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Abstract
Decision and optimization problems involving graphs arise
in many areas of artificial intelligence, including
probabilistic networks, robot navigation, and network
design. Many such problems are NP-complete; this has
necessitated the development of approximation methods,
most of which are very complex and highly problem-
specific. We propose a straightforward, practical approach
to algorithm design based on Markov Chain Monte Carlo
(MCMC), a statistical simulation scheme for efficiently
sampling from a large (possibly exponential) set, such as the
set of feasible solutions to a combinatorial task. This
facilitates the development of simple, efficient, and general
solutions to whole classes of decision problems. We provide
detailed examples showing how this approach can be used
for spanning tree problems such as Degree-Constrained
Spanning Tree, Maximum Leaf Spanning Tree, and Kth Best
Spanning Tree.

Introduction
Decision and optimization problems involving graphs

arise in many areas of artificial intelligence, including
probabilistic networks, robot navigation, and network
design. Many such problems are NP-complete; this has
necessitated the development of approximation methods,
most of which are very complex and highly problem-
specific. We propose a straightforward, practical approach
to algorithm design based on Markov Chain Monte Carlo
(MCMC), a statistical simulation scheme for efficiently
sampling from a large (possibly exponential) set, such 
the set of feasible solutions to a combinatorial task. This
facilitates the development of simple, efficient, and general
solutions to whole classes of decision problems. We
provide detailed examples showing how this approach can
be used for spanning tree problems such as Degree-
Constrained Spanning Tree, Maximum Leaf Spanning
Tree, and Kth Best Spanning Tree.

Our paper is organized as follows: First, we describe
the basic minimum spanning tree problem and discuss
several decision problems derived from it, some of which
are NP-complete. Second, we provide an overview of the
MCMC method. Third, we show how the MCMC method
can be used to construct approximation algorithms for the
aforementioned spanning tree problems in particular and
for graph optimization and decision problems in general.
Finally, we conclude with a discussion of our contributions
and of future work.

Spanning Tree Problems
We begin by describing the minimum spanning tree

problem. Minimum spanning tree problems are among the
most important in network topology design. Practical
applications might involve minimizing the amount of
wiring used to connect n computers or minimizing the
number of connections to any one computer in a network.
Formally, we are given a graph G = (V, E), where V is a set
of vertices and E is a set of edges. Each edge (u,v) E has

some weight w(u,v). The minimum spanning tree problem
is to find some subset T of E that connects all the vertices
and whose total weight is minimized. Many algorithms
have been developed to find minimum spanning trees
efficiently. The most popular include Kruskal’s and Prim’s
algorithms [Cormen, Leiserson, and Rivest 1990].

A number of decision and optimization problems can
be derived from the basic minimum spanning tree problem
by imposing additional constraints on the spanning tree.
For example, in the Degree Constrained Spanning Tree
(DCST) problem, the task is to determine whether there 
a spanning tree for some input graph G in which no vertex
has degree larger than K. This problem is NP-complete for
any fixed K _> 2. Note that with K=2, the Degree
Constrained Minimum Spanning Tree problem reduces to
the Traveling Salesperson Problem (TSP), a classic NP-
complete problem. DCST arises in the area of network
design: to ensure the reliability of a network, we may wish
to limit the number of other machines affected should any
one machine go down. Many approximate solutions have
been suggested for DCST. Among these are approaches
based on genetic algorithms [Chou, Premkumar, and Chu
1999] and parallel algorithms [Mao, Deo, and Lang 1998].

A related problem is the Maximum Leaf Spanning
Tree (MLST) problem. The task here is to determine
whether there exists a spanning tree for an input graph G in
which K or more vertices have degree 1. Like DCST, this
problem is NP-complete and has applications in network
design and circuit layout. We may, for example, wish to
design a network topology that minimizes the number of
intermediate nodes and maximizes the number of client
nodes at leaves. Yet another related problem is the Kth Best
Spanning Tree (KBST) problem. The task here is 
determine whether there are K distinct spanning trees for
an input graph G where each tree has total weight B or less.
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Markov Chain Monte Carlo

Following the treatment in [Jerrum and Sinclair 1996],
we provide an overview of the Markov Chain Monte Carlo
(MCMC) method. The MCMC method makes it possible
to efficiently sample from a large combinatorial set
according to a desired probability distribution and can be
used for function optimization.

