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Abstract
We extend our previous work on the artificial evolution of
Fuzzy Classifier Systems as reactive controllers for mobile
robots, to encompass more versatile genotypic
representations and more powerful genetic operators. The
results are an improvement on our earlier work; in general,
better controllers are evolved in fewer generations. However,
the more global evolutionary characteristics of the Pittsburgh
approach still bias the overall results heavily in its favour. A
major weakness in both approaches is the lack of robustness
in retaining crucial, but seldom-active rules in the
evolutionary population.

Introduction

The "Michigan" and Pittsburgh" Classifier System
structures are both powerful methods by which
evolutionary learning and lifetime reinforcement can be
combined together in creating entities capable of
autonomously acquiring useful rules about a chosen
problem domain. Fuzzy Classifier Systems widen the
scope of these autonomous rule acquisition structures to
continuous valued input and output spaces. In the
"Pittsburgh" approach evolutionary techniques operate at
the level of whole rule sets (Smith, 1980; Carse, Fogarty
& Munro, 1996). By contrast in the "Michigan" approach
evolutionary techniques operate at the level of individual
rules in a set (Booker, Goldberg & Holland, 1989).

A comparative investigation into the characteristics
and performance of these techniques in some appropriate
shared problem domain is an enlightening and fruitful
area for research. The work presented here is part of a
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larger programme of research, and follows on from first
results published in (Pipe & Carse, 2000). In this paper 
widen the scope of (Pipe & Carse, 2000), to more powerful
evolutionary operators and more flexible genotypic
representations. We chose to conduct such a programme
of work in the area of mobile robotics. This application
area has characteristics that are complex but easy to
visualise, it is widely known, and the results of the
research could have some future use in the real world.

We have chosen fuzzy logic to implement behavioural
control of a wheeled robot, the task therelbre is to discover
good fuzzy rules lor implementing a particular
competency in an artificial creature, or animat (Wilson,
1987). In order to allow the experiments reported here to
be ratified, and perhaps extended, by others - all of the
test harness software is available by visiting our web site;
the address is given at the head of this paper.

The Application

It is clear from studies in the natural domain that many
creatures make use of conscious and sub-conscious
cognitive processing Ibr reasoning about the future
outcome of planned actions in the environment. It seems
clear from recent studies that whilst some reactive
behaviours may require "internal state, or weak internal
representations (Clark & Grush, 1999; Clark & Wheeler,
1998), many others are purely Stimulus-Response (S-R),
both being used to good effect in natural and artificial
systems.

Our previous paper (Pipe & Carse, 2000) began the
comparative work between the two Classifier System
approaches by making initial investigations into their
abilities to extract a useful S-R behavioural module from
environmental experiences. Such a module is an entirely
reactive competency, i.e. there is no temporal linkage
between the rules. Examples of such competencies are
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obstacle avoidance, taking right or left turns at a corridor
T-junction with rich sensory feedback, and so on. We have
used robot and environmental simulations extensively in
our previous research, and continue this approach here,
however the test harness is based heavily in real robot
experimentation carried out in our laboratory. Details of
the harness are given briefly below. However, as
mentioned earlier, the C source code is freely available
directly from our laboratory’s web site.

The Simulated Robot

-Jle d~ dimmm u

The following is a general description of the simulated
twin-wheeled differential drive robot and its sensorimotor
apparatus, illustrated in figure !. The real robots in our
laboratory possess two geared d.c. motors with an
incremental shaft encoder on each. They are used in a
low-level feedback loop to provide position and velocity
control. These controllers are coupled through a kinematic
algorithm to give a body-centred "’virtual steering wheel".

Figure ! : sensorimotor apparatus of the simulated robot

The simulated environment therefore assumes that
such a low-level control system is present, allowing
control to be effected by an equivalent steering angle and
lbrward velocity. In this work the robot travels through its
environment with a constant forward speed of 0.1 rn/s and
a maximum continuously variable turning speed of 0.5
rad/s. The robot has an array of five distance sensors. The
simulation supports a simple point-to-point measurement,
to which noise and bias errors may be added if required,
these are based upon ultrasonic sensors used on our real
robots. The set of distance measuring sensors Ibrm a five
element array, set at the following angles from the
"straight ahead" position; 0°, 90° to the left, 45° to the left,
45° to the right, and 90° to the right, each with a 5 metre
maximum sensing range and intended for obtaining a
local-cued environmental "signature". A tuller description
of the kinematic details used to generate the simulation of
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movement and of the type of distance sensors are also
available via our web site.

