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Abstract
Two methodological approaches to inverse problems solu-
tion with the help of neural networks are considered: "ex-
periment-based" and "model-based". Their merits, draw-
backs, and characteristics of their use are discussed. Suc-
cessful application of neural networks for solution of three
inverse problems in laser spectroscopy of water media is re-
ported: (1) simultaneous determination of sea water tem-
perature and salinity from Raman spectra, (2) determination
of contributions for components of an organic compounds
mixture in water from their fluorescence spectra, and (3)
determination of molecular parameters of organic com-
pounds from fluorescence saturation curves.

Inverse Problems and Their Correctness
One of the areas of successful application of neural net-
works (NN) in the last years was the solution of various in-
verse problems in science and technology.

The general statement of an inverse problem is the fol-
lowing. Consider the studied object of an arbitrary nature,
whose behavior is determined by the vector of input pa-
rameters X = {x1, x2, ..., xn}. Let the value of X be un-
known and the behavior of the object be expressed as a
vector of observed values Y = {y1, y2, ..., ym}. Therefore,
the studied object implements an unknown function
Y = F(X). As a rule, m >> n, i.e. the system can in fact be
described by much less parameters than observed. To do
this, it is necessary to study how to restore X values from Y
values. Such problem is a problem of modeling the inverse
function X=F-1(Y) and it is called an inverse problem.

Such a problem may not be always solved unambigu-
ously because of possible non-uniqueness and instability of
the solutions.

An inverse problem is called correct by Hadamar, if:
(1) ∀Y ∃ !X: Y=F(X) (the solution is unique);
(2) ∀δ ∃ε: (∆Y < δ) ⇔ (∆X < ε) (the solution is stable)
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in the whole domain of definition of X.
An inverse problem is called correct by Tikhonov (Tik-

honov, Dmitriev, and Glasko 1983) (in the case when cor-
rectness by Hadamar is breached), if it is possible to extract
such more narrow set of solutions {X'} from the space
{X}, that:

(1) it is known a priori that ∃ X ∈ {X'} (the solution
exists);

(2) ∀Y ∃ !X ∈ {X'}: Y=F(X) (the solution is unique);
(3) ∀δ ∃ε: (∆Y < δ) ⇔ (∆X < ε), if (X+∆X) ∈ {X'} (the

solution is stable).
It should be noted that even when the problem is theo-

retically correct, it can be practically incorrect because of
presence of noise in experimental data (that may lead to in-
stability of the solution) and because of discreteness of the
set of experimental points (that may break the uniqueness
of the solution – the observed values may be described by
several different functions Y=F1(X), Y=F2(X) etc.).

Due to the well-known properties of NN (ability to gen-
eralize the available information if the data are contradic-
tive, and thus to rise the effective signal to noise ratio no-
ticeably), it is possible to use them to oppose the emer-
gence of practical incorrectness during solution of inverse
problems.

Two Methodological Approaches
to the Solution of Inverse Problems
with the Help of Neural Networks

Practical solution of inverse problems with the help of NN
is possible based on two principally different methodologi-
cal approaches.
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1.”Experiment-based” approach.
An experimental data array Sk = (X, Y)k, k=1...N is

given. The work with NN is carried out in two stages:
(a) Division of the whole data array into the training, test

and examination sets.
(b) Training of the NN on these data sets to estimate the

values of the inverse function X=F-1(Y).
2. “Model-based” approach.
Existence of a sufficiently adequate model of the direct

function Y=F(X) is assumed. Such a model may be an
analytical formula or an algorithm of computational solu-
tion of the direct problem. The work with NN is carried out
in three stages:

(a) Setting the range of X and the grid of values for each
of the problem parameters x1, x2, ..., xn.

(b) Generation of the necessary amount of representative
data for all the data sets (training, test, examination ones)
by solving the direct problem using the available model of
the direct function Y=F(X).

(c) Training of the NN on these data sets to estimate the
values of the inverse function X=F-1(Y).

Comparative analysis of these two methodological ap-
proaches is given in Table 1. Note that if an adequate
model is available, the “model-based” approach looks more
preferable.

