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Abstract

In this paper we present an approach to coref-
erence resolution that integrates empirical meth-
ods with machine learning techniques. This ap-
proach departs from previous solutions for refer-
ence resolution, in that it promotes data-driven
techniques instead of relying on combinations of
linguistic and cognitive aspects of discourse. The
immediate pragmatic result is an enhancement of
precision and recall.

Background

Reference resolution is presupposed by any natural lan-
guage processing (NLP) system that tackles the struc-
ture of discourse or dialogue. To be able to summarize
texts coherently or to find correct answers to a question
from a large collection of on-line documents, we need
to have access to the discourse structure. Reference
relations are important components of this structure,
as they represent identity, part-whole, type-token, or
set-membership relations. The subcase of the reference
resolution that considers only identity between textual
expressions is known as coreference. Coreference is the
only form of reference that we address in this paper.
Thus far, the best-performing and most robust coref-
erence resolution systems have employed knowledge-
based techniques. Traditionally, these techniques have
combined extensive syntactic, semantic, and discourse
knowledge. The acquisition of such knowledge is time-
consuming, difficult, and error-prone. Nevertheless, re-
cent results show that empirical methods perform with
amazing accuracy (cf. (Mitkov 1998) (Kennedy 
Boguraev 1996)). For example, CoGNIAC (Baldwin
1997), a system based on seven ordered heuristics, gen-
erates high-precision resolution (over 90%) for some
cases of pronominal reference.

In our work, we revisited the concept of empirical
coreference resolution by developing several different
sets of heuristics corresponding to the various forms of
coreference, e.g. there are heuristics for the resolution of
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3rd person pronouns distinct from heuristics that solve
reflexive pronouns or possessive pronouns. Similarly,
we have developed separate heuristics for the resolu-
tion of definite, bare or indefinite nominals. The result-
ing system, named COCKTAIL1, resolves coreference by
exploiting several cohesive constraints (e.g. term repe-
tition) combined with lexical and coherence cues (e.g.
subjects of communication verbs are more likely to refer
to the last person mentioned in the text). Moreover, the
COCKTAIL framework uniformly addresses the problem
of interaction between different forms of coreference.

Each heuristic implemented in COCKTAIL is the re-
sult of mining patterns of coreference in a very large
data set obtained with a novel annotation methodol-
ogy, applied to the MUC-6 and MUC-7 coreference
keys used in recent Message Understanding Conferences
(MUC) (MUC-6 1996). The heuristics discovered 
the MUC data operate under the assumption that the
text is preprocessed, to determine referential expres-
sions prior to their application.

The rest of the paper is organized as follows. Section
2 defines our data-driven methodology for coreference
resolution whereas Section 3 presents several heuristics
encoded in COCKTAIL. Section 4 presents the boot-
strapping mechanism. Section 5 reports and discusses
the experimental results, whereas Section 6 summarizes
the conclusions.

Data-Driven Coreference Resolution

Very generally, what we consider as data-driven method-
ology is a sequence of actions that captures the data
patterns capable of resolving a problem with both high
precision and high recall. In our case, a data-driven
methodology comprises the actions that generate sets
of heuristics for the coreference resolution problem. We
define the precision of these heuristics by the number
of correct references out of the total number of corefer-
ences resolved, whereas the recall of coreference heuris-
tics measures the number of resolved references out of
the total number of references known in a test set.

ICoCKTAIL is a pun on CoGNIAC, because COCKTAIL

uses multiple sets of ordered heuristics, blended together in
a single system.
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The data driven methodology used in COCKTAIL is
centered around the notion of a coreference chain. Due
to the transitivity of coreference relations, any k coref-
erence relations having at least one common argument
generate k + 1 core‘terring ezpressions. The text po-

¯ sition induces an order among coreferring expressions.
A coreference structure is created when a set of core-
ferring expressions are connected in an oriented graph,
such that each node is related only to one of its preced-
ing nodes. In turn, a core, terence chain is the corefer-
ence structure in which every node is connected to its
immediately preceding node. Clearly, multiple corefer-
ence structures for the same set of coreferring expres-
sions can be mapped in a single coreference chain. As
an example, both coreference structures illustrated in
Figure l(a) and (c) are cast into the coreference chain
illustrated in Figure l(b).