Suppose that ~Q is a large, finite combinatorial set and
that f: £2 --> R+ is a function defined on .(2. We may wish

to find a solution x E £2 such that f(x) is maximal. The
MCMC method requires that we define an undirected,
connected graph W on all possible solutions to the problem
and a set of one or more moves, i.e., relatively simple
operations that transform one element of £2 to another.
Each vertex of W represents a member of ,(2, i.e., one
possible solution, and each edge represents a move. W is
called a neighborhood structure because the neighbor
vertices of any vertex x correspond to the set of solutions
reachable via a single move from the solution represented
by x.

How a neighborhood structure is defined depends on
the particular problem. For example, to find the maximum
cut of a graph G, we might define W such that each vertex
represents a partition of G into two subgraphs. The edges
of any vertex in W would connect to vertices
corresponding to partitions that could be obtained by
moving an element in G from one subgraph to the other.
By contrast, to find the maximum number of matchings in
an undirected graph G, we might define W such that each
vertex denotes a set of matchings in G, and each edge
connects a set to another set obtained by removing, adding,
or replacing a single matching.

By representing each vertex of W with a set of features
and each edge as a change to one feature, we can simulate
a Markov chain through the space of possible solutions. In
particular, we represent each vertex X e W as a vector ofk
random variables, i.e., X = { Xl ..... X, ..... Xk}, where k is
the number of parameters needed to describe elements in
G. An edge between X and another vertex X’ = {X1 .....
X’i ..... Xk} indicates that X and X’ differ by one parameter
value Xi (1 < i < k). A random walk on the vertices of 
thus represents a sequence of solutions in which each
solution differs from the previous solution by at most one
feature (solutions can repeat). This sequence is a Markov
chain because at each step in the sequence, the choice of
the next solution depends only on the current solution and
not on any previous ones.

In short, the MCMC approach to optimization and
decision problems involves simulating the Markov chain
for some number of steps T, beginning with an arbitrary
initial solution, and then either outputting the best solution
seen so far or outputting whether a solution has been
found. Due to the Markov property, any algorithm based
on generating a randomized sequence of solutions doesn’t
need to maintain a data structure for the entire graph W. In

most cases, this would be impossible, given the large size
of£2.

We introduce bias into the random walk so that it
favors better solutions. This usually means always
accepting transitions of the Markov chain to states with
higher fvalue but occasionally accepting transitions to
states with lower f value. In particular, suppose degree(x)
denotes the degree of vertex x in W, and suppose D(W)
denotes an upper bound on the maximum degree. The
transition from a current vertex x to the next vertex is
specified as follows:

I. with probability 0.5 lety = x; otherwise,
Ii. selecty according to the distribution:

[" 1/D(W) ify is a neighbor of x;
Pr(y) = ~ lo - degree(x)/D(W) ify= x;

otherwise
lII. with probability min{1, asCv) s(x)}, transition to 

otherwise, stay at x, i.e., repeat the state
represented by x.

Note that ~ > 1; this ensures that transitions to neighbors
with higher f values are always accepted and that
transitions to neighbors with lowerfvalue are rejected with
probability (1 - c~so’)-s/x)) < 1. The last inequality holds
since f(y) - f(x) < 0 when the state denoted by y is a less
desirable state; thus, 0 < ascv~(x) < 1 and (1 - s~(X)) < 1.

To show that the resulting Markov chain converges to a
stationary distribution, we note the following properties:
First, since W is connected by definition, the Markov chain
is irreducible, i.e., any state can eventually be reached from
any other state. Second, since all self-loop probabilities are
required to be non-zero, the chain is aperiodic and hence
ergodic, i.e., there are no fixed cycles through which states
will alternate. The probability distribution of this chain can
then be defined as

rc~ = o~s(x)/z(cO, for all x c £2, (1)
where Z(c~) is a normalizing constant that ensures n~ is 
probability distribution. Finally, we note that the chain is
also reversible, i.e., it satisfies the detailed balance
condition:

~=(x) P(x, y) = r~Jy) PO~, for all x, y~ £2.
These conditions guarantee that the Markov chain

converges to the stationary distribution n=. Detailed
definitions of each requirement and proofs of convergence
can be found in [Tierney 1996] and [Taylor and Karlin
1984]. A Markov chain of this form is known as a
Metropolis process [Metropolis, et.al. 1953].

