From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved.

Learning Plan Rewriting Rules

M. Afzal Upal
Faculty of Computer Science
Dalhousie University
Halifax, NS, B3H 1W5
Canada
email: afzal.upal@dal.ca

Abstract

Considerable work has been done to automatically
learn domain-specific knowledge to improve the per-
formance of domain independent problem solving sys-
tems. However, most of this work has focussed on
learning search control knowledge—knowledge that can
be used by a problem solving system during search to
improve its performance. An alternative approach to
improving the performance of domain independent sys-
tems is by using rewriting rules. These are the rules
that can be used by a problem solving system after gen-
erating an initial solution in order to transform it into
a higher quality solution. This paper reviews various
approaches that have been suggested for automatically
learning rewriting rules, analyses them, and suggests
novel algorithms for learning plan rewriting rules.

The ability to produce high quality plans is essential
if Al planners are to be applied to the real world plan-
ning problems. Machine learning for planning suggests
automatically learning domain specific information that
can be used by the Al planners to produce high quality
solutions. Considerable planning and learning research
has been devoted to learning domain specific search con-
trol rules to improve planning performance (planning
efficiency and plan quality). These rules improve plan-
ning performance by guiding a planner towards higher
quality plans during planing. An alternative technique
is planning by rewriting (Ambite & Knoblock 1997) that
suggests first generating an initial plan using a planner
and then using a set of rewrite-rules to transform it into
a higher quality plan. However, automatically learning
such rules has been a challenging problem. Previously,
I designed a system called REWRITE (Upal 1999;
2000) that automatically learned plan rewrite rules
by comparing two planning search trees (one search
tree leading to a lower quality plan and the other
search tree leading to a higher quality plan). How-
ever, REWRITE’s performance with respect to plan-
ning efficiency was poor (Upal & Elio 2000) because it
was unable to learn good rewrite rules. In (Upal 2000)
we show that the problem lies with REWRITE’s strat-
egy of learning rules in one context (i.e., the context

Copyright (©2001, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

412 FLAIRS-2001

of search nodes) and then applying them in a differ-
ent context (i.e., the context of the complete plans).
(Upal 2000) also presents evidence to show that learn-
ing search control rules from search trees is a better
option than learning rewrite rules by comparing plan-
ning traces.

Ambite et al. (Ambite, Knoblock, & Minton 2000)
suggest a similar technique for learning rewrite rules.
However, their system (called Pbr) learns by compar-
ing two completed solutions to a planning problem; one
of higher quality and other of lower quality. Pbr’s learn-
ing component simply stores those steps of the better
quality solution that are not present in the lower qual-
ity plan as replacing steps, and it stores those steps of
the lower quality solution that are not present in the
higher quality solution as the to-be-replaced steps and
to-be-replaced constraints on the steps. Pbr also ranks
its rules according to goodness. It prefers the rules that
are smaller.

Next I present the background material on planning
by rewriting followed by a review of the previously sug-
gested algorithms and suggest new algorithms for learn-
ing plan rewriting rules.

Planning by Rewriting
The basic idea of rewriting can be traced back to the
work on graph and number rewriting (Baadr & Nipkow
1998). The idea of using rewrite rules for Al planning
was introduced by Ambite et al. (Ambite & Knoblock
1997) who referred to it as planning by rewriting.

A planning by rewriting system consists of two com-
ponent: a planning component for generating the ini-
tial plans, and a rewriting component that can rewrite
these plans to transform them into higher quality plans.
Since, by definition, planning by rewriting systems
spend extra time in plan-rewriting, planning by rewrit-
ing can be expected to be useful in those planning do-
mains in which generating suboptimal plans is signif-
icantly more efficient than generating optimal quality
plans. Interestingly, many AI planning domains such
as Blocksworld and the logistics transportation domain
exhibit these properties (Ambite & Knoblock 1997).