John Adams John Adams John Adams

s dams Mr. Adams

his his his

(a) (b) (c)
Figure 1: Coreference structures vs. coreference chains.

Given a corpus annotated with coreference data, our
data-driven methodology first generates all coreference
chains in the data set and then considers all possible
combinations of coreference relations that would gener-
ate the same coreference chains. For a coreference chain
of length l, with nodes nl, n2, ... nt+l, multiple corefer-
ence structures can be created given that each node n~
(l<_k<l) can be connected to any of the k-1 nodes pre-
ceding it. From this observation, we find that a number
of I x 2 x ... x (l - k)... x l - 1 = l! - 1 coreference struc-
tures can generate the same coreference chain. This
result is very important, since it allows us to automat-
ically generate coreference data.

For each coreference chain, we generate new corefer-
ence links when we desire to obtain all corresponding
coreference structures. If a coreference chain of length
I generatesnn~w new relations, then the number of new
relations generated by a coreference chain of length l+ 1

I I 1is nne~ = n~’~w + l - 2. This recursive equation solves
t = 1+2+3+ +(1-2) (z -l)(I-2) Table 1

nnew "’" 2 "
shows the number of coreference chains in each MUC
corpus as well as the number of original anaphoric links.
It also shows the number of new anaphoric links that
were generated on both corpora. The overall expansion
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factor of coreference Inks is 13.5. The longest corefer-
ence chain in the MUC-6 annotations has 49 relations,
whereas the longest chain from MUC-7 has 62 relations.

Corpus Number of Number of Number of
coreference original new

chains anaphoric anaphoric
relations relations

MUC-6 463 1461 15467
MUC-7 738 2245 34619

Table I: Annotated coreference data and new relations.

The data-driven approach is a two-tiered procedure.
First, new anaphoric links are generated, and corefer-
ence rules that have the largest coverage and no neg-
ative examples are derived. They represent the seed
heuristics, and are manually generated. Since many
anaphors remain unresolved, in a second phase, new
coreference rules are bootstrapped to enhance the re-
call of coreference.

As a rule of thumb, to have the best seed heuristics,
we consider a heuristic only if there is massive evidence
of its coverage in the data. To measure this coverage
we need to have a lot of coreference data available. For
this purpose we have implemented a coreference anno-
tation procedure, coined as AUTOTAG-COREF2. The
annotation procedure is:

1. For every core‘terence annotation R(x,y) in a text 
2. Create its coreference chain CC(R);
~.1. CC(R) is initially NULL;
~.~. Add a nets core‘terence R’ to CC(R) 

either - R and R’ have a common argument, or
- R’ and any relation R" from CC(R) have 

common argument
2.3. Sort CC(R) using the te.zt order of the

2nd argument of each relation
3. For every referential expression E in CC
,~. For every ezpression E’ that precedes E in CC
5. if R(E,E’) is not in 

then Create NEW_Re‘terence_link(E,E’)

We are not aware of any other automated way of
creating coreference annotated data and we claim that
most of the impressive performance of COCKTAIL is due
to AUTOTAG-COREF.

Empirical Coreference Resolution
The result of our data-driven methodology is the set of
heuristics implemented in COCKTAIL which cover both
nominal and pronoun coreference. Each heuristic rep-
resents a pattern of coreference that was mined from
the large set of coreference data. The heuristics from
COCKTAIL call be classified along two directions. First
of all, they can be grouped according to the type of
coreference they resolve, e.g., heuristics that resolve the

2The name was inspired by Riloff’s AUTO-SLOG (Rilof["
1996), the system capable of automatically acquiring lin-
guistic patterns for Information Extraction.



