
Decision Tree Rule Reduction Using Linear Classifiers in Multilayer Perceptron

DaeEun Kim
Division of Informatics
University of Edinburgh

5 Forrest Hill
Edinburgh, EHI 2QL, United Kingdom

daeeun@dai.ed.ac.uk

Sea Woo Kim
Dept. of Information and

Communication Engineering, KAIST
Cheongryang l-dong
Seoul, 130-011, Korea

seawoo @ngis.kaist.ac.kr

Abstract

It has been shown that a neural network is better than a
direct application of induction trees in modeling com-
plex relations of input attributes in sample data. We
propose that concise rules be extracted to support data
with input variable relations over continuous-valued at-
tributes. Those relations as a set of linear classifiers
can be obtained from neural network modeling based
on back-propagation. A linear classifier is derived from
a linear combination of input attributes and neuron
weights in the first hidden layer of neural networks. It
is shown in this paper that when we use a decision tree
over linear classifiers extracted from a multilayer per-
ceptron, the number of rules can be reduced. We have
tested this method over several data sets to compare it
with decision tree results.

Introduction
The discovery of decision rules and recognition of patterns
from data examples is one of the most challenging prob-
lems in machine learning. If data points contain numeri-
cal attributes, induction tree methods need the continuous-
valued attributes to be made discrete with threshold values.
Induction tree algorithms such as C4.5 build decision trees
by recursively partitioning the input attribute space (Quin-
lan 1996). The tree traversal from the root node to each leaf
leads to one conjunctive rule. Each internal node in the deci-
sion tree has a splitting criterion or threshold for continuous-
valued attributes to partition some part of the input space,
and each leaf represents a class related to the conditions of
each internal node.

Approaches based on decision trees involve making the
continuous-valued attributes discrete in input space, creat-
ing many rectangular divisions. As a result, they may have
the inability to detect data trends or desirable classifica-
tion surfaces. Even in the case of multivariate methods of
discretion which search in parallel for threshold values for
more than one continuous attribute (Fayyad & Irani 1993;
Kweldo & Kretowski 1999), the decision rules may not re-
flect data trends or the decision tree may build many rules
with the support of a small number of examples or ignore
some data points by dismissing them as noisy.

A possible process is suggested to grasp the trend of the
data. It first tries to fit it with a given data set for the

48O FLAIRS-2001

relationship between data points, using a statistical tech-
nique. It generates many data points on the response sur-
face of the fitted curve, and then induces rules with a
decision tree. This method was introduced as an alter-
native measure regarding the problem of direct applica-
tion of the induction tree to raw data (Irani & Qian 1990;
Kim 1991). However, it still has the problem of requiring
many induction rules to reflect the response surface.

In this paper we use a hybrid technique to combine neu-
ral networks and decision trees for data classification (Kim
& Lee 2000). It has been shown that neural networks are
better than direct application of induction trees in mod-
eling nonlinear characteristics of sample data (Dietterich,
Hild, & Bakiri 1990; Quinlan 1994; Setiono & Lie 1996;
Fisher & McKusick 1989; Shavlik, Mooney, & Towell
1991). Neural networks have the advantage of being able to
deal with noisy, inconsistent and incomplete data. A method
to extract symbolic rules from neural networks has been pro-
posed to increase the performance of the decision process
(Andrews, Diederich, & Tickle 1996; Taha & Ghosh 1999;
Fu 1994; Towcll & Shavlik Oct 1993; Setiono & Lie 1996).
The KT algorithm developed by Fu (Fu 1991) extracts rules
from subsets of connected weights with high activation in a
trained network. The M of N algorithm clusters weights of
the trained network and removes insignificant clusters with
low active weights. Then the rules are extracted from the
weights (Towell & Shavlik Oct 1993).

