
A Binary Tree based Approach for the
Design of Fault-Tolerant Robot Team

Haihang Sun and Robert McCartney

Department of Computer Science and Engineering
University of Connecticut
Storrs, CT 06269-3555

{haihang [robert } @ engr.uconn.edu

Abstract

Task allocation and load balancing are critical in fault-
tolerant robotic team design. This paper deals with the
problems of allocating and reallocating tasks to multiple
robots in a fault-tolerant manner. Using a tree structure to
store global information about active robots and
unfinished sub-tasks, each robot can reallocate itself to
tasks independently when robot failure occurs in the
team. Organized in full distributed manner, robots in the
team respond robustly, flexibly and without negotiation
with other team members to robot failure and other
environment changes. Simulation results are given to
show the feasibility of this approach.

Introduction

One of the most important and well-known advantages in
using multiple robots is that it is possible to increase the
robustness and fault-tolerance of a robotic system. It can
be easier, cheaper, more flexible and more fault-tolerant to
build and using several simple robots than to have a single
powerful, complicated robot. In a multi-robot system, the
failure of a single robot may only cause partial degradation
of system performance, and the robots can be much less
complex since each robot in the system is only responsible
for partial fulfillment of the total task. However, several
challenging issues, which do not arise in single robot
systems, remain to be addressed while constructing multi-
robot systems (Mataric 1995):

¯ How do we describe, decompose and allocate
problems among a group of robots?

¯ What is the communication and interaction
structure among robots?

¯ How do we achieve globally coherent and
efficient solutions from the interaction of
robots lacking environment information?

Problems such as these are made more difficult if we
allow robots to fail. Tasks need to be reallocated,
communications and interaction structure must change, the
robot-robot interactions will change, and so forth. To
maintain efficiency, we need to provide fault tolerance

Copyright © 2001, AAAI. All rights reserved.

without excessive redundancy: we want to get useful work
from all robots available.

Considering the limited communication bandwidth in
real physical robot systems, and the goal of scaling up to
large robot teams, information exchange among robots
needs to be limited. Any scheme requiring large amount of
communication among many robots is not acceptable.

In this paper, we consider using binary trees to keep
information about tasks and available robots. Using these,
each robot can allocate himself to tasks independent of
other robots’ decisions. Robots organized in this
architecture can dynamically reallocate tasks without
negotiation when robot failure occurs. We have
demonstrated this approach in simulation, and give
examples later in this paper.

The following section gives a brief overview of the
related work in this area. The next section describes in
detail our approach used for homogeneous robots. Next,
we present the results of our studies, followed by a
discussion of these results. Finally, we conclude the paper,
discussing questions yet to be resolved.

Related Work

Various approaches for achieving fault tolerance in robot
teams have been proposed in the past few years.

Parker (1994, 1998) demonstrates the ALLIANCE
architecture, which is used to study fault tolerant
cooperation in a heterogeneous team of largely
independent, loosely coupled robots. Unlike typical
behavior-based approaches, in ALLIANCE, individual
robots are based on a behavior-based controller with an
extension for activating behavior sets that accomplish
certain tasks. Each behavior set is activated by
motivational behaviors whose activations are in turn
determined by using the current rates of impatience and
acquiescence, as well as sensory feed back and the
awareness of its teammates. When the environmental
changes require the robot to take over tasks from other
malfunctioning team members or to give up its own
current tasks, the motivations of impatience and
acquiescence allow robot system to handle individual robot

536 FLAIRS-2OOl

From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved.

failure and malfunction fluidly and flexibly, leading to
adaptive action selection to ensure mission completion.
Experiments on physical and simulated robot systems
demonstrate its qualities of robustness, fault tolerance and
flexibility.

Schneider-Font~n and Mataric (1998) study
territorial approach to minimize inter-robot interference,
and thus to achieve high task efficiency and fault
tolerance. In the distributed clean-up and collection task,
the robots are assigned individual territories which can be
dynamically resized corresponding to robot failure,
permitting the completion of the mission. Among the
interesting features of this approach is that each robot can
independently (and deterministically) allocate its own task
by simply knowing which robots have failed.

