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Abstract

Discrete optimization problems arise throughout many
real world domains including planning, decision mak-
ing, and search. NP-hard in general, these problems
require novel approaches to algorithm design and devel-
opment. Algorithm portfolios which consist of multi-
ple algorithm instances and types executing in parallel
has been a key novel approach to these problems. \Ve
focus oil cooperative portfolios where algorithms ac-
tively communicate and interact with one another dur-
ing problem solving to more efficiently determine the
optimal solution. Unfortunately, the added dimension
of cooperation greatly complicates our understanding
of tile method. The goal of this paper is to provide
tile first comprehensive formal computational model of
portfolios of cooperative heterogeneous algorithms in
order to lay the foundations for rigorous analyses of
these portfolios in hopes of eventually leading to prov-
able guarantees of performance, effectiveness, and effi-
ciency.

Introduction

This paper addresses a fundamental problem in dis-
crete optimization, namely the development of algo-
rithms that maximize solution quality within a given
time limit. We focus here on collections of cooperating
algorithms as the basis for improving solution quality.
Our goal is to provide a formal model that captures
their overall behaviour which can then be used to de-
sign cooperative solutions predicated on rigorous anal-
ysis and performance guarantees.

Discrete optimization problems such as manufactur-
ing scheduling (Luh 1997), probabilistic reasoning (San-
tos & Santos 1987; Shimony 1994; Santos 1994), pro-
tein folding (Neumaier 1997; Santos &: Santos 2000),
and cryptography (Menezes, van Oorschot, & Vanstone
1997) are in general NP-hard (Garey & Johnson 1979).
The combinatorics inherent in the space of possible so-
lutions for these problems often requires exponential
computation time with respect to problem size.

In practice, this has often resulted in attempting to
construct specialized algorithms tailored specifically to
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solve a given problem instance or highly restrictive sub-
class. Typically, such tailoring involves extensive prob-
lem analysis, restructuring, and simplification in order
to develop these search strategies/heuristics not to men-
tion the continual "tweaking" afterwards of the algo-
rithm.

In reality, unfortunately, even seemingly small per-
turbations/variations on a known problem instance can
result in huge computational differences and costs.1

Still, for all these efforts, we have been able to identify
different classes of algorithms that work well in differ-
ent ways on different problem sets. A great variance ex-
ists in individual algorithm performances over different
problem instances. In fact, it is often the case that an
algorithm that performs best for one problem instance,
may perform much worse than another algorithm on
another problem instance. However, matching the best
algorithm to a problem instance can be as difficult as
determining the correct solution to the problem itself.
Although sonm indication on how to do that may be
available from an inspection of the problem, such pre-
dictions are notoriously unreliable. Further complicat-
ing matters is the possibility that no single algorithm
currently exists which can solve the given problem in a
reasonable amount of time and space.

One avenue of research that has been explored
to avoid the problems of algorithm tailoring and
brute force problem pre-analysis is algorithm portfolios
(Gomes & Sehnan 1997; Huberman, Lukose, & Hogg
1997). Multiple algorithms are selected to form a port-
folio. These can be multiple instances of a single ran-
domized algorithm to multiple types of algorithms. All
algorithms are run in parallel in hopes of getting good
performance over a wider range of problems. The choice
of algorithm portfolios is akin to how one chooses stock
portfolios where a balance among available resources
versus expected return is managed according to accept-
able risk. However, algorithms in these portfolios typi-
cally do not interact or cooperate but it has been noted

1The theoretical study of "phase transitions" and heavy-
tail distributions attempts to identify when a problem in-
stance is likely to be "computationally tractable" (Hogg,
Huberman, & Williams 1996; Motwani & Raghavan 1995;
Gomes & Sehnan 1997).
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that such cooperation should be beneficial (Hogg 2000).
Santos et al have been studying cooperative algo-

rithms since the early-mid 90s (Santos 1993; Williams,
Santos, & Shimony 1997; Santos, Shimony, & Williams
1995; 1999). In particular, they focused on deploying
parallel multiple interacting algorithms to solve prob-
lems in Bayesian Networks (Pearl 1988). They con-
structed various algorithm types such as genetic algo-
rithms, best first search, and integer programming. Us-
ing the Overmind Architecture (Williams, Santos, 
Shimony 1997), they conducted an extensive number
of experiments to determine the effectiveness of their
approach. (Santos, Shimony, & Williams 1999) demon-
strated that by changing the mix of a portfolio on-line
based on observing the current and past performance of
the portfolio leads to significant speed-ups. Others have
also recently explored a similar approach (Denzinger 
Offerman 1999; Baerentzen, Avila, & Talukdar 1997;
Talukdar et al. 1998).