A simple rule extraction algorithm that uses discrete acti-
vations over continuous hidden units is presented in by Se-
tiono and Taha (Setiono & Lie 1996; Taha & Ghosh 1999).
They used in sequence a weight-decay back-propagation
over a three-layer feed-forward network, a pruning process
to remove irrelevant connection weights, a clustering of hid-
den unit activations, and extraction of rules from discrete
unit activations. They derived symbolic rules from neural
networks that include oblique decision hyperplanes instead
of general input attribute relations (Setiono & Liu 1997).
Also the direct conversion from neural networks to rules
has an exponential complexity when using search-based al-
gorithm over incoming weights for each unit (Fu 1994;
Towell & Shavlik Oct 1993). Most of the rule extraction
algorithms are used to derive rules from neuron weights
and neuron activations in the hidden layer as a search-based
method. An instance-based rule extraction method is sug-

Copyright © 2001, AAAI, All rights reserved.

From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved.

gested to reduce computation time by escaping search-based
methods (Kim & Lee 2000). After training two hidden layer
neural networks, the first hidden layer weight parameters are
treated as linear classifiers. These linear differentiated fimc-
tions are chosen by decision tree methods to determine deci-
sion boundaries after re-organizing the training set in terms
of the new linear classifier attributes¯

Our approach is to train a neural network with sigmoid
functions and to use decision classifiers based on weight
parameters of neural networks. Then an induction tree se-
lects the desirable input variable relations for data classifi-
cation. Decision tree applications have the ability to deter-
mine proper subintervals over continuous attributes by a dis-
cretion process. This discretion process will cover oblique
hyperplanes mentioned in Setiono’s papers. In this paper,
we have tested linear classifiers with variable thresholds and
fixed thresholds. The methods are tested on various types of
data and compared with the method based on the decision
tree alone.

Problem Statement
Induction trees are useful for a large number of examples,
and they enable us to obtain proper rules from examples
rapidly (Quinlan 1996). However, they have the difficulty
in inferring relations between data points and cannot handle
noisy data.

.... f "._~..

1 ° i

(a)

(c)

(b)

Figure 1: Example (a) data set and decision boundary (O
class 1, X : class 0) (b)-(c) neural network fitting (d) data
with 900 points (Kim & Lee 2000)

We can see a simple example of undesirable rule extrac-
tion discovered in the induction tree application¯ Figure 1 (a)
displays a set of 29 original sample data with two classes¯
It appears that the set has four sections that have the bound-
aries of direction from upper-left to lower-right. A set of
the dotted boundary lines is the result of multivariate clas-
sification by the induction tree. It has six rules to classify
data points. Even in C4.5 (Quinlan 1996) run, it has four
rules with 6.9 % error, making divisions with attribute y.

The rules do not catch data clustering completely in this ex-
ample. Figure l(b)-(c) shows neural network fitting with
back-propagation method¯ In Figure l(b)-(c) neural network
nodes have slopes alpha = 1.5, 4.0 for sigmoids, respec-
tively. After curve fitting, 900 points were generated uni-
formly on the response surface for the mapping from input
space to class, and the response values of the neural net-
work were calculated as shown in Figure l(d). The result
C4.5 to those 900 points followed the classification curves,
but produced 55 rules¯ The production of many rules results
from the fact that decision tree makes piecewise rectangu-
lar divisions for each rule. This happens in spite of the fact
that the response surface for data clustering has a correlation
between the input variables.

As shown above, the decision tree has a problem of over-
generalization for a small number of data and an over-
specialization problem for a large number of data. A pos-
sible suggestion is to consider or derive relations between
input variablt s as another attribute for rule extraction¯ How-
ever, it is difficult to find input variable relations for classi-
fication directly in supervised learning, while unsupervised
methods can use statistical methods such as principal com-
ponent analysis (Haykin 1999).