A rewrite rule consists of two equivalent sequences of
actions such that one of them can be replaced by the

to-be-replaced:
actions: {drive-truck(Truck, From, To),
drive-truck(Truck, To, From)}
replacing:
actions: {}

Figure 1: A rewrite rule for the logistics transportation
domain.

other. Figure 1 shows a rewrite rule from the logistics
transportation domain consisting of two sequences of
actions replacing and to-be-replaced. Given an initial
suboptimal plan produced by the planning component,
the task of the rewriting component is to delete the to-
be-replaced sequence of actions from the initial plan and
add the replacing sequence of actions to it. In order to
better understand the rewriting process, it is useful to
view a viable plan for a problem as a graph in which
actions correspond to vertices and constraints on the ac-
tions (such as casual-link and the ordering constraints)
correspond to the edges between the action. The rewrit-
ing process can be understood as deleting a subgraph
and replacing it with another subgraph. Consider the

drive-truck{mygm, apt, po)
e

siruckimm, @)/ aarackimypm, po) atojectimparce, apt)

drive-truckimygm, po, apt)

unloac-truckimygem, po, spt)
in-iruck(wyparcel, mygm)
attruckimypm, apt)

ﬂm\’“im:m”\ / /
a-cbject{mppareel, o loacHruck(myparcel, rygr, apt) —> deive-truck(myge, po, apl)

)

END
st-objeci{mypartel, apt)

) unioad-truck{myge, po, apt)
\ in-truck{myparcel, mypm)
at-iruck{mygm, opt)

srm\n‘imm o \ / /
s-objectmpperce, o] loadHruck(myparcel, mygm, apt) —= drive-truck{mygni, po, apt)

)

Figure 2: (a) An initial suboptimal plan from logistics
transportation domain. (b) The rewritten plan.

graph shown in Figure 2(a) which corresponds to a sub-
optimal plan from the logistic transportation domain to
which the rewrite rule of Figure 1 is applicable. Apply-
ing the rewrite rule to planning graph means deleting
the subgraph corresponding to the to-be-replaced action
vertices from the suboptimal plan and adding the re-
placing action vertices to the graph.

Good & Bad Rewrite Rules

Unfortunately, the new graph obtained by applying
the rewrite rule may no longer corresponds to a viable
plan. For instance, when the rewrite rule of Figure 1
is applied to planning graph of Figure 2(a) the sub-
goal at-truck(mygm, apt) becomes unresolved. Some
re-planning has to be done to transform this incom-
plete plan into a complete plan again. Clearly, the more
the replanning that is required the less efficient a plan-
ning by rewriting system will be. Hence, a rewrite rule
learner must:

e learn rewrite rules that can be used efficiently by the
plan rewriting process (i.e., the rules that require lit-
tle replanning effort after their application), and

o use an efficient plan rewriting process.

For instance, consider the rules that consist of two ac-
tion sequences that have exactly the same available ef-
fect set (the set of effects that actions in a subsequence
can supply to the outside actions) and the same net pre-
condition set (the set of unresolved goals that an action
subsequence has). Using such rules will require mini-
mal replanning effort because replanning is guaranteed
to lead to complete plans without adding any new ac-
tions !. Unfortunately, such rules may be too specific
to be used in a broad set of situations. In general, the
bias for efficient replanning can be expected to favor
over-specific rewrite rules.

Rewriting efficiency, however, is not the only criteria
for determining the goodness of a plan rewriting pro-
cess (in particular, for a rewriting module that is to
be used as a part of a learning and planning system).
From a machine learning perspective, a learning system
must be able to learn general rules that are effective in
leading to performance improvements in a broad set of
situations. Hence a good rewrite rule learning system
must:

o learn rewrite rules that are effectively applicable in a
large number of situations, and

e use an effective rewriting process (i.e., its replanning
component is able to successfully complete as many
plans made incomplete by the rewrite rule application
as possible).

For instance, consider a rewrite rule learner that gener-
ates rules by placing all subsets of the set of domain
actions in its to-be-replaced and replacing action se-
quences. Such rules will guarantee generation of op-
timal quality plans. The problem is that many of these
rules will be applicable in too broad a set of situations?
but may only lead to performance improvements in a

'If we also assume that the to-be-replaced and the re-
placing actions are ordered then no replanning is required
because the new plan can simply be obtained by substituting
the replacing actions in place of the to-be-replaced actions.

2For instance, rules that have an empty set as a to-
be-replaced action sequence will be applicable in every
situation.

MACHINE LEARNING 413

small subset of them. In general, the bias for large
gains in the learning performance can be expected to
favor over-general rewrite rules.

Finding the right balance between over-specific and
over-general rewrite rules is a challenging machine
learning problem. However, little work has been done to
compare the consequences of different design decisions
in the context of rewrite rules. Most of the work has fo-
cussed on finding a way to learn rewrite rules automat-
ically. Ambite’s Pbr (Ambite & Knoblock 1997) used a
local search technique for rewriting. We implemented
two versions of REWRITE called REWRITE-first and
REWRITE-best using the first and the best rewriting
strategies respectively (Upal & Elio 2000). The first
rewriting strategy only performs one rewriting of an ini-
tial plan whereas the best rewriting strategy performs
all possible rewritings to return the best quality plan
found.