Heuristics for 3rd person pronouns
oHeuristic l-Pronoun(H1Pron)
Search in the same sentence for the same

3rd person pronoun Pron’
if (Pron’ belongs to coreference chain CC)
and there is an element from CC which is

closest to Pron in Te~, Pick that element.
else Pick Pron’.

oHeuristic ~-Pronoun(H2Pron)
Search for PN, the closest proper name from Pron
if (PN agrees in number and gender with Pron)

if (PN belongs to coreference chain CC)
then Pick the element from CC which is

closest to Pron in Te~.
else Pick PN.

oHeuristic 3-Pronoun(H3Pron)
Search for Noun, the closest noun from Pron
if (Noun agrees in number and gender with Pron)

if (Noun belongs to coreference chain CC)
and there ks an element from CC which is

closest to Pron in Tee’t, Pick that element.
else Pick Noun

Heuristics for nominal reference
oHeuristic 1-Nomina!(HINom)
if (Noun is the head of an appositive)

then Pick the preceding NP.
oHeuristic ~-Nominal(H2Nom)
if (Noun belongs to an NP, Search for NP’

such that Noun’=same_name(head(NP),head(NP’))
or Noun’=same_name(adjunet(NP),adjunct(NP’)))

then if (Noun’ belongs to coreference chain CC)
then Pick the element from CC which is

closest to Noun in Te~t.
else Pick Noun’.

oHeuristic 3-Nominal.(H3Nom)
if Noun is the head of an NP

then Search for proper name PN
such that head(PN)=Noun

if (PN belongs to coreference chain CC)
and there is an element from CC which is

closest to Noun in Te~, Pick that element.
else Pick PN.

Table 2: Best performing heuristics implemented in COCKTAIL

anaphors of reflexive pronouns operate differently than
those resolving bare nominals. Currently, in COCKTAIL
there are heuristics that resolve five types of pronouns
(personal, possessive, reflexive, demonstrative and rel-
ative) and three forms of nominals (definite, bare and
indefinite).

Ezamplc of the application of heuristic H2Pron
Mr. Adams1, 69 years old, is the retired chairman
of Canadian-based Emco Ltd., a maker of plumbing
and petroleum equipment; he1 has served on the
Woolworth board since 1981.
Ezample of the application of heuristic H3Pron
"We have got to stop pointing our fingers at these
kids2 who have no future," he said, "and reach our
hands out to them2.
Ezample of the application of heuristic H~Nom
The chairman and the chief ezecutive officer3
of Woolworth Corp. have temporarily relinquished
their posts while the retailer conducts its investi-
gation into alleged accounting irregularities4.

Woolworth’s board named John W. Adams, an
outsider, to serve as interim chairman and ezecutive
officer3, while a special committee, appointed by
the board last week and led by Mr. Adams,
investigates the irregularities4.

Table 3: Examples of coreference resolution. The same
annotated index indicates coreference.

Secondly, for each type of coreference, there is an
order in which they are applied. Initially, this order
is based on their suitability to resolve coreference, as
noticed from the annotated data. The order resulted
from the analysis of the distribution of the antecedents
in the MUC annotated data. For example, repetitions
of named entities and appositives account for the ma-

jority of the nominal coreferences, and, therefore, rep-
resent anchors for the first heuristics that are applied.
Table 2 lists the top performing heuristics of COCKTAIL
for pronominal and nominal coreference. Examples of
the heuristics operation on the MUC data are presented
in Table 3.

Combining Coreference Heuristics

The order in which heuristics are applied is very im-
portant, since a referent may satisfy the conditions of
more than one heuristic. Because of this, initially we
have grouped the heuristics corresponding to each type
of referent (e.g. possessives, reflexives, 3rd person pro-
nouns) into a separate, ordered set. However, this solu-
tion does not filter out possible false positives, i.e. cases
in which a referent is connected to the wrong anaphor,
which belongs to a different coreference chain. To ad-
dress this problem, we have developed a methodology
that proposed a set of coreference chains by maximizing
an entropy-based measure.

Given a text T we consider all its referential expres-
sions T~(7")={NP1,NP2, ...,NPm}, a subset of the
text noun phrases. To derive the coreference chains
spanning the elements from T~(7") we use a set 
heuristics 74={hl, h2, ..., hn}. The application of these
heuristics generates a partion of T¢~(7"). Each parition

Paris a set of coreference chains (Par={CC~ }) such that
each NPi E (7"~) belongs to one and only one of the
coreference chains CC~ar .