Method
The goal for our approach is to generate rules following the
shape and characteristics of response surfaces. Usually in-
duction trees cannot trace the trend of data, and they deter-
mine data clustering only in terms of input variables, unless
we apply other relation factors or attributes. In order to im-
prove classification rules from a large training data set, we
allow input variable relations for multi-attributes in a set of
rules¯

Neural Network and Linear Classifiers
We use a two-phase method for rule extraction over
continuous-valued attributes. Given a large training set of
data points, the first phase, as a feature extraction phase, is
to train feed-forward neural networks with back-propagation
and collect the weight set over input variables in the first
hidden layer. A feature useful in inferring multi-attribute
relations of data is found in the first hidden layer of neural
networks. The extracted rules involving network weight val-
ues will reflect features of data examples and provide good
classification boundaries. Also they may be more compact
and comprehensible, compared to induction tree rules.

In the second phase, as a feature combination phase, each
extracted feature for a linear classification boundary is com-
bined together using Boolean logic gates. In this paper, we
use an induction tree to combine each linear classifier.

The highly nonlinear property of neural networks makes
it difficult to describe how they reach predictions. Although
their predictive accuracy is satisfactory for many applica-
tions, they have long been considered as a complex model in
terms of analysis. By using expert rules derived from neu-
ral networks, the neural network representation can be more
understandable¯

It has been shown that a particular set of functions can

NEURAL NETWORK / FUZZY 481

be obtained with arbitrary accuracy by at most two hid-
den layers given enough nodes per layer (Cybenko 1988).
Also one hidden layer is sufficient to represent any Boolean
function (Hertz, Palmer, & Krogh 1991). Our neural net-
work structure has two hidden layers, where the first hid-
den layer makes a local feature selection with linear clas-
sifiers and the second layer receives Boolean logic val-
ues from the first layer and maps any Boolean func-
tion. The second hidden layer and output layer can be
thought of as a sum of the product of Boolean logic
gates. The n-th output of neural networks for a set of

data is Fn f(EN2 2 ---N1 1 --No= w ,d()Sj wjkf(w°ad))
After training data patterns with a neural network by back-
propagation, we can have linear classifiers in the first hidden
layer.

For a node in the first hidden layer, the activation is de-
fined as Hj = f(Y~i N° aiWij) for the j-th node where
No is the number of input attributes, ai is an input, and
f(x) = 1.0/(1.0 -’ ~z) is a sigmoid function. When we
train neural networks with the back-propagation method, a,
the slope of the sigmoid function is increased as iteration
continues. If we have a high value of a, the activation of
each neuron is close to the property of digital logic gates,
which has a binary value of 0 or 1.

Except for the first hidden layer, we can replace each neu-
ron by logic gates if we assume we have a high slope for
the sigmoid function. Input to each neuron in the first hid-
den layer is represented as a linear combination of input at-
tributes and weights,)--~N aiWij. This forms linear classi-
fiers for data classification as a feature extraction over data
distribution.

When Figure l(a) data is trained, we can introduce new
attributes aX + bY + e, where a, b, c are constants. We
use two hidden layers with 4 nodes and 3 nodes, respec-
tively, where every neuron node has a high sigmoid slope
to guarantee desirable linear classifiers as shown in Fig-
ure l(c). We transformed 900 data points in Figure l(d)
into four linear classifier data points, and then we added
the classifier attributes {L1, L2, L3, L4} to the original at-
tributes x, y. Induction tree algorithm used those six at-
tributes {x, y, LI, L2, Ls, L4 } for its input attributes.

Then we could obtain only four rules with C4.5, while a
simple application of C4.5 for those data genetated 55 rules.
The rules are given as follows:

rule 1 : if (1.44x + 1.73y <= 5.98), thenclass

rule2 : if(1.44x+ 1.73y > 5.98)

and (1.18x + 2.81y <= 12.37) then class
rule 3 : if(1.44x + 1.73y > 5.98)

and (1.18x + 2.81y > 12.37)
and (0.53x + 2.94y < 14.11), then class

rule4 : if(1.44x + 1.73y > 5.98)

and (1.18x + 2.81y > 12.37)

and (0.53x + 2.94y > 14.11), then class

These linear classifiers exactly match with the boundaries
shown in Figure 1 (c), and they are more dominant for classi-

482 FLAIRS-2001

fication in terms of entropy minimization than a set of origi-
nal input attributes itself. Even if we include input attributes,
the entropy measurement leads to a rule set with boundary
equations. These rules are more meaningful than those of di-
rect C4.5 application to raw data since their divisions show
the trend of data clustering and how each attribute is corre-
lated.