Table 1.
Feature “Experiment

-based”
“Model-based”

Representativity
of the data sets

As a rule,
insufficient

Adequate

Presence of noise
in the data

Always
present

May be introduced
artificially during
data generation or
during NN training

Noise level in the
data

Determined
by the
experiment

Set during modeling
or during training

Conduction of ex-
periments

Necessary Advisable to test
the results

Availability of an
analytical or com-
putational model
of the direct
problem solution

Not
necessary

Necessary

Adequacy of the
solution to the
real object

High As adequate as the
model used

This report considers from this point of view the state-
ment of several inverse problems in laser spectroscopy of
water media. Some results of solution of these problems are
presented.

Problem 1: Simultaneous Determination of
Temperature and Salinity of the Sea Water

from Raman Spectra
The analyzed data are Raman spectra of liquid water under
laser excitation. The inverse problem consists in simultane-
ous determination of temperature and salinity of water from
500 values of the Raman spectrum intensity in different
channels.

Unfortunately, direct spectra modeling is practically im-
possible in this problem because of high complexity of the
object. The only approach possible in this situation is the
“experiment-based” approach. The situation is additionally
hampered by the small number of experimental spectra and
by the complications with their registration.

Up to now, the problem has been solved in a simplified
variant (Dolenko et al. 2000) – for fresh water with deter-
mination of its temperature only. The representativity of the
data sets was provided by manual division of the total
number of spectra into the training set (43 spectra in the
temperature range from 19.7оС to 91.4оС), the test set (10
spectra in the same range), and the examination set (6
spectra in the same range). In Fig.1, characteristic outlook
of the valence band of water Raman spectra at different
temperatures is presented.

Fig.1. Characteristic outlook of the valence band of water
Raman spectra.

Only the values from the most informative central region
of the spectra (250 channels) were used as the observed
values for network training. No curve smoothing was per-
formed. The best results among all the tested NN architec-
tures has been demonstrated by the General Regression NN
(GRNN) (Specht 1991).

It was obtained that the relative mean squared error of
temperature determination (on the examination set) was
0.4%, and the mean absolute error did not exceed 0.3 °С.
The obtained precision of temperature determination from
water Raman spectra exceeds the precision of temperature
determination obtained by other methods (Leonard,
Caputo, and Fridman 1981).

At the next stage, it is planned to solve the two-
parameter problem of simultaneous determination of water
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temperature and salinity from Raman spectra valence band
in laboratory conditions, and then to test this method in
nature conditions. From the other side, it is supposed to
perform indirect modeling of spectra by preliminary analy-
sis of temperature dependence of intensity in each channel,
with subsequent use of the found dependence and of sev-
eral reference experimental spectra to simulate model
spectra in the whole temperature range. From the point of
view of optimizing the NN work it seems reasonable to per-
form data preprocessing by compression with the help of
auto-associative memory.

Problem 2: Determination of
Contributions for Components of

an Organic Compounds Mixture in Water
from Their Fluorescence Spectra

The analyzed data are the fluorescence spectra of nature
water and of model samples under laser excitation. The in-
verse problem consists in the determination of partial fluo-
rescent contributions of admixtures (in particular, oil pol-
lution (OP) against the background of aquatic humic sub-
stance (AHS)) from 500 values of the fluorescence spec-
trum intensity in different channels.

The “model-based” approach to this problem is ham-
pered for the following two reasons. First, the studied ob-
ject is very complex, therefore the direct modeling of real
spectra is not possible. Second, non-linear interaction of
the admixtures (fluorescence quenching) introduces distor-
tions at the attempts of modeling the spectrum of the mix-
ture as a superposition of the components’ spectra.