Dias and Stenz (2000) describe a free market
architecture with which robots coordinate to solve a given
task. Each robot tries to maximize its personal profit while
executing the task. The robots negotiate among themselves
to minimize their costs and maximize their profits. In this
way, tasks are assigned to the most appropriate robots, thus
dynamically allocating tasks among robots.

The approach proposed in this paper stores global
information about tasks and robots in a binary tree. This
information allows individual robots to make workload
balancing decisions quickly and independently, while
keeping the average workload in each sub-group within a
tolerable range. This makes physical cooperative multiple
robot team construction feasible with limited
communication: allocation information is shared, but
reallocation decisions are made without negotiations
among the robots.

Approach

Representation of global knowledge
In this approach, robots use balanced binary trees for the
purpose of accumulation and utilization of the global
knowledge about the environment.

Ri = Rj + Rk
Si = Sj + Sk

j (RiSj) k (Rk,Sk)

Figure 1 : Binary tree structure used for storing
global information.

A given task can be divided into N sub-tasks, then
assigned to the leaves of our tree (if N is not a power of
two we can pad the subtasks with the appropriate number
of dummy subtasks that we consider as already finished.
This ideally reflects a natural hierarchical decomposition,
that is, the two children of a single node can reasonably be

combined into a single subtask; an example of this is using
a tree to partition a region so that siblings combine into a
contiguous region.)

In subsequent figures, we label nodes corresponding
to the indexing where node i has node i/2 as its parent and
nodes 2i and 2i+1 as its children. We assign robot and task
information to the nodes as follows: each leaf k, which
corresponds to a single subtask, is given the value
(Rk,Sk), where Rk denotes the number of robots

assigned to its task, and Sk is 1 if the task is unfinished, 0
if the task is finished. In general, the value of node i is
based on the sum of the values in its children’s subtrees, as
illustrated in (Figure 1): for value (Ri,Si)

Ri denotes the number of active robots in the sub-tree and

Si denotes the number of unfinished tasks in the sub-tree.
Figure 2 gives some example trees with values at nodes.

1 (5,5)

2/~~3 (3,3)

6/

8 9 10 ll 12 13 14 15
(1,1) (IA) (0,0) (0,0) (l,l)(l,l)(I,l)

(a)

1 (5,4)

2/~~3 (3,3)

4 / \5 6 / \7

A(2’1) A(°’°) //~(2’2) (l’l)
8 9 10 I 1 12 13 14 15

0,0) (l,I) (0,0) (0,0) (l,{)({,{)(I,l)

4/

~(1,2)

8 9
(0,1) 0,1)

(b)

I (4,5)

2 (3,3)

\5 6 / \7

10 11 12 13 14 15
(o,o) (o,o) ({,{) ({,l) (o,o)

(c)

Figure 2: Global information kept by robots.

ROBOTICS 537

Each robot keeps a copy of the tree itself, and makes
control decisions based on the tree information. When a
robot changes its location or finishes a task, this
information is broadcast to the other robots, as well as
sufficient information for all to determine that (and where)
a robot has died.

For example, in Figure 2.a, suppose the robot in Node
8 finishes the task: it changes the value of this node to
(I,0), and propagates this change up the tree, resulting
the tree in Figure 2.b.

If a robot detects the failure of another robot (doesn’t
receive "I am alive" message for an amount of time, e.g.),
it will change the robot value part of the binary tree
correspondingly. Take Figure 2.a for example: if the robot
in node 8 fails, the other robots will change the tree as
Figure 2.c

i = node # of robot L ;
finish =FALSE;

while ((i>l) && (!finish))
if(i %2 ~0)

j=i+l; //i is left child, j is its sibling
else

/=i-l; //i is right child.