Linear Classifiers for Decision Trees

Induction trees can split any continuous value by selecting
thresholds for given attributes, while it cannot derive re-
lations of input attributes directly. Thus, before induction
trees are applied to a given training set, we put new relation
attributes consisting of linear classifiers in the training set,
which are generated from the weight set in a neural network.

We can represent training data as a set of attribute column
vectors. When we have linear classifiers extracted from a
neural network, each linear classifier can be a column vector
in a training set, where the vector size is equal to the number
of the original training data. Each linear classifier becomes a
new attribute in the training set. If we represent original in-
put attribute vectors and neural network linear classifiers as
U-vectors and L-vectors, respectively, C-vectors, L-vectors,
and {U + L}-vectors will form a different set of training
data; each set of vector is transformed from the same data.
Those three vector sets were tested with several data sets in
the UCI depository (Blake, Keogh, & Merz 1998) to com-
pare the performance (Kim & Lee 2000).

It is believed that a compact set of attributes to represent
the data set shows a better performance. Adding original
input attributes does not improve the result, but it makes its
performance worse in most cases. C4.5 has a difficulty in
selecting properly the most significant attributes for a given
set of data, because it chooses attributes with local entropy
measurement and the method is not a global optimization of
entropy. Also, especially when only linear classifiers from
neural network, L-vectors, are used, it is quite effective in
reducing the number of rules (Kim & Lee 2000).

Generally many decision tree algorithms have much dif-
ficulty in feature extraction. When we add many unrelated
features(attributes) to a training set for decision trees, it has
tendency to worsen performance. This is because the induc-
tion tree is based on a locally optimal entropy search. In this
paper, a compact L-linear classifier method was tested. We
used L-linear classifiers with fixed thresholds and variable
thresholds.

In the linear classifier method with fixed thresholds, all
instances in the training data are transformed into Boolean
logic values through dichotomy of node activations in the
first hidden layer; then Boolean data are applied to the in-
duction algorithm C4.5. In the linear classifiers with variable
thresholds, a set of linear classifiers are taken as continuous-
valued attributes. The C4.5 application over instances of lin-
ear classifiers will try to find the best splitting thresholds for
discretion over each linear classifier attribute. In this case,
each linear classifier attribute may have multivariate thresh-
olds to handle marginal boundaries of linear classifiers.

C4.5 Linear Classifier [
data orain (%) [test (%) train (%) [test (%)
wine 1.2 4- 0.1 7.9 4- 1.3 0.0 4- 0.0 3.6 4- 0.9
iris 1.9 4- 0.1 5.4"4-0.7 0.7 4- 0.2 4.7 4- 1.5

blagast-w I.I 4- 0.1 4.7 4- 0.5 0.9 4- 0.2 4.4 4- 0.3
ios~sphere 1.6 4- 0.2 10.4 4- I.I 1.2 4- 0.2 8.8 4- 1.5

pinla 15.1 4- 0.8 26.4 4- 0.9 15.8 4- 0.4 27.0 4- 0.9
glass 6.7 4- 0.4 32.0 4- 1.5 6.6 4- 0.8 33.6 4- 3. I
bupa 12.9 4- 1.5 34.5 4- 2.0 10.2 4- 1.1 33.7 4- 2.1

Table 1: Data classification errors in C4.5 and linear clas-
sifier method with variable thresholds (error rates in linear
classifier method show the best result among several neural
network experiments)