The Simulated Environment

The environmental mazes are set on rectangles of any
size, although for the experiments reported in this paper
they are square, being 10metres on each side. Any number
of rectangular obstacles, of any dimension, may be placed
in a maze. If there are start and goal positions, they may
also be placed anywhere. It should be stressed that
choosing rectangular shapes for the obstacles and the
maze was purely an expedient in generating the maze
simulation. The animat itself has no such restrictions in its
sensory or motor parts. All measurements made and
movements executed by the robot are continuous real
valued, so for this simulation there is no concept of a
"grid" or discretised state space.

When operated in normal mode, simulated animats
sense and act in real time; for example velocities and
sensory sampling intervals, established from observing
actual vehicles in the laboratory, are tied to a real time
clock with a period of lOOms.

Implementing Behaviours using Fuzzy Logic

In the work presented in this paper, we focus on rule
generation, and therefore the fuzzy membership functions
are fixed beforehand for both the input and output spaces.
When active as the robot’s controller the Fuzzy Logic
System (FLS) is run through one forward pass every
lOOms simulation clock cycle, providing an updated
steering angle for that period. The fuzzy controller has
five inputs, one from each of the distance sensors and a
single output defining steering angle. If fuzzy rule
strength falls below a minimum threshold, then motion
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continues on a "straight-ahead" setting, so that minimally-
active rules are not able to influence the steering control.

Figure 2: fuzzy membership function distributions

Thc FLS is a "Mamdani"-style system (Mamdani 
Assilian, 1975). A conventional distribution of unit-height
triangular membership functions was chosen. All



functions were identical and equally spaced, with the
exception of each function placed at the end of the range
of an input or output, as shown in figure 2. For fuzzy
AND a product of membership function activations was
used for a given rule as opposed to the simpler MIN
operator, since it requires little extra processing and is
known to produce superior interpolation properties
(Harris, 1992). Defuzzification was performed 
conventional centre of gravity calculations. The use of 3
membership functions at each input and 17 at the output
was established during previous research as being
appropriate for this type of fuzzy controller in this
application (Pipe & Winfield, 1996) and incorporated into
this test harness. The reasons |br choosing these
parameters are given in that paper.

0 45L 90L 45R 90R OUT

Table 1: format tbr a fuzzy rule

Each fuzzy rule was of the form shown in table 1,
where each of the six fields is a name, coded as an integer
ID specifying a fuzzy membership function (MF) to use
for that input or the output in tbrming a rule. The
counting is done from left to right on each graph shown in
figure 2 (i.e. the interval (1-3) lbr each input and (1-17)
Ibr the output),
0 MF name
45L MF name
90L MF name
45R MF name
90R
OUT

lor front pointing distance sensor,
lor sensor at 450 to the left of front,
tbr sensor at 900 to the left of front,
for sensor at 450 to the right of front,

MF name for sensor at 900 to the right of front,
MF name lbr output angle in radians x n - where
positive values indicate a clockwise turning angle
from the current orientation

As an extension of our prcvious work, the (1-3)
interval of each input field is augmented by a fourth
"’don’t care" symbol, that allows more general rules to be
created that use a subset of the input data.

A "Pittsburgh"-style Fuzzy Classifier System

An evolutionary algorithm operating at this population
based level, is analogous to the well known natural
processes of evolution. The rule sets are evaluated for
fitness by running a trial of the animat through a chosen
simulated environment lbr each rule set in the population.
There is no credit assignment lbr individual rules in the
basic "Pittsburgh" structure. Here, the fitness of each rule
set is derived from a fitness function composed of
components that deal with final proximity to the goal,
length of route taken, and generality in the rule set
(related to the number of active rules during the trial).

Implicit in this fitness measure, and the characteristics of
the problem to be solved, is reward for those rule groups
that are successfully temporally linked internally via the
message list of the Classifier System. Therefore, in part,
overall strength is based on its ability to link its rules
together in useful chains. When all rule sets have been
evaluated in this way, the GA applies its operators to
produce the next generation of rule sets. These processes
carry on until, either the process is halted by the designer,
or the maximum number of GA generations is reached. In
the experiments reported on in this paper, an attempt is
made to modify this basic architecture to reduce the
disruptive effects of coarse-grained crossover using
individual rule credit assignment. This allows high
strength rules to be gathered together on the genome, thus
reducing the tendency for them to be split up during
creation of the next generation. It is based on the approach
described by Grefenstette in (Grefenstette, 1987).

