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Abstract

This paper studies the synchronization characteristics of
a locally connected, planar network of (leaky) integrate-
and-fire (I/F) neurons after Hopfield & Hertz (1995).
Hopfield & Herz showed that, with the assumption
of instantaneous signal transmission, locally connected
networks converge to periodic, synchronized oscilla-
tions. We verify these results as well as study their
robustness when signal transmission delays are intro-
duced. Our simulation results are consistent with the
theoretical work of Gerstner (1996) but the simulation
studies offer intuitions not apparent in the theorems. In
particular, the simulations reveal that volleys of syn-
chronized firing travel across the network in waves.

Introduction
Sequential computations in a computer are paced by a global
clock. A brain also performs sequential computations, but
its computing elements (neurons) operate in parallel and
asynchronously, without an apparent global clock. There is,
however, ample EEG evidence of synchronized computation
in the brain. Further evidence has emerged within the last 5-
15 years, that the timing of neuron spikes is also important
for brain computations (Malsburg & Schneider 1986). How
this synchronization emerges is a subject of intense study
(R. Eckhorn & Reithoeck 1992).

Hopfield and Herz (1995) have proposed a mechanism
by which collections of independently spiking neurons can
rapidly (in less than 20 spikes or 200 ms) converge to glob-
ally synchronous oscillations. Their results are supported by
convergence theorems and simulation studies. Their model-
ing, however, makes the assumption of instantaneous trans-
mission of the action potential from one neuron to another.
They further assume that a neuron generates an action po-
tential instantly, the moment its membrane potential reaches
threshold. Under certain conditions, these assumptions al-
low a signal to be transmitted across the entire width of
a locally connected planar grid of neurons in one time in-
stant. This long-distance-messaging property is not physi-
cally possible and if the global synchronization results de-
pend on this property, they will have little practical import.
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Consequently, it is important to know how robust the Hop-
field and Herz results are under less idealized conditions.
The present paper reproduces the original Hopfield and Herz
results, but more important, studies the robustness of the re-
suits when an assumption of finite axon transmission speed
is imposed on the model.

In related work, Gerstner (1996) showed theoretically that
integrate-and-fire (I/F) networks with delayed, local, nor-
malized excitatory connections will converge to a periodic
solution with phase-locked oscillations. Gerstner’s (1996)
results depend on the absense of a leakage term in the I/F
neurons. Thus, his analytical results can be applied to Hop-
fieid/Herz I/F neurons which have delayed connections, but
which do not include leakage. Further, Gerstner did not con-
duct simulation studies.

Carnbell, Wang, and Jayaprakash (1999) also reproduced
the Hopfield and Herz results but their work studied the
speed of convergence and did not use delayed connections.
Our work differs from theirs in this respect.

Our work conducts simulation studies using I/F neurons
having delayed connections and leakage terms. In this re-
spect, the work is unique. Further, the simulation studies of-
fer intuitions not apparent in the theorems. In particular, the
simulations reveal that volleys of synchronized firing travel
across the grid in waves.

Instantaneous Propagation
This section describes the simulations in which signal prop-
agation is instantaneous. Delayed signal propagation is dis-
cussed later. Following Hopfield and Herz, the simulations
use 1600 (leaky) I/F neurons arranged on a 40x40 planar
grid. Each neuron is locally connected to its four closest
neighbors (n,s,e,w) with a fixed positive connection weight
of 0.24. The network topology can have either periodic or
open boundary conditions. In the open topology, neurons
on the grid edges connect only to the interior of the grid so
they will have either two or three connections, depending
on whether they are at a corner. In the periodic topology,
neurons connect to their counterpart(s) on the opposite grid
edge. This latter topology is less biologically realistic but
yields a very uniform architecture for theoretical and simu-
lation studies.

Figure 1 shows a Hopfield and Herz I/F neuron. It differs
from standard artificial neural network (ANN) neurons 
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Figure I: Integrate-and-fire (I/F) neuron with four inputs and 
external input.

two ways. First, it has a state variable, u, known as a mem-
brane potential. When u reaches threshold, Uthr~sh = 1, the
neuron emits an action potential, and u resets to the resting
potential, Ureset -~- 0. The membrane potential is updated
in continuous time and this is the second difference from an
ANN neuron. The dynamics of the membrane potential is
described by the differential equation below.