Our experiments with the two rewriting showed that
if a rewrite rule learner is not selective with regards
to size of its rewrite rule library then even the first
rewriting strategy becomes too inefficient (Upal & Elio
2000). Ambite et al. (Ambite, Knoblock, & Minton
2000) suggest that a rewrite rule learner should prefer
smaller rules because they are more likely to have a
good balance of specificity and generality. However, we
believe that this criteria is too simple because it does
not take into account factors such as the gain in plan
quality that is expected to be achieved as a result of
applying the rule. We suggest a broader criteria for
measuring the goodness of a rewrite rule:

1. gain in plan quality that is expected to be achieved
as a result of a successful application of the rewrite
rule.

2. Context similarity of the to-be-replaced actions se-
quence with the replacing action sequence. This can
be measured by measuring the similarity between the
precondition and the effect sets of the two actions se-
quences.

3. Simplicity of the rewrite rule. This can be measured
by measuring the size of the rewrite rule. The smaller
a rewrite rule the better it is expected to be.

Good & Bad Rewriting Processes

Similar to the conflict between over-general and over-
specific rewrite rules, a conflict also exists between ef-
ficient and effective rewriting processes. For instance,
consider the following two rewriting processes.

1. A rewriting process that uses a partial-order planner
as a plan rewriting procedure.

2. A rewriting process that uses a simplified partial-
order planner that can only use establishment to re-
solve open condition flaws as its replanning proce-
dure.

Using the second rewriting algorithm the process of de-
termining whether an incomplete plan can be rewrit-
ten or not can be performed more efficiently because

414 FLAIRS-2001

it has strictly fewer number of choice points and hence
a smaller search space to explore. However, such a re-
planning process would be unable to successfully replan
(and hence improve plan quality of) a larger number of
plans. Therefore, it will be less general than the first
rewriting process.

Another variable in a rewriting system is the number
of ways the initial plan can be rewritten. The reason is
that a number of rules may be applicable to a plan. Ap-
plication of each of these rules may lead to a number of
different rewritten plans of different quality. This num-
ber can be as large as the number of ways of applying
(i.e., instantiating) all the applicable rewrite rules. The
benefit of applying all rewrite rules is that it allows eval-
uation of the entire neighborhood and hence the best
quality plan can be obtained. However, searching the
entire neighborhood can be inefficient. If we restrict
the ways of rewriting a plan to the first feasible way of
rewriting, then the rewrite algorithm becomes efficient.
The drawback is that the rewriting system is not mak-
ing use of all the learned knowledge and hence is not as
effective as it can be.

In summary, the challenge for a rewrite rule learner
is to learn plan rewriting rules that are:

e not too general or too specific, and are
e efficient, and
o effective.

Next section compares a number of rewriting rule learn-
ing algorithms with respect to the criteria of how effi-
ciency and effectiveness.

Algorithms for Learning Rewrite Rules
Learning Through Static Domain Analysis

Recently, there has been a surge of interest in automat-
ically learning domain specific rules by statically ana-
lyzing planning operators and/or the problem descrip-
tions without solving the planning problems (Fox 2000).
Even though most of this work has focussed on learn-
ing search control rules, such analysis can also be used
to learn rewrite rules (for instance, by creating all pos-
sible combinations of domain actions in fo-be-replaced
and replacing actions). A number of improvements to
this algorithm are possible. Figure 3 shows Algorithm 1
which is based on a number of heuristics that we have
found to be useful for discovering good rewrite rules
quickly.