We denote by 79(T~) all the possible partitions 
T~(7-). For every partition Par E ~(T¢2~) we define 
measure re(Par, 74) which estimates the likelihood that
Par contains all the correct coreference links from the
text T. Formally, given a text T, we look for the most
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likely partition defined by coreference chains, given by:

Parbe,t = argmaxpare~,(~c) m(Par, 

in which re(Par, 7t) is defined by the sum between two
factors:

re(Par, 74) = m + (Par, 71) + re-(Par, 

The two factors are defined as:

1. m+(~,71) indicates the internal cohesion of each
coreference chain from Par. Formally it is defined
as a sum ranging over all pairs of referents that be-
long to the same coreference chain in Par:

74) = rel(Ne 

2. m- CP, 74) indicates the discrimination among all the
coreference chains from Par. Formally it is defined as
a sum ranging over all pairs of referents that belong
to different coreference chains in Par:

71) = -ret(NS, NPj)
To measure rel(NPi, NPj), the likelihood that NPi and
NPj corefer, we use a binary function a:74 x 7~£ x
7~ 4{0,1}. Given the set 71, whenever hk E 7/
can be applied to NP~ and NPj results as its an-
tecedent, we have a(hk, NPi, NPj) = 1; otherwise we
have a(hk, NPi, NPj) = 0. In this way, for every pair
(NPi, NPj) we generate a vector:

vlj =< a(hl, NPi, NPj), ..., a(hn, NPi, NPj) 

If all the coreference data produced by AUTOTAG-
CORZF is considered, for each pair (NPi,NPj) there
may be up to 2n different vectors vii. For each specific
vector vlj, in the data produced by AUTOTAG-COREF
there are p positive examples and n negative examples
for which the same heuristics as in vii were applied.
Given the numbers p and n associated with each vector
vo, we compute rel(NP~, NPj) with the formula:

1- entropy(vii) ifp ~_ n
rel(NPi, NPj) = entropy(vo) - 1 otherwise

where the entropy measure is defined as:

entropy(vii)= p+nP l°g2p pn p+nn l°g2 n--~-p+n

The rationale for the formula of rel(NPi, NPj) is
given by the fact that the entropy indicates how much
information is still needed for establishing the corefer-
ence between NPi and NPj with certainty. As illus-
trated in Figure 2, if p+ -- -P-- then the closer p+ is top+n

1, the more confidence we have in the coreference rela-
tion between NPi and NPj, and thus rel(p +) is closer
to 1. Similarly, the closer p+ is to 0, the more confi-
dence we have in that NPi and NPj are not coreferent.
When NPI and NPj do not corefer, rel(p +) is -1. This
explains why we add the negative of rel(NPi, NPj) in
the formula of m- (Par, 7t).
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Figure 2: A function of coreference confidence.

Bootstrapping for Coreference

Resolution

One of the major drawbacks of existing coreference reso-
lution systems is their inability to recognize many forms
of coreference displayed by many real-world texts. Re-
call measures of current systems range between 36%
and 59% for both knowledge-based and statistical tech-
niques. Knowledge based-systems would perform better
if more coreference constraints were available whereas
statistical methods would be improved if more anno-
tated data were available. Since knowledge-based tech-
niques outperform inductive methods, we used high-
precision coreference heuristics as knowledge seeds for
machine learning techniques that operate on large
amounts of unlabeled data. One such technique is boot-
strapping, which was recently presented in (Riloff and
Jones 1999) as an ideal framework for text learning
tasks that have knowledge seeds.

[~ HO- Now Heutlstic

Figure 3: Bootstrapping new heuristics.