0 1
-- g .m . . ¯ --

(a) (b)

Figure 2: Comparison between C4.5 and linear classifier
method (a) average error rate in test data with C4.5, neural
network, and linear classifier (b) the number of rules with
C4.5 and linear classifier method

Experiments
Our method has been tested on several sets of data in the
UCI depository (Blake, Keogh, & Merz 1998). Figure
shows average classification error rates for C4.5, neural net-
works and the linear classifier method. Table 1 shows error
rates to compare the pure C4.5 method and our linear clas-
sifier method. The error rates were estimated by running the
complete 10-fold cross-validation ten times, and the average
and the standard deviation for ten runs were given in the ta-
ble. Several neural networks were tested for each data set.
Table 2-3 shows examples of different neural networks and
their linear classifier results.

Our methods using linear classifiers are better than C4.5
in some sets and worse in other data sets such as glass and
pima which are hard to predict even in neural network. The
result supports the fact that the methods greatly depend on
neural network training. If neural network fitting is not cor-
rect, then the fitting errors may mislead the result of linear
classifier methods. Normally, the C4.5 application shows the
error rate is very high for training data in Table 1. The neu-
ral network can improve training performance by increasing
the number of nodes in the hidden layers as shown in Table
2-3. However, it does not guarantee to improve test set per-
formance. In many cases, reducing errors in a training set
tends to increase the error rate in a test set by overfitting.

The error rate difference between a neural network and
the linear classifier method explains that some data points
are located on marginal boundaries of classifiers. It is due
to the fact that our neural network model uses sigmoid func-
tions with high slopes instead of step functions. When acti-

neural network veriable T’[L.I’ fixedT’[.L}

nodes wain (%) test (%) # rules # rules
4-3-3 O.8 4- 0.1 4.3 4- 1.5 3.8-1-0.3 3.44- 0.2
4-5-3 0.5 4- 0.1 4.74- I.I 3.9 4- 0.4 4.0 4- 0.5
4-7-3 0.5 4- 0.2 5.2 4- 1.1 3.94-0.2 4.1.4- 0.4
4-10-3 0.4 -I- 0.2 5.1 4- 1.2 3.94-0.1 4.4 4- 0.6
4-3-3-3 0.7 -4- 0.1 4.5-I- I.I 3.7 q- 0.2 3.8 4- 0.2
4-5-4-3 0.64.0.1 4.1-1.- 1.3 4.0 4* 0.4 4.1 4-0.2
4-7-4-3 0.54-0.1 4.7 4- 0.9 3.9 4- 0.2 4.0 4- 0.4

Ca)

variable thresholdst z, J. fixed thresholdst t, }
nodes train (%) test (%) train (%) (%)
4-3-3 0.74.0.1 5.14. 1.3 1.7 4- 0.3 4.8 4- 1.4
4-5-3 0.7 4* 0.2 6.O 4- 1.7 1.8 4- 0.3 5.1 4- 1.2
4-7-3 0.7 4- 0.2 4.64* 1.1 1.5 4- 0.3 5.3 4- 1.1
4-10-3 0.8-4-0.1 5.2 4- 1.6 1.4 4- 0.2 5.2 4- 1.4
4-3-3-3 0.9 "4" 0.1 5.9 4- 1.4 2.6 4- 0.7 6.14- 1.7
4-5-4-3 0.7 4- 0.2 4.7 4- 1.5 2.0 4- 0.4 5.3 4- 1.2
4-7-4-3 0.8 4- 0.2 4.7 4- 1.0 2.2 4- 0.4 5.14- 1.0

Table 2: iris data classification result (a) neural network er-
ror rate and the number of rules with the linear classifier
method (b) error rate in linear classifier method with vari-
able thresholds and fixed thresholds

neural network variable T~ L } fixed T~- L J.
n~s ~n <%) I testc%) #~ #r~ es
6-5-2 17.9 4- 1.1 31.9 4- 1.6 10.0 4- 1.3 7.2 4- 0.7