Step 1 of the Algorithm 1 compares all domain ac-
tions with one another to find the ones that have an
effect in common. If they do then it creates a rewrite
rule with the more costly action as the to-be-replaced
part of the rule and the less costly action as the replac-
ing part of the rule and adds this rule to the set of rules
found so far and tries to add an action to the chain
by searching for an action that can supply a precondi-
tion of an action that is already in the chain. Every
time it adds an action to a chain, it stores the chain
with a higher quality plan in the replacing part of the

algorithm 1: (Domain-operator-set)
Set-of-Rules «— {}
for all subsets s; = {a1,a2} of size 2 of
Domain-operator-set do
if a; and a; have an effect in common then
Set-of-Rules «— Set-of-Rules
Rules U find-rules({a; }, {a2}, Rulesize)
return Set-of-Rules

find-rules: (Chainl, Chain2, S)

if § > 0 then
S—5-1
Set-of-Rules «— Set-of-Rules U
{to-be-replaced=Chainl, replacing=Chain2}
Randomly pick-a-chain-to-expand-next

say Chainl

Newchainl «— expand(Chainl)
find-rules(Newchainl,Chain2, S)

return Set-of-Rules

Figure 3: Algorithm 1: Learning rewrite rules by static
domain analysis.

rewrite rule and the chain with the lower quality in the
to-be-replaced part of the rewrite rule. This process of
expanding a chain by adding an action continues until
a user provided depth limit Rulesize is reached.

Learning from Examples

The problem with static learning algorithms (such as
Algorithm 1) is that they learn all possible rewrite rules,
many of which may never be used in any possible ex-
ample. The algorithms that use the training examples
to learn from do not have this problem. Such algo-
rithms can be divided into two types: those algorithms
that use the completed solutions as their input, and
those algorithms that use the solution traces (records
of the two solutions) as their input to learn from. Un-
like the traditional learning from examples algorithms
(such as EBL) whose need only one example to learn
from, learning to improve quality algorithms need two
example solutions to learn from: one solution of higher
quality and the other of lower quality.

By Comparing Planning Traces One way to learn
from examples is by comparing two planning traces: the
good and the bad planning trace. The good planning
trace is the one that leads to a solution of higher quality
and the bad planning trace is the one that leads to the
solution of lower quality.

Given these two traces, the learning algorithm’s first
step is to retrace the bad planning-trace, looking for
plan-refinement decisions that added a constraint that
is not present in the good planning trace. We call such
a decision point a conflicting choice point. Each con-
flicting choice point indicates a possible opportunity to

algorithm2(Higher quality plan H,
Lower quality plan L)
if to-be-replaced=L, replacing=H is
not in the set of rules then add it
else exit
for index1 = |H| downto 1 do
for index2 = |L| downto 1 do
fori=1to |H|do
forj=1to |L| do
H+++— HU {h,}
L «— LU {l}
add to-be-replaced=L, replacing=H
to Set-of-Rules
return Set-of-Rules

Figure 4: Algorithm 2: Learning plan rewriting rules
by comparing two completed plans.

learn. For any conflicting choice point, there are two
different plan-refinement decision sequences that can
be applied to a partial plan: the one added by the bad
trace, and by the good trace. The application of one
set of plan-refinement decisions leads to a higher quality
plan and the other to a lower quality plan. However,
all of the downstream planning decisions may not be
relevant to resolving the flaw at the conflicting choice
point. The rest of the good trace and the rest of the
bad trace are then examined, with the goal of labeling
a subsequent plan-refinement decision ¢ relevant if (a)

there exists a causal-link ¢ — p such that p is a rel-
evant action, or (b) ¢ binds an uninstantiated variable
of a relevant open-condition.

Once both the good trace’s relevant decisions and
the bad trace’s relevant decisions have been identified,
Algorithm 2 computes (a) the actions that are added
by the worse plan’s relevant decision sequence. These
become the action sequence to-be-replaced; (b) The ac-
tions that are added by the good trace’s relevant deci-
sion sequence. These become the replacing action se-
quence; (c) The preconditions and effects of the replac-
ing and the to-be-replaced action sequence. This infor-
mation is then stored as a rewrite rule.

By Comparing Two Plans Rewrite rules can also
be learned by comparing two completed plans (a higher
and a lower quality one). Figure presents an algorithm
for learning plan rewriting rules by comparing two com-
pleted plans. Given two plans for the same problem, it
produces all subplans of these two plans and stores them
as rewrite rules with the higher quality subplan being
placed in the replacing part of the rewrite rule and the
lower quality subplan in the to-be-replaced part of the
rule.

