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Abstract

This paper presents a method and implementation re-
sults for the transformation of WordNet glosses into
logic forms. The glosses, currently expressed in En-
glish are a rich source of world knowledge. Logic forms
are useful for logic proofs, inference, and many other
Al applications. We demonstrate their applicability to
a Question Answering system.

Introduction

It is well known that logic form representations of nat-
ural language text help applications such as text in-
ference(Moldovan et al. 1999), abductive reasoning
(Hobbs, Stickel, & Martin 1993), Question/Answering
(Moldovan et al. 1999) and others.

Consider the TREC-QA'’s question (NIST 2000):

Q198 : How did Socrates die?

The answer to this question appears in the text
“..Socrates’ death came when he chose to drink poi-
soned wine...”. To prove that this is a plausible an-
swer one needs extra knowledge. From WordNet (Miller
1995) the gloss of poison:v#2 (the second sense of verb
poison) we have kill with poison and from the first sense
of verb kill:#1 we have cause to die, which justifies the
answers.

This paper presents a logic notation suitable for rep-
resenting the English texts in the WordNet glosses.
Since the automatic Logic Form Transformation (LFT)
for open text requires an exceedingly large number of
rules, we were faced with a coverage problem: to se-
lect those transformation rules that have the broadest
impact - i.e. transform more glosses than other rules.
An iterative procedure is presented that picks up such
rules.

Logic Form Transformation for
WordNet glosses
After glosses are syntactically parsed the next step is
to transform them into a more abstract logical repre-

sentation. The logic form is an intermediary step be-
tween syntactic parse and the deep semantic form -
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which we do not address here. The LFT codification
acknowledges syntax-based relationships such as: (1)
syntactic subjects, (2) syntactic objects, (3) preposi-
tional attachments, (4) complex nominals, and (5) ad-
jectival/adverbial adjuncts.

Approach to implement Logical Form Transfor-
mations (LFTs)

There are two criteria that guide our approach: (1) the
notation to be as close as possible to English, and (2)
the notation should be syntactically simple. Our ap-
proach is to derive the LFT directly from the output
of the syntactic parser. The parser resolves the struc-
tural and syntactic ambiguities. This way, we avoid the
very hard problems of logic representation of natural
language. We follow closely the successful representa-
tion used by Hobbs in TACITUS (Hobbs 1986). Hobbs
explains that for many linguistic applications it is ac-
ceptable to relax ontological scruples, intricate syntac-
tic explanations, and the desire for efficient deductions
in favor of a simpler notation closer to English.

For the logic representation of WordNet glosses we
ignore: plurals and sets, verb tenses, auxiliary verbs,
quantifiers and modal operators, comparatives and
negation. This decision is based on our desire to pro-
vide an acceptable and consistent logic representation
that otherwise would be unfeasible.

LFT Definitions

Predicates

A predicate is generated for every noun, verb, adjec-
tive or adverb encountered in any gloss. The name
of the predicate is a concatenation of the morpheme’s
base form, the part-of-speech and the WordNet seman-
tic sense, thus capturing the full lexical and semantic
disambiguation. For example, the LFT of the gloss
of {student, pupil, educatee} is (a learner who
is enrolled in an educational imstitution). It
will contain the predicates learner:n, enroll:v and educa-
tional_institution:n.