// Check for" Sj ==0"

if(S./~ 0)

Ratio = (Pl + P2)/2
else

Ratio = (Si / Ri) / (S/ / Rj);

if (Ratio < Pl)
Prl=RandomO; //Pr2 ~[0,1]
if (Prl<P) { //move

robot L moves from sub-tree L to
sub-tree L.
Broadcast the changes to other robots.
}

finish =TRUE;
}

else if(Ratio > P2
finish =TRUE; //keep in same place
else

i =i/2; //go to upper level.
}

Figure 3: Dynamic task allocation algorithm

Dynamic task allocation
Whenever there is any changes in the tree, each robot
reallocates itself task based on the information of the tree.

Suppose robot L is currently doing task i in leaf i.

The number of total active robots in this node is Ri, the

number of total unfinished tasks in this node is S,.

(R/,S/) denotes its node value.

Robot L compares its node value (Ri,Si) with its

sibling’s node value (Rj,Sj).

If Si < Sj
-- --’Pl, the average workload in node /is
Ri Rj

less than that in node j by a factor of at least 1/pl

(Pl < 1, Pl is the load balancing threshold coefficient
which defines the unbalance tolerance in the two sibling
sub-trees), robot L may decide to leave node i and go to
node j, in order to balance the workload between node i

and node j.

If the task balance in these two nodes is comparable
(equal within a factor of Pl, robot L will compare its
parent node with its parent’s sibling node, and determine
in similar fashion whether it can help balance between its
parent sub-tree and its parent’s sibling sub-tree. This
procedure is to balance the workload with its cousin nodes.
Figure 3 shows the details of the algorithm.

Conflict resolving and self adaptation
It is inevitable that two or more robots may simultaneously
choose to help their sibling node. In Figure 4.a, robot in
node 4 and node 5 may move to their parent’s sibling sub-
tree at the same time, and the tree becomes as Figure 4.b.

1 I (2,4)

2 / \3 2 / \3

A(2’2) (0’2) A(0’2) (2’2)

5 6 7 4 5 6 7
(03) (o3) (o,I)(o,l)(13) (i,t)

(a) (b)

Figure 4: Robots oscillate back and forth between two
states.

In the worst case, these two robots may oscillate back
and forth between tasks. In order to minimize likelihood of
such oscillation, we make the decision random: the move
is chosen with probability p. This p defines the
probability that an individual robot makes a decision to
move when it can.

The move probability is determined by the number of
robots that might potentially move to the new location.
Considering the Figure 4 example: the robots in node 2’s
subtree each self-assign a p of 0.5; the probability of both
robots choosing to move is 0.25, while the probability of
exactly one robot moving is .5. There is also the
probability of .25 that neither robot moves, but the

538 FLAIRS-2001

remaining unbalance can be addressed on the next
situation evaluation.

Collapsing subtasks
One potentially bad behavior occurs when there are less
robots in a subtree than tasks: a robot that is the only one
assigned to a task may move to its sibling that has no
robot, leaving its current task unassigned. One solution
would be to prohibit such moves; if there are not enough
robots, some tasks have to wait for other subtasks to finish.

In some cases this is not acceptable: in situations
where subtasks never finish, or in situations where tasks
cannot reasonably left unassigned. As an example of both
of these, consider the task to patrol a region, which can be
partitioned into disjoint regions. A possible solution is to
collapse two subtasks into their parent, and to assign the
robot to the parent task (that is, one robot is assigned to
both subtasks). How the individual robot allocates its
effort between these subtasks may be determined by the
individual problem constraints.

1

2-J -3
4 / \5 6 / \7

I 1I I11 IV

Figure 5

Simulation of task reallocation

The simulationts were carried out on a multiple robot
simulator, which models the physical robots in our lab,
various aspects of which are described in Netter, 1998,
and Wurst & McCartney, 1996. The overall task is
sampling a square area (see McCarmey & Sun, 2000a,
2000b) using eight robots; this is done by partitioning the
area into four regions (I,1I,III, and IV, Figure 5), and

....... i.m..

Figure 6.b When the four robots working at area III & IV
fail, one robot working at area i will go to area Ill, one
robot at area II will go to area IV.