The parameter c~ influences the rate at which the
algorithm finds better solutions and the ability of the
algorithm to move beyond local maxima in the solution
space. Lower values of ~ smooth out the distribution n~
and help keep the chain from getting stuck in local
maxima; higher values of ~ make the distribution n~ more
peaked around optimal solutions and help find better
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solutions more quickly. At the two extremes, we have an
unbiased random walk on the graph W when ¢x = 1 and a
greedy search when ~ = oo. Hence, some intermediate
value for ¢x is usually preferred. Jerrum and Sinclair
provide a detailed analysis of the Metropolis algorithm at
a in [Jerrum and Sinclair 1996]. Varying o~ while the
process is simulated results in a simulated annealing
algorithm [Kirkpatrick, Gelatt, and Vecchi 1983].

MCMC Applied to Spanning Tree Problems

Having discussed minimum spanning tree problems and
the MCMC method, we now show how the method can be
applied in a general, straightforward way to developing
approximation algorithms for a whole class of decision
problems. In many situations, this may be more practical
than using a complex, specialized solution that doesn’t
adapt readily to related problems. As an example, we show
how the same neighborhood structure can be used for
DCST, MLST, and KBST. Only the heuristic evaluation
function and the ~x parameter are different in each problem.

Selecting a neighborhood structure
The first step in applying MCMC to a minimum

spanning tree problem on some input graph G is defining
an appropriate graph representation W of the space .(2. It
would be problematic to restrict this to the set of all
possible solutions, i.e., to the set of all spanning trees. The
difficulty lies in finding simple moves that transform one
spanning tree to another. Without these, we aren’t able to
define a suitable neighborhood structure for W.
Furthermore, finding an arbitrary initial solution in a space
of spanning trees may be nontrivial for complex graphs.

To address these concerns, we define .Q to include all
possible subgraphs of a graph G that are connected trees.
Vertices in W represent subgraphs of G, and edges in W
connect vertices corresponding to subgraphs that differ by
one additional or one fewer edge. This allows us to define
a connected neighborhood structure that includes all
spanning trees of the graph G. Choosing an initial state for
the Markov chain becomes trivial; it can be any single
vertex from the input graph G. From this vertex, we can
grow a solution for any minimum spanning tree problem
by incrementally adding additional edges.

With modifications to the set of vertices and the set of
allowable edges, the graph representation W can be
adapted to describe the neighborhood structure for many
other graph decision and optimization tasks, not only
spanning tree problems. Once the graph W is defined, it
can be applied to many problems in that class by using
different maximization functions and ~ parameters. We
provide examples of this process in our solutions to the
MLST and KBST problems.

Degree Constrained Spanning Tree
We now describe how we applied the MCMC method

to DCST, where the task is to determine whether there is a
spanning tree for input graph G in which no vertex has
degree larger than some value K. We will address the
following tasks: constructing the Markov chain, designing
an evaluation function, and choosing an appropriate value
for the c~ parameter.

Our algorithm and edge update rules adapt the model
of [Jerrum and Sinclair 1996] to degree constrained
spanning trees. Here, E denotes the set of edges in W and
each instance of randomO denotes a new random number
between 0 and 1.

Step 1. Define neighborhood. Choose initial state x ~ W.
Step 2. lfrandomO < 0.5, stay atx; else,

IfrandomO < (l-(degree(x))/([EI)), stay at x; else
Randomly choose a neighbor y.
If the f(y) > f(x),

move to y.
Else ifrandomO < min{ 1,o~f~v)-s(x)}, move to 
Else stay at x.

Step 3.: Repeat step 2 for some number of steps T or until
a state corresponding to a minimum spanning tree
of degree K or less is found.

Step 4. If tree found, output yes; else output don’t know.

The initial state of the Markov chain is a vertex in W
corresponding to a random vertex of the input graph G. Its
neighbors in W represent subgraphs of G that consist of a
single edge in G, one vertex of which is the initial vertex.
At each step in the chain, the subgraph represented by the
current vertex transitions to another subgraph made by
adding an edge to or deleting an edge from the current
subgraph, subject to the constraint that the graph remains a
connected tree.

