oft at level i, cstop(t, i), is the
term resulting if we replace every node reachable from
the root node by a path of length i in the maximally
shared graph representation of t with a fresh variable.
The extended shared top term of t at level i, estop(t, i),
is the term resulting if we replace every node reachable
from the root node by a path of length i, but not by
any shorter path, in the maximally shared graph repre-
sentation of t with a fresh variable. Finally, the iden-
tity function also is a (maximally weak) abstraction 
terms.

Flat Term Space Mapping

Now consider a finite training set of pre-classified terms,
B = B1 ̄  ... ~J B,~ and a term abstraction (A, d). 
construct a new, finite abstraction (A’, d’) for terms 
follows: £ = A(B) U {_l_} for a new element ± ¢t d.
A’(t) = A(t) if A(t) ¯ A(B), A’(t) = ± otherwise.
The new element .1_ is called the representation of un-
mapped terms. (A’,£, B) represent a fiat term space
map tsmA,d,B : Term(F, V) --+ {BI,...,Bn} that de-
fines a classification on terms: If A’(t) = x ¯ d, then
tsmA,d,B(t) = Bi, where B~ is the most frequent class
in A~ n B. Otherwise, tsmA,d,B(t) -~- B~, where B3 is
the most frequent class in B.

Again, if we have a set of term abstractions
and a training set, we call a flat term space map
information-optimal (with respect to the training set
and the abstractions), if the corresponding abstraction
is information-optimal.

Experimental Results

We have developed term space mapping and the relative
information gain criterion in the context of our work on
learning search control knowledge for a saturating the-
orem prover. However, the performance of a theorem
prover is influenced by a lot of different variables, and
moreover, testing theorem provers is very expensive in
terms of CPU time. We have therefore performed some
artificial classification experiment to test the relative
information gain criterion independently.

Setup

We have generated two sets of 20000 pseudo-random
ground terms over the set of function symbols
{f0/0,..., f3/O, f4/1, f5/1, f6/1, f7/2, fs/2, f9/3} using
a recursive constructive algorithm2, one containing only
unique terms, the other one also allowing repeated
terms.

2Note that as the set of terms is infinite for all non-trivial
signatures, it is not obvious what a natural probability dis-
tribution on terms is. Our algorithm (Schulz 2000) strongly
prefers smaller terms and thus stochatically terminates rel-
atively fast.



We have designed three experiments, each with a pos-
itive an(] a negative class: Topstart, Symmetry and
Memorization. For the Topstart experiment, positive
terms start with a non-constant function symbol and
carry a constant or unary symbol at the top position
of the first argument term. We use the two term sets
as they were generated. The second experiment, Sym-
metry, tries to recognize terms which start with a bi-
nary flmction symbol and where both argument terms
are identical. As very fe.w such terms are generated by
our algorithm, we randomly selected 10000 of the terms
and transfornmd them into symmetric terms by adding
a binary function symbol and using the original term
ff~r both arguments. Finally, for Memorization we sim-
ply assign one of two classes at random, but use two
copies of each term.

We have used all abstractions described above for
the algorithm: Top symbol arity, identity, and the 4
different term top abstractions for depths between 1
and 5. We only report data tbr the most interest-
ing subset of abstractions, always including the best
and the ilfformation-optimal abstraction. To get sta-
tistically significant results, we haw~ peribrmed 10-fold
cross-validation for all experiments. We also contrast
the results with those of a random guesser (guessing
according to the class distribution in the training set)
and a naive learner (ahvays guessing the most frequent
(:lass).

Results

Table 1 shows the results for the Topstar~t experiment.
For the set of mfique tern ls, the positive class contains
9299 ternls, the negative (:lass 10701 terms. Hence 
random guesser would achieve 50.246%, a naive learner
wouhl achieve 53.505~. For the training set that al-
lows multiple occurrences of the same term, the split
is 1{1319/9681, hence a random guesser would achieve
50.051% and a naiw, guesser 51.595%. As we can see, all
abstractions achieve siglfificantly better results. How-
ever, the outstanding results are achieved by the term
top abstraction for depth two, which is the weakest of
the abstractions that contains enough information for
correct classification. The infbrmation-optimality crite-
rion correctly identifies this as the best abstraction.

Abstraction ]1 Unique Terms Repeated T.
Arity
Identity
top(t, 1)
top’(t, 1)
top(t, 2)
top’(t, 2)
estop(t, 3)
top’(t, 4)
I.-Optimal

58.45=1.12
53.5±1.08
58.45=1.12
58.35=1.10

99.24-0.16
98.0±0.40
72.94-0.94
6O.35=0.96

99.2+0.16

56.65=1.07
60.34-1.01
56.6-I-1.07
56.65=1.06

99.75=0.15
97.75=0.43
72.35=0.84
61.14-0.99

99.75=0.15

Table 1: Correct classification for Topstart (Percent)

The results for the Symmetry experiment are summa-
rized in Table 2. Due to the special construction of the
term sets for this experiment, both sets are very well
balanced, and random guesser and naive learner would
both score between 50% and 51% for both experiments.
For the case where the term set contains only unique
terms, the optimal abstraction is top’(t, 1), which is cor-
rectly identified by our criterion. It is interesting to note
that the identity abstraction, corresponding to learning
by hard, contains no information tbr this classification
task.