Indirect modeling can be implemented in this case by
numeric simulation of mixtures’ spectra as superposition of
experimental spectra of the components. Such a numeric
experiment has been performed as the first step to

Fig.2. Experimental fluorescence spectra of model samples
of fulvoacid solution and oil emulsion in water, and of their
mixture.

finding out the possibilities of determination of small fluo-
rescent contributions by direct analysis of the spectra. Fluo-
rescence spectra of model samples of fulvoacid (FA) solu-
tion in water and of oil emulsion in water, have been used
(Fig.2). The water Raman band that is convenient for use as
an internal benchmark to calibrate the fluorescence band
(Klyshko and Fadeev 1978) is also present in the spectra.
In this case, it is convenient to work with the fluorescent
parameter Ф0 = Nfl0/NRS, where Nfl0 is the number of fluo-
rescence photons (when fluorescent saturation is not pres-
ent), and NRS is the number of Raman photons.

The problem was solved under the assumption of no in-
teraction between the components. The spectra of the mix-
ture were modeled as a linear superposition of the initial
(reference) experimental spectra of the components with
variable weight coefficients. It was convenient to choose
partial values of the fluorescent parameter Ф0 as such coef-
ficients.

Using this "linear" model, the training set (2209 pat-
terns), the test set (361 pattern), and the examination set
(64 patterns) were generated within the following ranges of
the parameters: Ф0FA: 0.01..20, Ф0OP: 0.01-20. These model
spectra were used to train different NN architectures.

When the NN was applied to model (simulated) spectra,
the best results were obtained by the five-layer perceptron
and by the polynomial network (Group Method of Data
Handling (Madala and Ivakhnenko 1994)). These networks
were able to determine the OP contribution down to the
value of the fluorescent parameter Ф0OP = 0.02 against the
background of the FA fluorescence with the parameter
value up to Ф0FA = 20.0. In this case, the error in determi-
nation of the Ф0OP parameter did not exceed 10%. When
the values of the Ф0OP parameter increase, the error goes
down, so the value of the error averaged over the whole
range of the parameters Ф0OP and Ф0FA was less than 2%
(as for Ф0OP, as for Ф0FA).

Then all the obtained NN were applied to the examina-
tion set whose spectra were degraded by adding noise with
amplitude of up to 10%. The minimal detectable level of
Ф0OP was 1.7 against the background of Ф0FA = 20.0, with
the Ф0OP determination error not exceeding 5%. The best
results here were shown by the GRNN and by the five-layer
perceptron that was trained with up to 20% noise added to
the training set spectra during training.

At the next stage, the network trained as above on the
spectra simulated using the linear model, was applied not to
simulated spectra, but to experimental fluorescence spectra.
The error increased up to 25-30%, the minimal detectable
value of the fluorescent contribution Ф0OP increased for
more than an order of magnitude. This means that the fluo-
rescence spectrum of a real mixture does not fully corre-
spond to the model for which the network was trained.
There can be several reasons for that: large experimental
measurement errors, breakdown of the linearity due to in-
teraction between components, influence of organic com-
pounds on the water Raman band etc.

The majority of these factors are accounted for by them-
selves if the "experiment-based" approach is used. In this
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case, the detection error for Ф0OP was lower than that in the
preceding case, but it did not reach the extremely low val-
ues obtained on model spectra when no noise was present.
This meant that the "experiment-based" approach actually
removed the errors connected with the difference between
the real spectra presented to the network, and the model
ones. However, significant reduction of the volume of data
used to train the network in comparison with training on
simulated spectra, did not allow to achieve good precision
of determination of the desired parameters.

At the next stage, it is planned to perform experiments of
higher quality, to improve the results of the "experiment-
based" approach. Transfer from the linear superposition of
the components' spectra to a more adequate model of
simulating the spectra of a mixture, taking into account the
interaction of the components, is also planned. Besides
that, for this problem also it seems reasonable to perform
data preprocessing by compression with the help of auto-
associative memory.

Problem 3: Determination of Molecular
Parameters of Organic Compounds

from Fluorescence Saturation Curves
This is a representative example of a problem that mani-
fests the advantages of the "model-based" approach to the
highest degree. This happens due to the fact that there is a
sufficiently adequate model elaborated for the studied ob-
ject. The analyzed data are the fluorescence saturation
curves of organic compounds (dyes) under laser excitation.
The inverse problem consists in the determination of mo-
lecular parameters of the object (absorption cross section of
exciting radiation, lifetime of the excited level, quantum
output into triplet state as a result of intercombinational
conversion, rate constant of singlet-singlet annihilation
etc.) from the shape of the fluorescence saturation curves,
i.e. the dependences of the number of fluorescence photons
on photon flow density of the exciting radiation.