C dui
1

dt = --~u~(t) + Ii(t)
(1)

In the model R = C = 1, thereby yielding the equation

dui
d---t - ui(t) + Ii(t).

(2)

The equation describes the change in u of the cell body of
neuron, i, as a function of its input current, Ii(t), and leak-
age term, u~(t). The input current depends on two sources
as shown in Figure 1 and expressed below.

4

I~(t) = E w~fj(t) xt (3)
j=l

I~~t is a fixed external input to neuron i assumed to come
from outside of the grid. fj(t) is either 0 or 1, depend-
ing on whether neuron j emits an action potential at time
t. The values j correspond to the four presynaptic neurons
connecting to neuron i within the planar grid. wij refers to
the connection weight from neuron j to i and equals 0.24.
A neuron emits an instantaneous action potential when u~
reaches Uthresh, and then ui decreases by 1. If i fires at time
instant t, we shall use the notation ui (t-) and ui +) torefer
to the membrane potential just before and afte- that moment.

Instantaneous Spike Transmission

We use Hopfield and Herz’s "Model A," which assumes that
synaptic integration times are longer than the duration of the
action potential, but that action potentials are instantaneous
and propagation delays are zero. Let us clarify the effects
of these assumptions. If a neuron j fires and j connects to
neuron io then i receives the action potential at the moment j
fires. In a simulation, time will progress normally using At
time-steps until some neuron, say 3, fires. When this hap-
pens, the progress of time is suspended until the effects of
the action potential are fully propagated. During this sus-
pended moment, if neurons that receive connections from j
reach threshold as a result of receiving the action potential
from j, they also fire (in the same moment) sending an action

()

Figure 2: All connection weights are 0.24. At time t, neuron j
reaches threshold. At time t, all other neurons have a membrane
potential of u = 0.9.

neuron u(t-) u(t+)

i 0.9 0.86
J 1.0 0.24
k 0.9 0.14
l 0.9 0.14
m 0.9 0.14

Table 1: Membrane potentials immediately before and after new
ron j fires at time t.

potential back to j (in the very same moment). That is, if 
causes i to fire, it will receive the action potential from i in
the same moment. The membrane potential drops by one at
the moment of firing. This raises the question, Can feedback
input cause j’s membrane potential to remain above thresh-
old after firing? As long as ~-’]~ wj~ < Uthresh : 1, uj(t+)
will be less than uj (t-). In our simulations, ~-~i wj~ = 0.96.

Let us apply these assumptions to the five-unit network in
Figure 2. It is not an example of a grid but serves to illustrate
the signal propagation rules. Assume that neuron j reaches
threshold first, at time t, as a result of receiving external in-
put I ezt. Assume u(t-) = 0.9 for the other neurons in the
network. Neuron i is the only neuron directly receiving in-
put from j. When j fires, it boosts i’s membrane potential by
0.24 to 1.14, driving it above threshold and causing it to emit
an action potential, thereby decreasing its membrane poten-
tial to 0.14. All of the neurons, j, k, 1, and m receive action
potentials as a result of i’s firing. Thus, in one instant the
action potentials travel a distance of two neural connections
(e.g., from j to l). Neurons k, l, and m, fire after receiving
these action potentials and send their heturn potentials back
to i in the same instant, thus boosting i’s membrane poten-
tial by another 0.72 to its final value u~(t+) = 0.86. The
before-and-after membrane potentials are shown in Table 1.
In Figure 2, if a grid of neuronal connections were uniformly
extended to the right, with weights of 0.24 and potentials of
0.9, a signal would propagate across the entire grid in one
instant, regardless of the grid size. This is the feature that
makes the global synchronization possible.