The immediate benefit seen in the experiments from
a portfolio approach is the fact that: Given multiple
algorithms solving the same problem, the elapsed time
needed to find the solution is in general bounded above
by the best single algorithm should it have been run
individually. This is the basic strength of portfolio ap-
proach but is not all that surprising.

Of more interest are the situations in which cooper-
ation between algorithms indeed led to faster discovery
of the optimal solution. For example, empirical results
demonstrated that genetic algorithms are good at find-
ing good local solutions quickly. Hence, the speed of
the genetic algorithms effectively jump started other
slower algorithms with better "seed" candidates. Fur-
thermore, combining exact algorithms with randomized
algorithms provides guarantees of optimality. It is well
known that genetic algorithms do not guarantee opti-
mality in their final solutions.

However, the most convincing argument for cooper-
ative portfolios is the identification of problems where
no single existing algorithm is capable of solving the
problem individually, whereas a cooperative collection
could. For example, consider a genetic algorithm and a
best first search. Genetic algorithms excel on problems
with fairly smooth search spaces but perform extremely
poorly on very "spikey" spaces. Best first search on
the other hand has the opposite property. In problems
where there is a mix of smooth and spikey surfaces, only
a cooperative combination of best first and genetic al-
gorithm could solve the problem (Santos, Shimony, 
Williams 1995).

While it seems that there is tremendous promise to
cooperative portfolios, it remains very difficult to un-
derstand and even possibly analyze the effectiveness of
this approach. Even empirical results fail to predict
and help address many of the complexities that arise
from cooperation. For example, while it seems that the
elapsed time for a portfolio algorithm seems to be no
worse than the elapsed time for a single best algorithm
in the portfolio, communications between algorithms
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can also worsen performance. In addition to communi-
cations latency, communicating "bad" candidate solu-
tions to other algorithms can cause the other algorithms
to fall into local optima.

Our goal in this paper is to provide the first compre-
hensive computational model for portfolios of coopera-
tive heterogeneous algorithms. This model is intended
to capture all the aspects of how these portfolios behave
in order to allow others to conduct rigorous analyses
that lead to fundamental results in performance guar-
antees of effectiveness and efficiency. Most importantly,
such results will also provide a better understanding of
the intricacies of discrete optimization.

Computational Model

In order to accurately model the behaviour of a port-
folio of cooperative heterogeneous algorithms, we must
capture over time the following:
¯ individual algorithm state changes

- internal/independent changes
- changes from interaction

¯ communications between algorithms
- message content
- schedule

¯ measure of solution quality/performance
- individual algorithm quality
- overall portfolio quality

The first item concerns how an algorithm behaves
over time without interference as well as how an al-
gorithm incorporates external information (from other
algorithms) which also affects state. For example, given
a genetic algorithm, it can simply incorporate an exter-
nal candidate solution directly into its population. For
a standard best first search, the simplest incorporation
would be as a new pruning value or a more sophisticated
change in the search tree.

The key effectiveness of the cooperative portfolio is
the actual interactions that occur between algorithms.
Thus, the second item addresses the communications
schedule and inessage content which must be accurately
captured to reflect the flexibility of many different pos-
sible interactions that can potentially occur.

Finally, since our goal is to effectively and efficiently
solve discrete optimization problems, a measure over
time of the systems performance is naturally required.
Such a measure will be fundamental in developing algo-
rithms for determining the optimal interaction schedule.

We begin our formulation as follows:
NOTATION. ~ is the set of real numbers.

Let P = (ft, q) be di screte optimization pr oblem
where f~ is the space of candidate solutions for P and
q : ft --+ ~ is the quality measure we are maximiz-
ing. Hence, our goal is to determine c~* E f~ such that
q(c~*) _> q((~) for all ct 

Next, let D > 0 be a constant that denotes the overall
elapsed time allocated to solving P, i.e., D is the time
limit set for when an answer must be provided.