Fix slot-allocation
In the spirit of the Davidsonian treatment of the ac-
tion predicates (Davidson 1967), all verb predicates (as
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well as the nominalizations representing actions, events
or states) have three arguments: action/state/event-
predicate(e,z1,z2), where:
e e represents the eventuality of the action, state or
event i stated by the verb to take place,
e 1 represents the syntactic subject of the action, event
- or state, and
e x5 represents the syntactic direct object of the action,
event or state.
For example, the LFT of (a person who backs a
politician), the gloss of {supporter, protagonist,
champion, admirer, booster, friend}
is: [person:n(z;) & back:v(e1,z1,z2) & politician:n(z2)
] Several clarifications are in order here.
(a) In case when the predicate is a ditransitive
verb, its representation is verb(e,z;,z2,z3). For ex-
ample: professor gives students the grades is
represented as: professor(z,) & give(e;,z1,22,23) &
grade(zs) & student(zs). This condition is detected by
the presence of two noun phrases following a verb in
active voice.
(b) The arguments of verb predicates are always in the
order: subject, direct object, indirect object. In the
case when one of these syntactic roles is missing, its
respective argument appears under the verb predicate,
but that argument will not be used by any other predi-
cate. This is a so-called “slot-allocation” representation
since the position of the arguments is fixed for the pur-
pose of a simpler notation. Since in WordNet glosses
not many verbs have indirect objects, the argument z3
is used only when necessary, otherwise is omited. How-
ever, the arguments for the subjects and direct objects
are always present, even when the verb does not have
these syntactic roles. We found that this simple and
consistent representation is easy to derive and use.

Modifiers

The role of complements within a phrase is replicated
in the LFTs. Predicates generated from modifiers
share the same arguments with the predicates corre-
sponding to the phrase heads. Adjective predicates
share the same argument as the predicate correspond-
ing to the noun they modify. An exemplification is
the LFT of the gloss of {artifact, artifact}, which
maps (a man-made object) into [ object:n(z;) & man-
made:a(z;)]. Similarly, the argument of adverbial pred-
icate is the argument marking the eventuality of the
event/state/action they modify. For example, the gloss
of the verb synset {hare}is (run quickly), producing
the LFT = [run(e;,z1,72) & quickly(e;)].

Conjunctions

Conjunctions are transformed in predicates, which en-
able the aggregation of several predicates under the
same syntactic role (e.g. subject, object or preposi-
tional object). By convention, conjunction-predicates
have a variable number of arguments, since they cover
a variable number of predicates. The first argument
represents the “result” of the logical operation induced
by the conjunction (e.g. a logical and in the case of the
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and conjunction, or a logical or in the case of the or
conjunction). The rest of the arguments indicate the
predicates covered by the conjunction, as they are ar-
guments of those predicates as well. Table 1 provides
examples of conjunction predicates.

Prepositions

We also generate predicates for every preposition en-
countered in the gloss. The preposition predicates al-
ways have two arguments: the first argument corre-
sponding to the predicate of the head of the phrase
to which prepositional phrase is attached, whereas the
second argument corresponds to the prepositional ob-
ject. This predicative treatment of prepositional at-
tachments was first reported in (Bear & Hobbs 1988).
Table 2 shows some examples of preposition predicates.

Complex nominals

Many complex nominals are encoded currently in Word-
Net as synset entries comprising several words, known
as WordNet collocations (e.g. flea market, baseball
team, joint venture). Still, many compound nouns
are not encoded as WordNet entries, and need to be
recognized as a single nominal. The way of doing this
was first devised in TACITUS (Hobbs 1986), when the
predicate nn was first introduced. Similar to conjunc-
tion predicates, the nn predicates can have a variable
number of arguments, with the first one representing
the result of the aggregation of the nouns correspond-
ing to the rest of the arguments. Examples from Table
3 show the transformation of some complex nominals.

LFT Implementation

The implementation of LFTs relies on information pro-
vided by the syntactic parser. We have developed a set
of transformation rules that create predicates and as-
sign them arguments. For every rule of the parser, it
ought to be a transformation rule which produces the
corresponding logical formula. There are two classes
of rules: (1) intra-phrase and (2) inter-phrase trans-
formation rules. The intra-phrase transformation rules
generate predicates for every noun, verb, adjective or
adverb. They also assign the variables that describe
dependencies local to the phrase.