Simulation Results

In simulations using periodic boundary conditions with pa-
rameters given in the method paragraph below, the system
converges to complete, periodic global synchrony. Dozens
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Figure 3: Synchronization plot for instantaneous transmission.
Each pixel on the x-axis is a At timestep. The y-axis plots the num-
ber of neurons which fire during a timestep (max value is 1600).
The network is silent, except for moments when all 1600 neurons
fire simultaneously. These moments are 443 timesteps apart.

of simulations were run, all with identical results.
Method. A 40x40 neuron grid, modeled using Equa-

tions (2) and (3), was initialized to random membrane 
tentials having values 0 < u < 1. Equation (2) was simu-
lated using Forward Euler with a At of 0.00001. Iext was
held fixed at 10.0 and all wij’s were held fixed at 0.24.

Results. After ~ 45,000 At, the network always con-
verged to a stable solution of periodic, global synchronized
firing. This is shown in the synchronous firing graph in Fig-
ure 3. The graph displays the number of neurons firing dur-
ing the n-th time step (At). For 443 time steps, there are
no action potentials, then all neurons fire during the same
time step. When open boundary conditions are used, the
network still converges to a periodic solution, but synchrony
is not global. For open boundary conditions, the maximum
number of synchronous firing neurons in a timestep is about
1200.

Discussion. By observing that a neuron fires exactly once
per period, Hopfield & Herz manipulate the exact solution
for Equation (3) (assuming I(t) is constant), to conclude that
the predicted period, Pm~d, is

Ppred = In(/- 4a) -- In(/- (4)

were a = w~j = 0.24. With our simulation parameters
Pp,~e = .00443. The formula for the observed period, Fobs,
is

Fobs = nAt, (5)

where n is the number of time steps in a period. Our sim-
ulations yielded n = 443 using At = 0.00001. Thus
Ppred = Fobs providing strong support for correctness of
the implemented simulation.

What mechanism underlies the synchronized firing? As
the network converges to a stable solution, the initially ran-
dom membrane potentials converge to values near threshold,
such as 0.9. When the grid is in this state, the firing of any
neuron is analogous to setting a fire in a field of dry grass
where the flames travel instantly. The firing of some trigger
neuron i ignites its four neighbors which in turn ignite their
neighbors, continuing across the grid. The causal process is
depicted in Figure 5. Because the synchronized firing yields
intense excitatory feedback, the membrane potential of each
neuron in the network drops by a mere 0.04. That is, for any
neuron, u(t+) = u(t-) 0.04. When the tr igger neuron i
fires, us (t-) = Uthresh = 1. Consequently, u~ (t +) = 0.96.
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Figure 4: Synchronization plot for signal propagation delays of l,
2, and 3 At’s. All three runs are superimposed on the same plot.
Wider triangles reflect longer delays. Each pixel on the x-axis is
a At timestep. The period is 0.00443, but the synchronization is
dispersed over time. The maximum neurons firing in a timestep
is about 80. The narrowest triangle was generated using a propa-
gation delay of 1 At ~ 0.023 msec. The width of the narrowest
triangle is 40 At ~ 1 msec.

Delayed Signal Propagation
This section describes the simulations that use propagation
delays. The simulations in the previous section do not use
physical time units. To introduce time delays, it is useful to
provide a real-time interpretation of the simulation results in
the previous section. A lower time bound can be set by ob-
serving that a neuron in the simulation fires once per period
and that the maximum sustainable firing rate of a biological
neuron is on the order of 100 Hertz. This gives us the in-
terpretation that 0.00443 (i.e.,443At) non-physical units 
at least I0 msec. For concreteness, we shall assume that a
period is 10 msec in duration. Using Equation (5), we may
conclude that, in the previous simulation, At ,.~ 0.023 msec.
Thus the simulations in the previous section took about 1.04
sec (i.e., 45,000At) to completely converge.

To study effects of signal propagation delays on the
model, we repeated the simulations in the previous section,
but introduced propagation delays of 1, 2, and 3 At units.
Because the connectivity in the grid is highly localized, the
effect of longer propagation delays was not studied.

Simulation Results for Delays

The synchronization results appear in Figure 4. Initial global
synchronization required about 50,000 At ~ 1.15 sec. It
took approximately three to four times longer to reach the
stable oscillations shown in Figure 4. We note that Figure 4
shows the number of synchronously firing neurons for each
timestep after converging completely. In the periods before
convergence, the order of neural firings changes randomly
as the system behavior develops.