The results of solving this problem has been described in
detail in several publications (Fadeev et al. 1997; Fadeev et
al. 1999; Dolenko et al. 1999) and they will not be pre-
sented here. However, it should be noted that due to suc-
cessful application of the "model-based" approach, it was
possible to achieve results that are up to date unreachable
by any other methods that do not use NN.

Conclusion
Two different methodological approaches to solution of in-
verse problems with the help of neural networks have been
considered. The "model-based" approach gives better re-
sults when an adequate model of the studied object is avail-
able, due to the possibility to make the data sets used for
training as large and representative as needed. At the same
time, the "experiment-based" approach is able to take into
account a large number of various factors affecting the ob-

ject that are very difficult to include in a model. Great ca-
pabilities of neural networks at the solution of inverse
problems have been confirmed on three different problems
from the domain of laser spectroscopy of water media.

Acknowledgements
This work was sponsored in part by the following institu-
tions and programs: Russian Foundation for Basic Re-
search (RFBR) (grant No 99-02-17946); Federal Goal-
Oriented Program "World Ocean" (project 6.10); Intersec-
toral Science and Technology Program "Physics of Quan-
tum and Wave Processes", direction "Fundamental Spec-
troscopy"; Federal Goal-Oriented Program "Integration"
(Educational and Scientific Center "Fundamental Optics
and Spectroscopy).

All the neural network calculations for this paper has
been performed with NeuroShell 2 software package from
Ward Systems Group, Inc.

References
Dolenko, S.A., Dolenko, T.A., Fadeev, V.V., Filippova,
E.M., Kozyreva, O.V., and Persiantsev, I.G. 1999. Solution
of Inverse Problem in Nonlinear Laser Fluorimetry of Or-
ganic Compounds with the Use of Artificial Neural Net-
works. Pattern Recognition & Image Analysis. 9:510-515.
Dolenko, T.A., Churina, I.V., Fadeev, V.V., and Glushkov,
S.M. 2000. Valence Band of Liquid Water Raman Scat-
tering: Some Peculiarities and Applications in Diagnostics
of Water Media. J. of Raman Spectroscopy 31:863-870.
Fadeev, V.V., Dolenko, S.A., Dolenko, T.A., Uvenkov,
Ya.V., Filippova, E.M., and Chubarov, V.V. 1997. Laser
Diagnostics of Complicated Organic Compounds and
Complexes by Saturation Fluorimetry. Kvantovaya Elek-
tronika 24:571-574 [Quantum Electronics 27:556-559].
Fadeev, V.V., Dolenko, T.A., Filippova, E.M., and Chu-
barov, V.V. 1999. Saturation Spectroscopy as a Method for
Determining the Photophysical Parameters of Complicated
Organic Compounds. Optics Communications 166:25-33.
Klyshko, D.N., and Fadeev, V.V. 1978. Remote Determi-
nation of the Admixture Concentrations in Water by the
Method of Laser Spectroscopy Using Raman Scattering as
an Internal Standard. Doklady Akademii Nauk SSSR
238:320-323 [Soviet Physics Doklady 23:55-58].
Leonard, D.A., Caputo, B., and Fridman, J.D. 1981. Re-
mote Sensing of Subsurface Water Temperature by Raman
Polarization Spectroscopy. SPIE, Polarizers and Applica-
tions 307:76-78.
Madala, H.R. and Ivakhnenko, A.G. 1994. Inductive
Learning Algorithms for Complex Systems Modeling. Boca
Raton, CRC Press Inc.
Specht, D. 1991. A General Regression Neural Network.
IEEE Transactions on Neural Networks, 2:568-576.
Tikhonov, A.N., Dmitriev, V.I., and Glasko, V.B. 1983.
Mathematical Methods in Prospecting Mineral Resources.
Moscow: Znanie.