6-10-2 10.24. 1.1 32.8 4- 2.1 15.3 4* 1.7 16.3 4- 1.7
6-5-5-2 15.2 4- 0.9 32.8 4- 1.9 10.6.4- 1.3 9.4 4- 0.9
6-8-6-2 9.3 4- 0.7 32.1 4- 1.9 14.3 4* 2.1 19.5 4- 1.3
6-10-7-2 7.3 4- 1.4 32.7 4- 2.2 16.2 4- 1.7 24.4 4* 2.3

(a)

variable thresholds"[L} fixed thresholdsfL} [1
nodes train (%) test (%) train (%) (%)

17.8 4- 1.5 32.8 4- 1.9 25.2 4- 1.9 34.1 4- 1.3
14.8 4- 1.4 33.7 4* 2.1 19.9 4* 1.5 36.2 4- 3.1

6-5-5-2 17.5 4- 1.0 33.6 4* 2.3 22.2 4- 1.1 34.3 4- 2.3
6-8-6-2 13.6 4* 1.5 32.5 4* 1.7 15.1 4- 0.6 34.0 4- 2.4
6-10-7-2 15.2 4- 1.3 32.7 4- 2.9 17.3 4- 0.7 32.7 4- 1.6

(b)

Table 3: bupa data classification result (a) neural network
error rate and the number of rules with the linear classifier
method (b) error rate in linear classifier method with variable
thresholds and fixed thresholds

vation is near 0.5, the weighted sum of activations may lead
to different output classes. If the number of nodes in the
first hidden layer is increased, this marginal effect becomes
larger as observed in Table 2 - see fixed thresholds.

Figure 2(b) shows that the number of rules using our
method is significantly smaller than that using conventional
C4.5 in all the data sets. To reduce the number of rules, lin-
ear classifiers with the Boolean circuit model greatly depend
on the number of nodes in the first hidden layer. It decreases
the number of rules when the number of nodes decreases
in the first hidden layer, while the error rate performance is
similar within some limit, regardless of the number of nodes.
The linear classifier method with variable thresholds also de-
pends on the number of nodes. The reason why the number
of rules is proportional to the number of nodes is related to
the search space of Boolean logic circuits. The linear clas-
sifier method with the Boolean circuit model often tends to
generate rules that have a small number of support exam-
ples, while variable threshold model prunes those rules by

NEURAL NETWORK / FUZZY 483

adjusting splitting thresholds in the decision tree. Two hid-
den layer neural networks are not significantly more effec-
tive in terms of error rates and the number of rules than one
hidden layer as shown in Table 2-3. Thus, neural networks
with one hidden layer may be enough for UCI data set.

Most of the data sets in the UCI depository have a small
number of data examples relative to the number of attributes.
The significant difference between a simple C4.5 applica-
tion and a combination of C4.5 application and a neural net-
work is not seen distinctively in UCI data in terms of error
rate, unlike the synthetic data in Figure 1. Information of
data trend or input relations can be more definitely described
when given many data examples relative to the number of at-
tributes.

Table 2-3 shows that neural network classification is bet-
ter than linear classifier applications. Even though linear
classifier methods are good approximations to nonlinear
neural network modeling in the experiments, we still need
to reduce the gap between neural network training and linear
classifier models. There is a trade-off between the number
of rules and error rate performance. We need to explain what
is the optimal number of rules for a given data set for future
study.

Conclusions
This paper presents a hybrid method for constructing a de-
cision tree from neural networks. Our method uses neural
network modeling to find unseen data points and then an
induction tree is applied to data points for symbolic rules,
using features from the neural network. The combination
of neural networks and induction trees will compensate for
the disadvantages of one approach alone. This method has
advantages over a simple decision tree method. First, we
can obtain good features for a classification boundary from
neural networks by training input patterns. Second, because
of feature extractions about input variable relations, we can
obtain a compact set of rules to reflect input patterns.