The inter-phrase transformation rules provide with
the arguments of the verb predicates, preposition pred-
icates and inter-phrasal conjunctions. Verb predicate
arguments are identified by recognizing the syntactic
subject and object of the respective verb, based on a few
grammar rules and relative pronoun interpretation. De-
pendencies between adjectival (adverbial) phrases and
noun (verb) phrases are predicted based on vicinity.
Both intra- and inter-phrase transformation rules are
produced from the parser. Examples of transformation
rules are shown in Table 4.

Coverage Issue

One of the most challenging problems in implement-
ing LFT for natural language text is the fact that each
grammar rule leads to one or more LFT rules. Table 5



[ Synset [ Gloss

LFT

_J

{enterprise}

(an organization created for
business ventures)

organization:n(zz) & create(e;,z1,z2) & for(e;,z3) &
nn(z3,z4,z5) & business:n(z4) & venture:n(zs)

~ {tax income, taxationm,

tax revenue, revenue} taxation)

(government income credited to

on(z2,r3,z4) & government:n(zs) & income:n(z4) &
credit:v(ey,z1,z2) & to(e1,x5) & taxation:n(zs)

Table 3: Examples of complex nominal predicates

Intra-phrase transformation rules

noun(z,) & adji(z1) & adja(z1)

hard:a(z;) &
straight:a(z;)

Rule Transformation(LFT) Gloss Synset
ART ADJ, ADJ; NOUN— return:n(z,) & (a hard straight {drive}

return (as in
tennis or squash))

verb(e:,z1,z2) & adv(e:)

open:re;)

ART ADJ, AND ADJ; NOUN— light:n(z;) & weak:a(z;) (a weak and {shimmer, play}
noun(z:) & adji(z1) & adjz(z1) & tremulous:a(z;) tremulous light)
VERB ADV— cutiv(er,r1,22) & (cut open) {slash, gash}

ART NOUN; 'S NOUNz—

nouny(z:) & nouni(z3) & pos(z1,z2)

body:n(z:) &
person:n(z2) & pos(zi,r2)

(a person’s body)

{body}

Inter-phrase transformation rules

L
Rule

& cloth:n(z3a)

Transformation Gloss Synset
VP, CONJ VP, PREP NP or(e1,e2, e3) & (keep or {continue, uphold
conj(er,ez, e3) & LFT(V Py(e2,z1,22)) | keep:v(ez,z1,22)) & maintain in carry.on,
& LFT(V Py(e3,x1,z2)) & prep(er,z3) | maintain:v(es,z2,z2)) & unaltered bear_on
& LFT(NP) in(e1,z3) & condition:n(z3) | condition) preserve}
& unaltered:a(zs)
NP, VP by NP, PREP NP~ nn(z2,x4,75) & (a garment closure | {fly,
LFT(NPi(z2)) & LFT(VP(e1,z1,22)) | garment:n(z4 (zipper or fly front}
& LFT(NP;(z1)) & prep(z:,x3) & closure:n(ze buttons)
LFT(N Ps(z3)) conceal:v(e;,z1,22) & concealed by a fold
fold:n(x1) & of(x1,z3) of cloth)

Table 4: Examples of LFT rules

stops. The rules in S’ are determined based on the fre-
quency of occurrences. The cardinality of S’ determines
how fast 4 falls below 7. A larger value would generate
a smaller number of refinement steps but more effort is
spent on rules that bring little benefit, especially in the
last steps. At the end of step 2 the final set S contains
the grammar rules most representative for the target
corpus.

Experiments and Results

To validate our procedure we experimented it on a sub-
set of WordNet 1.6 noun glosses.

The initial set of rules is formed by taking the most
frequent rules for each grammar phrase detected in a
corpus of 10,000 noun glosses randomly selected from
the noun data file of WordNet 1.6. We tag and parse
them. From the parse trees obtained we extract all
grammar rules and their number of occurrences and
sort them according to their frequency. Then, we select
the most frequent rules up to the point where the gain
in coverage is less than 1%. At the end of the first step
we have a set of most frequent rules.