The second case, including repeated terms, the
information-optimality criterion fails to identify the op-
timal abstraction. The reason for this is the particu-
larly skewed term distribution. Since repeated terms
are allowed in term set B, and since most generated
terms are small terms, nearly all terms with arity 2 are
artificially generated symmetric terms. Just checking
the arity of the top function symbol results in nearly
85% classification correctness. The relative information
gain criterion prefers this 4-way split with high accu-
racy (relative inlbrmation gain 0.568412) to the much
larger split with perfect accuracy it gets for top’(t, 2),
although only barely. The relative inibrmation gain for
this split is 0.52221. However, we believe that the un-
derlying reason is that the frequency count in this case
is a bad estimator tbr probabilities. Note that, we had
to artificially create the symmetric terms to get an ac-
ceptable ratio for the two classes, and that for a term
generation scheme that is not biased against large terms
(with high-arity top symbols), the relative information
gain for the arity abstraction would drop.

Abstraction ]] Unique Terms Repeated T.
Arity 77.5-t-0.95 82.7=t=0.80
Identity 49.35=0.81 62.05=0.70
too(t, 1) 77.5+0.95 82.75=0.80
top’(t, 1) 100.05=0.02 100.0+0.00
top(t, 2) 95.95=0.96 96.85=0.53
top’(t, 2) 97.6±1.66 97.8±1.19
estop(t, 3) 74.04-14.07 77.95=8.90
top’ (t, 4) 55.9±5.79 66.05=3.44
I.-Optimal 100.05=0.02 82.7+O.80

Table 2: Correct classification for Symmetry (Percent)

For the memorization experinlent, all terms are du-
plicated anyways. Hence we have restricted the test to
the case where the original term set contained unique
terms only. Table. 3 contains the full data for all ab-
stractions we have tried. As the classes have been as-
signed randomly, there is no particular feature that can
be recognized. The success rate (:an only be increased
by recognizing known terms. Please note that for 10-
fold cross valktation the chance for a term in the test
set to also occur in the training set in this case is about
90% (90.0025 to be exact: there are two copies of each
term, the remaining copy for an arbitrary term in the
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training set is either one of the 3999 terms in the test set
or one of the 36000 terms in the training set). In other
words, the best performance we can expect is about
95% (about 90% for the case of perfect memorization,
and 5% by randomly guessing the class of the remaining
1̄0% of terms). As the positive and the negative classe
are of exactly the same size, both the random guesser
and the naive learner would only achieve 50%.

The identity abstraction achieves the optimal perfor-
mance (up to statistical significance), and is correctly
identified as the best abstraction by the information-
optimality criterion.

Abstr. Successes ][ Abstr. [Successes
Arity 50.03=0.59 top’(t,3) 78.7+0.72
Identity 94.8+0.57 cstop(t, 3) 79.4+0.66
top(t, 1) 50.4+0.46 estop(t, 3) 80.1+0.66
top’(t, 1) 50.4+0.46 top(t, 4) 91.2J=0.66
cstop ( t, 1) 50.4±0.46 top’ (t, 4) 91.63=0.69
estop( t, 1) 50.43=0.46 cstop(t, 4) 91.9+0.71
top(t,2) 53.1±0.50 estop(t, 4) 92.0+0.70
top’(t, 2) 55.23=0.58 top(t,5) 94.53=0.59
cstop ( t, 2) 55.33=0.54 top’ ( t, 5) 94.5-t-0.59
estop(t, 2) 55.53=0.51 cstop(t, 5) 94.6+0.59
top(t, 3) 76.6+0.51 estop(t, 5) 94.63=0.59
I.-Optimal 94.83=0.57

Table 3: Results for Memorization (Percent)
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All in all, we consider these results to be very encour-
aging.

Conclusion

We believe that the relative information gain is a very
powerful method for the evaluation of abstractions. In
our application area, automated theorem proving, we
tbund that the best abstraction among those we tested
usually is the identity, i.e. search decisions are best rep-
resented by learning complete facts (patterns of first-
order clauses). This was indicated by the relative in-
ibrmation gain and is reflected by the success rates of
the theorem prover (Schulz 2000). This agreement 
direct evaluation and success in the application area is
additional evidence for the value of this criterion.

In the future, it would be very interesting to incorpo-
rate this criterion into more traditional machine learn-
ing algorithms. As an example, the selection of optimal
multi-way splits in decision trees (as described in the
introduction) seems to be possible field of application.
Moreover, it (:an also be used as a pruning criterion for
complete decision trees or other, similar machine learn-
ing algorithms.

As our main field of research is automated theo-
rem proving, we would very much encourage other re-
searchers to make use of these results.
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