The coreference heuristics are the seeds of our boot-
strapping framework for coreference resolution. When
applied to large collections of texts, the heuristics deter-
mine classes of coreferring expressions. By generating
coreference chains out of all these coreferring expres-
sions, often new heuristics are uncovered. For exam-
ple, Figure 3 illustrates the application of three heuris-
tics and the generation of data for a new heuristic
rule. In COCKTAIL, after a heuristic is applied, a new
coreference chain is calculated. For the example illus-
trated in Figure 3, if the reference of expression A is
sought, heuristic Hi indicates expression B to be the
antecedent. When the coreference chain is built, ex-
pression A is directly linked to expression D, thus un-
covering a new heuristic H0.



As a rule of thumb, we do not consider a new heuris-
tic unless there is massive evidence of its coverage in the
data. To measure the coverage we use the FOIL_Gain
measure, as introduced by the FOIL inductive algorithm
(Cameron-Jones and Quinlan 1993). Let Hne~ be the
new heuristic and HI a heuristic that is already in the
seed set. Let Po be the number of positive coreference
examples of Hnew (i.e. the number of coreference re-
lations produced by the heuristic that can be found in
the test data) and no the number of negative exam-
ples of Hne~ (i.e. the number of relations generated by
the heuristic which cannot be found in the test data).
Similarly, Pa and nl are the positive and negative ex-
amples of HI. The new heuristics are scored by their
FOIL_Gain distance to the existing set of heuristics,
and the best scoring one is added to the COCKTAIL
system. The FOIL_Gain formula is:

Pl log2 ~.___~ )
FOIL_Gain(H1,1to) = k(log~pl + nl PO "t- no

where k is the number of positive examples covered by
both Hi and H0. Heuristic H0 is added to the seed set if
there is no other heuristic providing larger FOIL_Gain
to any of the seed heuristics. This mechanism of discov-
ering and adding new heuristics to the set of coreference
rules enables the following bootstrapping algorithm:

MUTUAL BOOTSTRAPPING LOOP
1. Score all candidate heuristics with FOIL_Gain
2. Best_h=closest candidate to heuristics(COCKTAIL)
3. Add Best_h to heuristics(COCKTAIL)
4. Apply all heuristics(COCKTAIL) to the test data

by combining the new and the old heuristics.
5. Goto step I if new heuristics could be uncovered and

the precision and recall did not converge.

Evaluation

To measure the performance of COCKTAIL we have used
the MUC-6 and MUC-7 annotated data and computed
the precision, the recall and van Rijsbergen’s F-measure
(which combines recall and precision equally) values.
The performance measures have been obtained auto-
matically using the MUC-6 coreference scoring program
(Vilaln et al. 1995). We performed cross-validations, 
randomly selecting 10 texts from the MUC annotated
corpus as test data, and the test of the MUC texts as
training data. At the next step we chose randomly 10
new texts for test and trained on the remaining 50 texts.
We repeated the selection on test data until we used the
entire collection of coreference annotated texts. Table 4
lists the results.

Table 4 shows that the seed set of heuristics had good
precision but poor recall. By combining the heuristics with
the entropy-based measure, we the precision dropped dras-
tically. However, the entropy measures helped both better
precision and recall. In the future we intend to compare the
overall effect of heuristics that recognize referential expres-
sions on the overall performance of the system.

Precision [Recall ] F-measure
COCKTAIL 87.1% 61.7% 72.2%
heuristics
COCKTAIL 76.7% 57.3% 71.3%

heuristics combined
COCKTAIL 92.0% 73.9% 81.9%

+bootstrapping

Table 4: Bootstrapping effect on COCKTAIL

Conclusion
We have introduced a new data-driven method for coref-
erence resolution, implemented in the COCKTAIL system.
Unlike other knowledge-poor methods for coreference res-
olution (Baldwin 1997) (Mitkov 1998), COCKTAIL filters 
most performant heuristics through massive training data,
generated by its AUTOTAG-COREF component. Further-
more, by using an entropy-based method we determine
the best partition of coreferring expressions in coreference
chains, and thus allow new heuristics to be learned and ap-
plied along with the initial ones. New heuristics are learned
by applying a bootstrapping methodology. Due to the cen-
tral role played by the notion of coreference chain, COCK-
TAIL provides a flexible approach of coordinating context-
dependent and context-independent coreference constraints
and preferences for partitioning nominal expressions into
coreference equivalence classes.
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