To test the overall performance of the rules found in
step one we built a corpus of 400 noun glosses from the
grtifact hierarchy. We expanded the glosses’ definitions,

ran Brill’s tagger, corrected the tags and parsed them.
Finally, the LFT for each expanded gloss was done man-
ually. We run the set of rules Sy (seventy rules) on our
test data and compared the output with the LFTs ob-
tained by hand. A coverage of 72.5% was achieved.
Then, we applied the procedure in step two to boost
up the performance. The initial set of rules Sy is ex-
tended at each refinement iteration with a fixed number
of rules (cardinality of S’): i.e. three for each grammar
phrase from the training corpus of 10,000 glosses. At
each iteration the gain in coverage over the test data
is determined. The chart in Figure 1 shows the evolu-
tion of the improvement in coverage & achieved as the
number of refinement iterations increases. We stop at
iteration 8 when the coverage is 81% and the gain ob-
tained with S at the last iteration on the 400 glosses
was less than the established threshold. The results
obtained are encouraging. One can get a better per-
formance by adjusting the two parameters 7 and the
cardinality of S’ at the cost of a larger effort.

Applications

The LFT can help a Question Answering system that
we built (Moldovan et al. 1999) with providing better
answers.

NATURAL LANGUAGE PROCESSING 461



Synset Gloss _ LFT

{masterstroke} (an achievement demonstrating achievement:n(z1) & demonstrate(e1,z1,22) & or(z2,z3,74) &
great skill or mastery) skill:n(z3) & great:a(zs) & mastery:n(z4)

{tumble} (roll and turn skillfully) and(ej,ez,e3) & roll:v(ez,z1,z2) & turniv(es,z1,z2) &

skillfully:r(e;)

{trip, stumble,

(an unintentional but embarrassing

blunder:n(z1) & but(z:,z2,z3) & unintentional:a(z2) &

misstep} blunder) embarrassing:a(zz)
Table 1: Examples of conjunction predicates
[ Synset “Gloss [ LFT ]

{demonetize} | (deprive of value for payment)

deprive:v(e;,z1,z2) & of(e1,z3) & value:n(z3) &
for(xs,z4) & payment:n(z4)

{pitching} | (playing the position of pitcher | playing:n{e;,r1,z2) & position:n(z2) & of(z2,x3) &
on a baseball team) pitcher:n(z3) on(e;,z4) & baseball_team:n(z,)
Table 2: Examples of preposition predicates

TPart of speech | Rules Thus, the problem- of precision translates into a cover-
ot 5307 age problem and vice-versa.

verb 1"81T{ Table 6 shows the distribution of most common

adjectives 1’958 phrases for 1(_),000 randomly selected noun glosses, the

“dveshs 6.:39 number of unique grammar rules and the percentage of
L~ phrases covered by the top ten rules. From the table
[thaf 9,826 one notices that the coverage of top ten most frequent

Table 5: Size of grammar for WordNet glosses per part
of speech

shows the number of distinct grammar rules retrieved
from parse trees of all glosses in WordNet. Since the
LFT rules are generated manually, it becomes impor-
tant to identify those that have the most coverage. The
total number of nearly 10,000 rules (see Table 5) that
should be implemented is by far too large to possibly
be implemented. To deal with this coverage problem we
devised a two-steps procedure that works iteratively:

Step 1: implement first the most common grammar
rules

Step 2: adjust the performance by applying some
patches

The first step is basically an acquisition phase: from
a representative corpus of glosses we derive the most
common grammar cases and resolve them. The second
step consists of deriving incrementally a set of patches
to boost up the performance.

We have observed that although the total number
of grammar rules is large, a small number of rules for
a specific phrase cover a large percentage of all occur-
rences. This might be explained by the relative struc-
tural uniformity of glosses: genus and differentia. This
relative uniformity is more pronounced for nouns and
verb glosses.