Recomputing the neighborhood of a vertex at each
transition is inefficient. Instead, we maintain a list L of
edges that can be added to the current subgraph, and we
update the list at each transition. The following rules
summarize how L is updated when an edge (vl, v2) is added
to the subgraph (where vl already belongs to the subgraph
and v: is a new vertex) or when edge (vl, v:) is deleted
from the subgraph (where v~ remains part of the subgraph
but v: does not):

After adding a new edge (vl, v2): Add to L those
edges in G the have one vertex v2 and the other vertex
not in the current subgraph. Remove from L those
edges that have one vertex v2 and the other in the
current subgraph (to prevent cycle creation). Remove
from L those edges that have one vertex v~ and the
other vertex belonging to another edge in the subgraph
(to prevent splitting the subgraph in two)
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After removing an edge (’Pl, ~2)" Add to L those
edges of G that have one vertex vl and the other vertex
not in the current subgraph. Add to L those edges with
one vertex v2 and the other vertex belonging to the
current subgraph (these edges would have created
loops before). Remove from L those edges with one
vertex v2 and the other vertex not in the current
subgraph (these edges are no longer reachable).

We now propose a heuristic evaluation function to
direct the Markov chain toward solution states. The aim is
to favor subgraphs with as many edges as possible but with
no vertices having degree greater than K. Suppose that the
Markov chain algorithm proposes adding an edge so that
the resulting subgraph has a maximum vertex degree of M.
If this subgraph has increased maximum vertex degree and
Mr> K, we discourage the transition by accepting it with
probability txTM. The greater the difference between M and
K, the less likely we are to accept the transition. If M<K,
we always accept the transition since it brings the subgraph
closer to a spanning tree. If the algorithm proposes
removing an edge, we accept the transition with probability
c(v(ll’!), where IEI is the number of edges in the current
subgraph. The greater the percentage by which the
subgraph size is reduced, the less likely we are to accept
the transition. In this way, we discourage transitions away
from a spanning tree. The only time we prefer a reduction
to the size of the tree is when it decreases the maximum
degree of a tree whose maximum degree already exceeds
K; in those cases, we always accept the transition. We
believe this evaluation function is intuitively compelling,
and preliminary experimental results have shown it to work
efficiently in practice.

We now address the task of choosing a parameter c~.
For some problems, a higher value works fine, whereas for
other problems it leads to difficulties. The Markov chain
generated by our algorithm starts from a single vertex and
incrementally adds vertices on most transitions. Even when
it needs to remove edges in order to make additional
progress toward a spanning tree, it rarely needs to
backtrack many steps in sequence. Hence, in practice the
value of c~ can be set quite high without much danger of
the chain getting trapped in local maxima. Nevertheless,
performance begins to deteriorate once c~ surpasses a
certain threshold, reducing the algorithm to greedy search.

Choosing c¢ remains something of a black art. [Jerrum
and Sinclair 1996] describe some techniques for doing so,
though to this day there are few rigorous results. In
general, we wish to minimize hitting time, the time it takes
to reach one state when starting from another. Preliminary
results with our evaluation function and c~ parameter
suggest that the hitting time of our Markov chain algorithm
grows in polynomial time with the size of the input graph
G, though this requires further investigation. [Jerrum and

Sinclair 1996] and [Sinclair 1992] discuss hitting time and
convergence in substantial detail.

Related Spanning Tree Problems
A key benefit of the MCMC approach is that

algorithms for related problems can be devised using the
same neighborhood structure. For example, we now
propose an algorithm to solve the MLST problem that uses
the same neighborhood structure as DCST but has its own
evaluation function and other considerations for choosing
o~. In MLST, the task is to determine whether there exists a
spanning tree for an input graph G in which K or more
vertices have degree 1.

We use an algorithm nearly identical to the one
proposed for DCST. Generally, the algorithm encourages
the addition of new edges and discourages the removal of
existing edges. With MLST, however, we wish to find
trees with K or more leaves. Thus, we modify our
algorithm so that when it suggests transitions to subgraphs
with K or more leaves, we impose no additional restrictions
on adding or removing edges. When it suggests transitions
to subgraphs with fewer than K leaves, however, we reject
such transitions in proportion to the difference between the
resulting number of leaves and K. The rules governing
edges that can be added or removed remain the same.