We now formally define a cooperative algorithm.



Definition 1 A cooperative algorithm A for P is a 4-
tuple ( A, S, p, V) where
¯ A is the set of states for A,
¯ S : A x 2~ x .~+ -+ A x 2f~ is the state transition

function for A,
¯ p : Ax2~z (f~U{{}}) Ax2~ is thestat e advance-

ment function for" A and p(5, 7, {}) = (5, @, and
¯ V C A is the start state for A.

Intuitively, in the state transition S(5, 7, r) = (5’, 7’),
the algorithm changes from state 5 to 5’ over the exe-
cution duration 7. 2/represents the working set of can-
didate solutions that A is currently considering. ~/’ is
the resulting new working set after r duration.

p is the key to capturing algorithm cooperation. The
third parameter for p represents the external informa-
tion from other algorithms that is passed to A. {{}}
represents no information being processed by the algo-
rithm.

A cooperatiw~ algorithm functions much like a (de-
terministic) Turing machine. They both require a se-
quence of inputs that determines their execution. For
Turing machines, a sequence of inputs results in a se-
quence of state transitions and tape content changes.
For our cooperative algorithms, our input sequence is
an algorithm schedule we define as follows:
Definition 2 Art algorithm schedule (7 is a finite se-
quence of ordered pair’s from ~+ x (gt U {{}}) of the
form {(r,,~,,)}~*__l such that 0 < v=i < ri+l for i from
1 to n. FarthermoTv, a is said to be bounded by D ’if
"~,~ < D.

Intuitively, at time r~, our cooperative algorithm re-
ceives external information cti such as fi’om another co-
operative algorithnL Hence, each algorithm in a coop-
erative portfolio executes according to a schedule. Also,
we ean easily capture communications and computation
latency by including (r, {}) in the schedules. These
schedules are coordinated into a composite schedule for
a portfolio.

Now, for each c~, we generate an algorithm execution
sequence representing the actual execution of our coop-
erative algorithm under schedule or.
Definition 3 Given ~, the algorithm execution for" A
induced by c, is denoted by ft(cr) C_ A x 2~ x ~+ such
that
¯ (50,70,rl) E ]l(~) where 5o = V and% = {}.
¯ For" j from 1 to rz - 1, (Sj, "yj, rj+l) C .4(O’) where

(55 1,~5--1) S( 5j--l,~j--l,J-j- Tj 1). (5j, "fj) ~-

¯ v,,, D) 
where (5’ ~’ ~ = S(5,~_l,?’, 1,r,~ ) andk n-l~ ~n-Z] -- 7:n--1

(4,, = 1, % (<).
Intuitively, from each (5j, %, rj+l) E A(a) we can de-

termine the parameters for state change computations,
S, at time rj+l: S(dj,’Tj,Tj+I -7-j). We are simply
folding in p, the state advancement, from the scheduled
external input.

We can now define cooperative portfolios and com-
posite schedule as follows:

Definition 4 A cooperative portfolio A is a set of co-
operative algorithms {A1, A2,..., Am} for P.

Let { = {~1, a2,..., am} be a set of algorithm sched-
ules where ai is the algorithm schedule for Ai =
(Ai, Si, pi, Vi).

Definition 5 ~ is said to be a composite schedule for
]t iff for each (ri,j,ai,j) E ai where ai,j ¢ {} there
exists (Sk,l,%a,r<l+l) E .4k(a~) where rk,l+l = "q,j,
(5~a+~, %,~+~) = S~ (5~,~, %a, r~,,+~ - r~/) where 
%a+l. Furthermore, ~ is said to be bounded by D iff
all sis are bounded by D.

A composite schedule simply guarantees that the in-
put ai,j for Ai originates from some other algorithm
A~’s working set at time ~:i,j. This now fully captures
how algorithms cooperate given composite schedule ~.

Synchronized Cooperation

Given our computational model above, we can now for-
really capture the various empirical studies performed
by Santos et al mentioned earlier. As an example, we
now describe how to model one of the experiments per-
formed.