Based on this observation we implement first the
most common rules and leave the others uncovered or
at least postpone their implementation. No LFT is gen-
erated for grammar rules that are not frequent enough.
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used rules is above 90%.

To decide whether a rule is common or not we use an
empirical criteria: if it brings a gain in coverage greater
than a specified threshold then we consider that case
to be common. The value of the threshold should be a
compromise between the effort spent to implement the
rule and the gain in coverage brought by that rule. The
value of the threshold in the case of WordNet glosses
was empirically established to be 1%. At the end of the
first step we have validated a set of most frequent rules
Sp. Denote with G the set of rules uncovered yet.

The second step of the procedure consists of applying
a set of patches to boost up the performance obtained in
the first step. The patches are determined through an
iterative refinement process. The processing performed
in the second step is outlined in the algorithm below.

procedure LFT(So, G, 7) {
i= 0 S = So, é = 0 S = 0
old_perf = 0; appIy(So, new_perf),-
& = new_perf - old_perf;
while ((i<upperlimit) && (6 < 7)) {
S' = most_frequent_rules(G - S');
G=G-5';.25mS =Sy 5%
old_perf = new_perf; apply(S, new_perf);
é = new_perf - old_perf;
i=i+1;}
return (new_perf);}

At each refinement step, a set of rules S’ is added to the
set of rules obtained in previous steps S (the initial set
is Sp obtained in phase one). The gain in coverage é of
this set is computed and compared against a threshold
7: if the value of é is lower than threshold 7 the process




[ Phrase | Occurrences | Unique rules | Coverage of top ten
base NP | 33,643 857 .69
NP 11,408 244 .95
VP 19, 415 450 .70
PP 12,315 40 .99
S 14,740 35 .99

Table 6: Phrases and their coverage of top 10 most frequent rules in 10,000 noun glosses
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Figure 1: Gain in coverage evolution in phase two

Consider TREC-QA’s question (NIST 2000):

Q481 : Who shot Billy the Kid?

The Q/A system identifies first that the answer type
is PERSON. It uses keywords Billy the Kid and shot to
retrieve paragraphs that may contain the answer. Two
such paragraphs are:

e P1: The scene called for Phillips ’ character to be saved
from a lynching when Billy the Kid ( Emilio Estevez )
shot the rope in half just as he was about to be hanged .

e P2: In 1881 , outlaw William H. Bonney Jr. , alias Billy
the Kid , was shot and killed by Sheriff Pat Garrett in
Fort Sumner , N.M.

The answer is provided by paragraph P2 and is de-
picted by the system as follows. Using LFT transfor-
mation, the question has a representation of the form:
Q: PERSON(z1) & shot(e, z1, x2) & Billy_the_Kid(z2)
where z1 is to be instantiated from paragraphs.

The paragraphs have the following LFT (we show
only the relevant part):

e P1: Billy.the Kid(z1’) & shot(el’, zl', z2') &
rope(z2')

e P2: Billy_the Kid(z1') & shot(el’, 2/, z1') & Sher-
iff Pat_Garrett(z2')

The logic prover attempts to prove the question start-
ing from the paragraph. The logic proof for P1 fails be-
cause Billy_the Kid is the agent of shooting, not the ob-
ject as requested by the question. The logic proof for P2
succeeds and the agent of shooting Sheriff_Pat_Garrett
unifies with PERSON from the question. The prover
yields el = el’, z1 = £2' and x2 = z1’. Note that
our logic form representation based on slot-allocation
played a crucial role in this proof.

Conclusions

We presented a logic notation suitable for represent-
ing WordNet glosses. A two-step procedure to solve
the coverage problem was introduced which obtained
an overall coverage of 81% on 400 WordNet glosses.
Parser’s accuracy and irregularities in some WordNet
glosses influenced mainly the error rate in our approach.
We showed how the logic form helps in practical appli-
cations as Question/Answering.
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