We still have much work ahead, such as reducing the
number of rules and error rate together, and finding the
optimal number of linear classifiers.

References
Andrews, R.; Diederich, J.; and Tickle, A. 1996. A survey
and critique of techniques for extracting rules from trained
artificial neural networks. Knowledge-Based Systems 8(6).

Blake, C.; Keogh, E., and Merz, C. 1998. UCI repository
of machine learning databases. In Preceedings of the Fifth
International Conference on Machine Learning.

Cybenko, G. 1988. Continuous valued neural networks
with two hidden layers are sufficient. Technical report,
Technical Report, Department of Computer Science, Tufts
University, Medford, MA.

Dietterich, T.; Hild, H.; and Bakiri, G. 1990. A compar-
ative study of ID3 and backpropagation for english text-
to-speech mapping. In Proceedings of the 1990 Machine
Learning Conference, 24-31. Austin, TX.

484 FLAIRS-2001

Fayyad, U., and Irani, K. 1993. Multi-interval discretiza-
tion of continuous-valued attributes for classification learn-
ing. In Proceedings of IJCAI’93, 1022-1027. Morgan
Kaufmann.

Fisher, D., and McKusick, K. 1989. An empirical compar-
ison of ID3 and backpropagation. In Proceedings of 11th
International Joint Conference on AI, 788-793.
Fu, L. 1991. Rule learning by searching on adaptive nets.
In Preceedings of the 9th National Conference on Artificial
Intelligence, 590-595.
Fu, L. 1994. Neural Networks in Computer Intelligence.
New York: McGraw-Hill.
Haykin, S. 1999. Neural networks : a comprehensive foun-
dation. Upper Saddle River, N.J.: Prentice Hall, 2nd edi-
tion.

Hertz, J.; Palmer, R.; and Krogh, A. 1991. Introduction to
the Theory of Neural Computation. Redwood City, Calif.:
Addision Wesley.

Irani, K., and Qian, Z. 1990. Karsm : A combined response
surface / knowledge acquisition approach for deriving rules
for expert system. In TECHCON’90 Conference, 209-212.

Kim, D., and Lee, J. 2000. Handling continuous-valued at-
tributes in decision tree using neural network modeling. In
European Conference on Machine Learning, Lecture Notes
in Artificial Intelligence 1810, 211-219. Springer Verlag.

Kim, D. 1991. Knowledge acquisition based on neural
network modeling. Technical report, Directed Study, The
University of Michigan, Ann Arbor.

Kweldo, W., and Kretowski, M. 1999. An evolutionary al-
gorithm using multivariate discretization for decision rule
induction. In Proceedings of the Third European Confer-
ence on Principles of Data Mining and Knowledge Discov-
ery, 392-397. Springer.

Quinlan, J. 1994. Comparing connectionist and symbolic
learning methods. In Computational Learning Theory and
Natural Learning Systems, 445-456. MIT Press.

Quinlan, J. 1996. Improved use of continuous attributes in
C4.5. Journal of Artificial Intelligence Approach (4):77-
90.

Setiono, R., and Lie, H. 1996. Symbolic representation of
neural networks. Computer 29(3):71-77.

Setiono, R., and Liu, H. 1997. Neurolinear: A system
for extracting oblique decision rules from neural networks.
In European Conference on Machine Learning, 221-233.
Springer Verlag.
Shavlik, J.; Mooney, R.; and Towell, G. 1991. Symbolic
and neural learning algorithms: An experimental compari-
son. Machine Learning 6(2): 111-143.

Taha, I. A., and Ghosh, J. 1999. Symbolic interpretation
of artificial neural networks. IEEE Transactions on Knowl-
edge and Data Engineering 11(3):448-463.
Towell, G., and Shavlik, J. Oct. 1993. Extracting refined
rules from knowledge-based neural networks. Machine
Learning 13(1):71-101.