In some ways, MLST is the opposite of DCST, and
this influences our choice of evaluation function and of cx.
Whereas the DCST algorithm has little trouble keeping the
maximum degree of any vertex below K while searching
for a spanning tree, the MLST algorithm must constantly
trade off between trying to increase the size of the
subgraph and keeping the number of leaves above K.
Backtracking several steps in sequence occurs much more
frequently with the MLST algorithm. Hence, our
evaluation function places greater weight on tree growth
when the subgraph is small and greater weight on
maintaining the number of leaves as the subgraph gets
larger. To provide the chain enough mobility to
accommodate the two conflicting goals, we use a relatively
small value for c~. As with DCST, we can’t allow the value
of o~ to become too small, since the Markov chain becomes
a random walk as c~ approaches 1.

Like MLST, an approximation algorithm for solving
KBST can be developed using the original neighborhood
structure. Since the task is to determine whether there are
K distinct spanning trees for input graph G, each with total
weight B or less, there are now three possibly conflicting
goals: growing the size of the tree, keeping the weight of
the tree below B, and finding trees different from the ones
already discovered. Again, we can reuse the neighborhood
structure and basic algorithm. As with MLST, our
evaluation function weights the signficance of each goal
depending on the development of the subgraph. It also uses
an even smaller value of c~ to encourage exploration. While
experimental results are not the focus of this paper, we
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have implemented algorithms for all three spanning tree
problems, and preliminary results for convergence have
been promising.

Generalizing the Approach
Having discussed how MCMC can be applied to three

different but related spanning tree decision problems, we
now consider the general principles involved in developing
solutions to decision and optimization problems.

First, we must define a set of all feasible solutions to
the problem, along with the features that characterize
optimal solutions. Furthermore, we must identify simple
operations that transform one candidate solution to another.
It’s important that every solution to be reachable from any
other solution and appear exactly once in the set.
Otherwise, some optimal solutions may be left out or some
states may receive undue preference.

Next, we must engineer a Markov chain that performs
a biased random walk on the search space and that satisfies
previously defined convergence conditions. So that the
chain will favor more desirable states over less desirable
ones, we define a heuristic evaluation function on states.
This function should capture the essence of optimal
solutions, assigning higher values to states closer to them.
If some cases, the evaluation function will need to weigh
the tradeoffs between conflicting optimizing criteria.

The choice of the o~ parameter depends heavily on the
specific problem. As a rule of thumb, ~ should be small
when the Markov chain requires substantial mobility
throughout the solution space but can be large when the
chain performs little backtracking. Usually, c~ must be
refined experimentally.

Conclusions and Future Work

The primary goal of this paper has been to show how
the Markov Chain Monte Carlo method can be applied to
solving whole classes of decision problems. We have
demonstrated this by describing in detail how the same
basic approach can produce approximation algorithms for
three different spanning tree problems: Degree Constrained
Spanning Tree, Maximum Leaf Spanning Tree, and Kth

Best Spanning Tree. Each solution uses the same
neighborhood structure and basic Markov chain algorithm.
They differ only in their evaluation functions and selection
of ~ parameter. Thus, MCMC provides a practical
alternative to developing and using complex, ad hoc
solutions to closely related problems.

A second contribution is the adaptation of Jerrum and
Sinclair’s basic Markov chain algorithm to decision
problems involving spanning trees. We provide rules
explaining how the sequence of subgraphs in the chain can
be generated without recomputing the neighbors of each
vertex after every transition.

A third contribution is the specification and
description of heuristic evaluation functions and the o~

parameter for driving the evolution of the Markov chain
for each problem, particularly DCST.

We have implemented algorithms for DCST, MLST,
and KBST, and they have produced promising
experimental results. We are currently comparing how
these approximation algorithms perform in practice against
other types of approximation algorithms for the same
problems.

Finally, there remains much room for stronger
theoretical results. We are working to develop techniques
for finding mathematical bounds for the convergence rates
of our algorithms and for determining optimal values of the
parameter ~.
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