The experiment involved determining the most prob-
able explanation for a Bayesian network consisting of h
random variables El, E2,..., Eh. In particular, we are
searching for the most probable joint probability over
the Eis. Assume that the range of each Ei is denoted
by the finite discrete set/~(Ei). Hence, our state space
is f~ = R(E~) x R(E.2) x ... x R(Eh).

Six algorithms which consisted of two parameter-
variant instances of genetic algorithms, best-first
search, simulated annealing, integer linear program-
ruing, and an exact barrier algorithm formed the port-
folio. Thus, A = {A1,Ag,...,A6} corresponding to
each of the algorithms. Algorithms were a mix of mini-
really interactive (integer linear programming) to more
cooperative algorithms such as the genetic algorithms
which flflly incorporated external solutions. Also, all
algorithms were interruptible.

In this example inodel, we mainly focus on the al-
gorithm communications schedule. One of the prob-
lems that Santos et al faced in determining the appro-
priate schedule was that fact that genetic algorithms
were prone to generate many possible candidate solu-
tions quickly where as integer programming took a more
methodical approach before a solution is made avail-
able. Thus, if the genetic algorithms were permitted
to broadcast their solutions as soon as possible, this
causes a serious bottleneck in communications and rep-
resented a serious interruption to the other algorithms
which were forced to process the data.

Instead, Santos et al adopted a synchronized broad-
casting schedule for their experiment. Solutions were
broadcast by each algorithm (if available) every r sec-
onds. Hence, ever), cri had the form {(jr, ctj)}~_l where
nr = D and eta denoted the best solution avaif£ole from
the algorithms. However, if at time jr, no new solution
is found that is better than the one at time (j - 1)r,
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(~j = {} in order to avoid wasting time. Clearly, the
cris define a composite schedule for this portfolio. Once
the composite schedule is executed, we can recover the
best solution generated by the portfolio (see below).

Optimality and Resource Usage
Once our cooperative portfolio A completes execution
with composite schedule 4, we can recover our final solu-
tion as follows: Fox- each Ai, define the solution quality
under cri to be

Qi(o-i) = max q(ol)
o~E~i

where (3/, ~i) Si(Si,n,, "7i,,~,, D-ri, ,~, ). Thus, forcom-
posite schedule 4, our overall solution quality is

Q(4) = max
Definition 6 A composite schedule 4" bounded by D
is said to be optimM if Q((*) >_ Q(() for all composite
schedules ~ bounded by D.

With Definition 6, we have now formally defined the
goal of cooperative portfolios to ultimately determine
an optimal composite schedule which maximizes the fi-
nal solution quality. Determining when optimal com-
posite schedules can be found and how they can be con-
structed will be the key future research emphasis. Our
model serves as the basis for formally addressing this
problem.

Up to this point, we have implicitly assumed unlim-
ited numbers of processors and unlimited communica-
tions bandwidth. Clearly, for our cooperative algorithm
portfolios to be practical, we need to consider the re-
source requirements for implementing our optimal com-
posite schedule. Given our limited space here, we only
consider processor usage and guarantees in the follow-
ing section. We note that communications requirements
can be naturally extracted from our composite sched-
ules fox’ analysis.

Processor Allocation
Processor allocation and usage can be derived for a
cooperative portfolio by carefully analyzing the target
composite schedule.
Definition 7 Given 4, we construct the schedule graph
a(~) = (v, E, l) as follows:
i. For each (Ti,j,OG,j) E O-i where 1 < i < n and 1 <

j <_ hi, construct l/i,j E V.
2. Construct Vi,o, Vi,n~+l E V for each i = 1,...,n.
3. For each i = 1,...,n, j = O,...,ni- 1, add edge

(E,~,v~,j+~) e E if] (~,~+l,’y~,j+~,~-~,j+2) e A~(c~)
and either 5i,j ¢ V~ or ~/~,j ¢ {c~,j+l}. Note
Ti,l~,i+l = D.

.{. For each Vi,j E V where j <_ ni and c~i,j ¢ {}, for
each (~k,l,~k,l,wk,l+l) E Ak(ak) where rk,t+l = 7-i,j,
(Sk,l-t-1, "fk,l+l) : Sk ((~k,l, ~k,l, Tk,l [-1 -- Tk,l) and OZi, j E

"~k,l+l, add edge (Vk,l+l, ~7i,j) E J~.