It is possible to make this algorithm more efficient by
heuristically generating certain subplans and not all of
them. One such heuristic suggested by Ambite et al.
(Ambite, Knoblock, & Minton 2000) is to remove only

MACHINE LEARNING 415

Plan 1
1- START
2- drive-truck(mygm, apt, po)
3- drive-truck(mygm, po, apt)
4- load-truck(myparcel, mygm, apt)
5- drive-truck(mygm, apt, po)
6- unload-truck(myparcel, mygm, po)
7- END

Plan 2
1- START 2- load-truck(myparcel, mygm, apt)
3- drive-truck(mygm, apt, po)
4- unload-truck(myparcel, mygm, po)
5- END

Figure 5: Two plans for the same logistics planning
problem.

the ¢dentical actions from the two plans. The problem
with such a strategy is defining and identifying identical
actions. One possibility is to perform a simple syntac-
tic matching to identify identical actions without con-
sidering the context in which they are being applied.
It is easy to come up with counterexamples in which
this heuristic does not lead to good rewrite rules. The
main reason being that sometimes syntactically similar
ground actions are not in fact identical. For instance
consider the two plans showed in Figure . A simple syn-
tactic matching may match action 3 from Plan 2 with
action 1 from Plan 1 even though the two actions are
different.

Since the average number of actions in the simple
training examples tends to be fairly small for most
benchmark problems, Algorithm 2 can be run on them
without any heuristics. This is certainly true if the
learning system is to be trained on 2-3 goal problems.
Ambite et al. argue that training a rewrite rule learner
on simple problems is a good strategy because good
rules tend to be small and can be discovered from 2-3
goal problems (Ambite, Knoblock, & Minton 2000).

Limiting the number of rules

Increasing number of learned rules is well known to be
a major problem for the learning for planning systems
(Minton 1989). Our experience with REWRITE shows
that the number of rewrite rules learned by it was very
large and as the number of rules increased, REWRITE’s
performance suffered. Hence a mechanism is needed to
limit the number of rules learned. One suggestion is to

perform a rule utility analysis along the lines suggested

by (Minton 1989). Here we discuss some other tech-
nique for limiting the number or rewrite rules that can
be used to weed out bad rewrite rules earlier than done
by the utility analysis.

One idea is to use the goodness criteria to rank all the
rewrite rules in the Sef-of-Rules and remember a user
specified number Numrules of these of these rules. An-

416 FLAIRS-2001

.other idea suggested by Ambite (Ambite, Knoblock, &

Minton 2000) is to run the system on various orderings
of subsets of various sizes of the Set of rules and remem-
ber the smallest subset of rules that cover all the exam-
ples. However, in some situations no subset of rules
may be able to cover all examples. Therefore, a more
general form of this idea would be to prefer that subset
that leads to the largest improvements in planning per-
formance over the given examples. The two ideas can
also be combined so that if more than one subset leads
to optimal performance improvements then prefer the
subset that has higher quality rewrite rules according
to the goodness criteria.

Conclusion & Future Work

This paper has presented an analysis of rewrite rule
learning algorithms and outlined a number of design
issues involved in designing rewrite rule learning sys-
tems as well planning by rewriting systems in general.
More work is needed to analyze the benefits and costs
of various design choices. We are currently working
on carefully designing empirical experiments to study
these tradeoffs.

Acknowledgment

This work was supported by a research grant from the
Natural Sciences and Engineering Research Council of
Canada to the author.

References

Ambite, J., and Knoblock, C. 1997. Planning by
rewriting: Efficiently generating high-quality plans. In
Proceedings of the Fourteenth National Conference on
Artificial Intelligence. Menlo Park, CA: AAAI Press.

Ambite, J.; Knoblock, C.; and Minton, S. 2000. Learn-
ing plan rewriting rules. In Proceedings of the Fifth In-
ternational Conference on Artificial Intelligence Plan-
ning Systems. Menlo Park, CA: AAAI Press.

Baadr, F., and Nipkow, T. 1998. Term Rewriting and
All That. Cambridge: Cambridge University Press.

Fox, M., ed. 2000. Notes of the AIPS-00 Workshop
on Analysing and Ezxploiting Domain Knowledge for
Efficient Planning.

Minton, S. 1989. Expalantion-based learning. Artifi-
cial Intelligence 40:63-118.

Upal, M. A., and Elio, R. 2000. Learning rewrite
rules vs search control rules to improve plan quality.
In Proceedings of Canadian Artificial Intelligence Con-
ference, 240-253. New York: Springer Verlag.

Upal, M. A. 1999. Learning rewrite rules to improve
plan quality. In Proceedings of Sizteenth National Con-
ference on Artificial Intelligence. Menlo Park, CA:
AAAT Press.

Upal, M. A. 2000. Learning to improve quality of the

plans produced by partial-order planners. Technical
report, PhD Thesis, University of Alberta.