Figure 6.a 8 robots simultaneously work on four areas
with 2 robots at each area.

Figure 6.c When the robot working at area ! fails, robot
working at area II will take charge of the work of sampling
both area I and area Ii.

ROBOTICS 539

Figure 6.d When only one robot is left, this robot’s
working area is the whole area, which allows the
completion of the task.

assigning two robots to each region. Within a region, the
robots sample the area at random and determine area
characteristics; if we set no stopping conditions this is
equivalent to eight robots patrolling a region.

Figure 6.a. through 6.d. illustrate some observed
behaviors when robots fail. The lines in the drawings
indicate the individual robot paths.

Figure 6.a. indicates the initial configuration: each
quadrant has two robots wandering. Given a single robot
failure in any area, nothing reallocates (given a Pl < .5).

However, if two robots fail in the same area, then a robot
will be reallocated from a sibling (if possible). Figure 6.b.
indicates what happened after all of the robots in sectors
Ill and IV failed: robots were reallocated from sectors I
and II.

Figure 6.c. shows the results of a robot failing when
there is only one robot per task: the unassigned sector is
combined with its sibling into a larger sector. The ultimate
failure result is shown in Figure 6.d.; when only one robot
remains it assigns itself to the root, merging the two
remaining subtasks into one.

Conclusions

We have proposed a new approach for designing fault-
tolerant cooperative multiple robot team, by using a binary
tree as a tool to store global information and enable
balance of the workload. This paper demonstrates that
workload balance can be done efficiently and
independently. This approach makes it feasible in a real
world multiple robot system with limited communication

bandwidth. Experimental results show that robots in the
team can respond effectively to robot failures, allowing
successful performance even if only one robot remains.

Much work remains, however. For example, a more
general mode[of probabilistic movement decisions needs
to be developed and analyzed to characterize how well
tasks are balanced, and how long it takes to regain balance
given randomized behavior. We should consider the costs
of reallocating robots, which has multiple components.
One possibility for this would be to consider other tree
structures that better capture the spatial characteristics of
the environment. Furthermore, we need to develop metrics
that enable quantitative measurement of the robustness and
efficiency of this approach.

References

Dias, M. B.; and Stenz, A., 2000. A Free Market Architec-
ture for Distributed Control of a Multirobot System. 6th
International Conference on Intelligent Autonomous
Systems (1AS-6), pp. 115-122.

Font~in , M. S.; and Mataric, M. J, 1998. Territorial
Multi-Robot Task Division. IEEE Transactions on
Robotics and Automation, 14(5).

Kanellakis, P. C. and Shvartsman, A. A, 1997. Fault-
Tolerant Parallel Computation, Kluwer Academic
Publishers.

Mataric, M. J., 1995. Issues and Approaches in the
Design of Collective Autonomous Agents, Robotics and
Autonomous Systems, 16 (2-4), Dec. 1995.

McCartney, R.; and Sun, Haihang, 2000a. Random
Sampling with Mobile Robots. In Proceedings of 31"’
International Symposium on Robotics (1SR 2000),
Montreal, Canada, pp. 89-95.

McCartney, R; and Sun, Haihang, 2000b. Samplin.~
and Estimation by Multiple robots, In Proceedings of 4u’

International Conference on Multiagent Systems, Boston,
MA, pp. 415-416.

Netter, C., 1998. A Hardware/Software Architecture
for A modular multiprocessor robot control system, M.S.
Thesis, Dept. of CSE, University of Connecticut.

Parker, L. E., 1994. Heterogeneous multi-robot
cooperation. Ph.D. Thesis, Dept. of EECS, Mass. Inst. Of
Technology.

Parker, L. E., 1998. ALLIANCE: An Architecture for
Fault Tolerant Multi-Robot Cooperation, IEEE
Transactions on Robotics and Automation, 14 (2).

Wurst, K.; and McCartney, R., 1996. Physical
Implementation of Performing Agents. In Proceedings of
the Ninth Annual Florida Artificial Intelligent Symposium,
pp. 132-136.

540 FLAIRS-2001