For the three delay periods, the periods of these oscilla-
tions are identical to each other, and to the simulations in
the previous section. The time required for the synchronous
wave front to spread across the grid is proportional to the
propagation delay. The area under each triangle is 1600, the
number of neurons in the network, because each neuron fires
once. The width of the triangle bases are 40, 80, and 120,
increasing by 40 for each increase of At. The maximum
number of synchronized firing neurons at any time step is
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Figure 5: Locus of synchronous wave fronts over seven At for
a 7x7 neural grid with periodic boundary conditions. The firing
wavefronts form concentric diamonds. The trigger neuron, in the
grid center, fires at to. Numbers in other squares describe time of
firing in At units after to.

78, corresponding to the perimeter of the largest diamond
which can be embedded in the grid. Figure 5 shows the syn-
chronous wave fronts, which form concentric diamonds (for
a 7x7 grid) whose trigger neuron is in the center.

At complete convergence, the fring patterns organize
to the stable form such as that shown in Figure 5. This
figure depicts the action potentials traveling in concentric,
diamond-shaped, wave fronts across the grid. The mecha-
nism of wave propagation is as follows. If a network has
converged completely, then the membrane potentials of all
the neurons in the grid approach threshold uniformly. The
first neuron, i, to fire will ’ignite’ the grid. The immediate
neighbors of i will fire when they receive i’s action potential
in the next timestep. These neighbors will in turn ignite their
neighbors in the succeeding timestep. The wave will travel
outward in concentric diamonds. The wave cannot travel in-
ward because the relevant neurons have just fired and their
membrane potentials have not recharged.

For a square grid whose dimensions are odd, we more for-
mally describe the synchronous wave fronts when the net-
work has completely converged. The description is similar
when the dimensions are even. We assume complete con-
vergence and noiseless dynamics. Suppose we have a dxd
grid with periodic boundary conditions, where d is odd. Let
k = (d - 1)/2. k is the number of squares on a side of the
largest diamond that fits in the grid. Let to be the time step in
which some unique neuron ignites the grid. At this timestep,
only one neuron fires. Let Tot(n) denote the number of neu-
rons firing at integer n timesteps after to, where 1 < n < d.
Forn < k, thenTot(n) = 4n. Fork < < 2k, th en
Tot(n) = 4(2k + 1 - 

The total number of neurons that fire in the volley is given
by

2k k

1 + Z Tot(n) = 1+ 2Z4n = d2. (6)
n----1 n=l

Each term in the sum on the left represents the number of
neurons in a concentric wavefront. The duration of the wave
propagation episode is d timesteps.

For example, if d = 41, then k = 20, then the duration
of the wave propagation episode is 41 timesteps. The total
number of neurons firing in the episode is given below. This
is, of course, all of the neurons in the grid.

k
1 + 2 Z 4n = 1 + 4k(k + 1) = 1681 = 412. (7)

n=l
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Our results concerning time delays are summarized below
and assume periodic boundary conditions.

1. The period of oscillation is preserved with delays and is
described by Equation (4).

2. After convergence, firing of a neuron ignites a wavefront
that travels across the grid, in concentric diamonds, at a
rate inversely proportional to the signal transmission de-
lay. For a delay of 1At, the duration of the propagation
event is d, were d is the number of neurons on a grid edge.

3. The maximum number of neurons firing in an instant cor-
responds to the number of neurons in the perimeter of the
largest diamond that fits within the grid. This is 2(d - 1),
or 78 in the case of a 40 x 40 grid.

Conclusions
The simulations in which signals were transmitted instanta-
neously were consistent with the results reported in (Hop-
field & Herz 1995). With instantaneous signal transmission,
all the neurons in the grid can fire at the same moment.
When small transmission delays are introduced, the quali-
tative nature of the synchronization changes. It takes the
form of a wave of synchronous firing that travels over the
grid. With a transmission delay of 0.023 msec, the wave
travels across a 40 x 40 grid in less than 1 msec. In bio-
logical terms, this is fast enough to be classified as a volley
of synchronized firing. Time to convergence remains an is-
sue. Convergence time in all cases was on the order of 1 sec
or more. This seems too slow to describe the emergence of
synchronized firing in the brain.
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