A "Michigan"-style Fuzzy Classifier System

In our "Michigan"-style approach to this problem, an
evolutionary algorithm acts upon some subset of a single set
of rules. The elements of the evolutionary algorithm’s
population are therelbre rules of a single rule set, rather than a
group of rule sets as in the previous architecture. Again, for
this early work, a simple system was created. A GA applies its
operators to create a new single rule set at each generation. A
group of the highest fitness ~oring rules are used as parents
for creating a new generation. An "elitism" operator retains a
subset of this group into that next generation, but with fitness
re-evaluated at that time. Fitness evaluation also now operates
at the level of individual rules, carried out during a single
simulation trial of the animat in a maze. Each rule’s fitness is
evaluated during this trial, the GA then produces the next
generation, and so on.

In the experiments reported on in this paper, an
attempt is made to enhance this architecture to reduce the
conflict between competition for selection and co-
operation to form useful rule-chains. The method
proposed by Wilson and Goldberg (Wilson & Goldberg,
1989) is used to gather rule groups into "corporations".

Example Experiments & Discussion

Many experiments have been carried out, untbrtunately
however, there is not space within the Ibrmat of this paper
to present details of the many evolutionary and fuzzy
parameters used in carrying them out, or indeed to present
a large number of the test results themselves. For the
former, the reader is referred to our earlier paper on this
topic; it provides more detail of the parameters used (Pipe
& Carse, 2000). With respect to the latter, the reader is
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encouraged to visit our website, download the C source
files, and conduct experiments of their own devising in
order to confirm, or refute, the general tenor of the
discussions below.

The main changes to the architectures, relative to our
previous paper are;
¯ inclusion of a "don’t care" state in the inputs space for

both algorithms so that general rules using only some
of the sensory inputs can be evolved,

¯ using our "Michigan"-style individual rule fitness
evaluation mechanism within the "Pittsburgh"
algorithm to allow gathering together of fit rules
before genetic crossover is applied,

¯ extension of the "elitism" operator in the "Michigan"
algorithm.

The 2nd and 3r~ of the changes above are both efforts to
reduce the, sometimes disruptive, effects of genetic
crossover. The inclusion of a "don’t care" state in the
inputs space gave a general improvement in the robustness
of evolved fuzzy controllers for both approaches. For
example, a typical controller evolved after only two
generations of the Pittsburgh approach is illustrated in
figure 3, where the robot starts at the top of the figure.

disruptive effects of genetic crossover, did not produce
significant difference in performance for either algorithm.
However, there may have been a much more disruptive
effect at work in each of the algorithms. The generally
chaotic behaviour of the evolutionary process, which is
more apparent in the Michigan approach but distinctively
present in both, is very obvious when tracking the
progress of fitness. The Michigan approach, in particular,
suffers from a "sawtooth" style progression over
generations. The rules set gets gradually better, and then
there is a sudden drop to a much lower fitness (i.e.
distance travelled without collision in this application).
Following the structure of the rule set for examples of this
behaviour in the Michigan algorithm reveal that there are
two main phases of development that give rise to this
characteristic. In the first phase the general fitness of the
rule set increases as it becomes more cohesive as a group.
Usually there is at least one seldom-active, but nonetheless
crucial, rule in this group. Because it is seldom-active it
does not accrue a high fitness in the conventional methods
for fitness evaluation used in traditional Classifier
Systems. In the second phase the rule replacement policy
therefore eventually deletes one of these rules and the
overall fitness of the controller drops suddenly. For
illustrative purposes figure 4 shows the Michigan
algorithm at one of the peaks of performance that, in this
case, was immediately followed by virtually stationary
circulatory behaviour in the next generation.

Figure 3: Typical Pitt 2 best controller after 2 generations

The same algorithm without "don’t cares" would
typically take 4 to 8 generations to evolve an individual of
similar performance. Analysis of the rule structures
themselves showed that this modification allowed the rule
set to be typically about one quarter of the size for similar
performance. The modifications outlined above, that were
made to each of the algorithms in an attempt to reduce the

Figure 4: Typical Mich 2 controller at generation 40
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Conclusions & Further Work

The main objective of the work presented in this paper
was to extend the preliminary results and analysis
presented in (Pipe & Carse, 2000) to the use of more
powerful evolutionary operators and more flexible
genotypic representations. These modifications were
intended to confirm the authors’ suspicions that the
conventional fitness evaluation processes of traditional
Classifier Systems do not work well for applications like
these. Although more work is to be carried out, the work
has confirmed these suspicions as far as it has gone.

There are two approaches to be pursued in further
work. First, for the Michigan approach, a Temporal
Difference reinforcement learning algorithm (Sutton,
1984) should be brought to bear on the single rule set. Its
credit assignment policy would help to reinforce seldom-
active rules that are crucial to a long trajectory. Secondly,
for both approaches, an accuracy based fitness evaluation
process like that adopted in XCS (Wilson, 1995) needs 
be fully investigated to ascertain whether this would be a
better method for rating fitness of individuals in the
population.
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