5. l(V/,o) = (V,{},0), l(Vi,,,,+,) = (~i,n,,~/i,n~,D), 
l(Vi,j) = ((~i,j-l,Ti,j-l,Ti,j) for i = 1,...,n, 
1,..., hi. l is the label for each vertex in V.
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Basically, the schedule graph G(~) explicitly repre-
sents when communications between one algorithm to
another takes place. Each communications is repre-
sented by a direct edge and each algorithm Ai is repre-
sented by a sequence of nodes l~],j which each represent
a communications instance at r~,j except when j is 0 or
ni + 1 which denotes time 0 and D respectively. Also,
edges between the nodes for V/,j and l~),j+l represent
the results of processing for Ai before communications
take place at wj. Hence, G(~) is a dependency graph.

Given 4, we construct ~’ = {(~[, a.~,..., a{~} as follows:
1. Let T(~) = {tl(t,c~) E ai and c~ ¢ {}}. W.l.o.g., 

r(~) = {t~,...,t,~} where t~ < t~+~.
2. For each ai, construct cr~ as follows:
(a) 
(b) For each tk E T(~) such that there does not exit

(t~,a) E ai, add (t~, {}) to 
Theorem 1 (’ is a composite schedule.

Pro@ Follows from our construction above. 12
We call ~’ a normalized composite schedule for ~. Ba-

sically, we are ensuring that if an algorithm receives en-
ternal input at time T, then all algorithms also receive
input at time ~- via {} if necessary. Hence, our schedules
are uniform in ~’.
Proposition 2 Q(~’) = Q(~).

Construct G(~’) = (V’,E’,I’). For each t
(T(~) U {0, D}), let v(t) = {v e V’ll’(v) =
(~,%t) for some 5 and 7}. Construct G(~’) from G(~’)
by collapsing all the vertices in each v(t) into one
node and preserving the edges except for edges between
nodes in v(t).

For each composite schedule 4, we define P(~) to 
the minimum number of processors required to execute

Corollary 3

P(~’) = max m-degree(v(t)).
tE(r(~)u{O,D})

Pro@ Follows from Theorem 1 above.
Since G(~~) is the dependency graph for our normal-

ized schedule 4’, an edge incoming on a vertex repre-
sents a computational dependency requiring processor
usage. Thus, the number of edges incident on all ver-
tices v(t) at time t represent the number of processors
required at t.
Theorem 4 P(~’) is the minimum number of proces-
sors needed for ~, i.e., P(~) = P(~’).

Pro@ Follows from Proposition 2 and Corollary 3. 12
With our processor usage formulated above, we can

derive the following theorem:
Definition 8 A is said to be minimally interactive iff
p((~,%~) = (V, {c~}) for all c~ ¢ {}, 5 ¯ A, and~ ̄  2~.

Theorem 5 If all Ai are interruptible and minimally
interactive, then there exists an optimal composite
schedule ~ such that P(~) = 

Proof. [Sketch] Let ~ be an optimal schedule and
Qi(o-i) ~ Qj(crj) for all j. Take node l/~,n~+~ and pick
any single connected simple path from some i~,~ to



Vi,,~+l such that there are no incoming arcs to Vj,k.
Construct a new schedule based on this path. 0

Conclusions
We have developed the first formal model for portfolios
of cooperative heterogeneous algorithms. Such a model
is critical in capturing and analyzing the effectiveness
of portfolios for discrete optimization. We can now be-
gin to rigorously address various issues in cooperative
portfolios in order to provide performance guarantees
critical to future optimization systems. This model will
allow us to address the following critical issues:
¯ What is/should be shared between algorithms?
¯ How do we use the shared information?
¯ When do we share the information?
¯ Which algorithms do we choose to cooperate to-

gether?
¯ When do we change the algorithm portfolio/mix?
¯ Should we change the mix on-line?
These issues opens up the potential power of coopera-
tive portfolios approach to optimization by exploiting
massive parallelism and distributed computing.

The complexity of future problems will no longer per-
mit us to hand custom design algorithms especially
in the time-frame they are needed. Instead, cooper-
ative portfolios can provide a natural building blocks
approach to, in effect, automatically build customized
algorithms based on existing standardized algorithms.
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