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Abstract

We consider reasoning in an algebra of cyclic time inter-
vals recently known in the literature; the algebra, CZ.A,
is somehow the cyclic time counterpart of Allen’s al-
gebra of linear time intervals, 1277.A. A composition
table has been built for C2¢4; the table can be used
by a path consistency algorithm, such as Alien’s, to
propagate knowledge expressed in the algebra as a con-
straint satisfaction problem (CSP). An important ques-
tion which has not been answered so far is whether path
consistency decides consistency for CZ.A atomic rela-
tions. We provide an example showing that the answer
to the question is unfortunately negative: path consis-
tency does not decide consistency for CZA atomic re-
lations. We will then define an algebra of cyclic time
points, C’P.A.. which, somehow, is for C~-.A what Vi-
lain and Kautz’s linear time point algebra, 127~.A, is for
1277.4. C’PA is a subalgebra of CYCt, an algebra of
ternary relations for cyclic ordering of 2D orientations
also recently known in the literature. The pointisable
part of CZA, i.e., the part one can translate into CPA,
includes all atomic relations; from this, a complete so-
lution search procedure for general CZ,4 CSPs derives,
which uses results known for the algebra CYCt.

Introduction

Reasoning explicitly about time and space is important for
most Artificial Intelligence (AI) applications. We focus 
this work on qualitative constraint-based temporal and spa-
tial reasoning. Since Allen’s (1983) influential work, which
gave birth to an algebra of linear time intervals, /277.4, the
field is gaining more and more importance.

We consider reasoning in an algebra of cyclic time in-
tervals recently known in the literature (Balbiani & Osmani
2000; Hornsby, Egenhofer, & Hayes 1999), CtZ-.4. Allen’s
constraint propagation algorithm (1983) can be used to prop-
agate knowledge expressed in CZ.4 as a CSR thanks to a
converse and a composition tables provided by Balbiani and
Osmani (2000) for the algebra.

The first issue we-will be considering is the question, left
unanswered by previous work (Balbiani & Osmani 2000;
Hornsby, Egenhofer, & Hayes 1999), of whether a path con-
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sistency algorithm, such as Allen’s (1983), can decide con-
sistency when the input is a C2-A CSP of atomic relations.
A positive answer to the question would mean that (1) com-
plete knowledge can be checked for consistency in polyno-
mial time, and (2) a general C~Z.A CSP can be solved us-
ing Ladkin and Reinefeld’s (1992) search procedure, which
would (a) use path consistency in the preprocessing step and
as the filtering method during the search, and (b) use the pol-
icy of instantiating an edge with an atomic relation at each
node of the search tree. We provide an example showing
that the answer to the question is unfortunately negative.

We will then consider the issue of how to get rid of this in-
completeness result; specifically, the issue of finding a com-
plete procedure for the atomic relations of the cyclic time
interval algebra. We will first define an algebra of cyclic
time points, C~.4, which will make explicit the link be-
tween cyclic time intervals and 2D orientations: (1) CT’.4
is for C2-.A (Balbiani & Osmani 2000; Hornsby, Egenhofer,
& Hayes 1999) what Vilain and Kautz’s (1986) linear time
point algebra,/279.4, is for/22-.4 (Allen 1983); and (2) C79~4
is a subalgebra of CYet, an algebra of ternary relations for
cyclic ordering of 2D orientations also recently known in the
literature (Isli & Cohn 2000). The pointisable part of CZ.4,
i.e., the part one can translate into C79.4, includes all atomic
relations; from this, a complete solution search procedure
for general C2-.4 CSPs derives: (1) use path consistency 
the preprocessing step and as the filtering method during the
search, and keep the policy of instantiating an edge with an
atomic relation at each node of the search tree; (2) then,
when the search gets to a leaf of the search tree without de-
tecting any inconsistency (all edges are then labelled with
atomic relations and the CSP made path consistent), trans-
late the scenario of the original CSP into C79A (thus into
CYCt) and solve the resulting (ternary) CSP using a com-
plete solution search procedure known for CYCt CSPs (Isli
& Cohn 2000).

Reasoning about 2D orientations is one of the privileged
domains of QSRI; its applications include robot navigation
and shape description (see Cohn’s (1997) survey article 
QSR techniques and applications). Applications of reason-
ing about cyclic intervals, on the other hand, cover reasoning
about cyclic events and cyclic tasks (see (Hornsby, Egen-

]Qualitative Spatial Reasoning.
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Constraint satisfaction problems

A constraint satisfaction problem (CSP) of order n consists
of the following: (1) a finite set of n variables xl,..., xn;
(2) a set U (called the universe of the problem); and (3) 
of constraints on values from U which may be assigned to
the variables. The problem is solvable if the constraints can
be satisfied by some assignement of values al,..., an ~ U
to the variables xl,...,xn, in which case the sequence
(al .... , a,~) is called a solution. Two problems are equiva-
lent if they have the same set of solutions.

An m-ary constraint is of the form R(xq,..., x~,~), and
asserts that the m-tuple of values assigned to the variables
zi~,. ¯., x~ must lie in the m-ary relation R (an m-ary re-
lation over the universe U is any subset of Urn). An m-ary
CSP is one of which the constraints are m-ary constraints.
We will be considering exclusively binary CSPs and ternary
CSPs.

Operations on binary and ternary relations. For any
two binary relations R and S, R fq S is the intersection of
R and S, RUS is the union of R and S, Ro S is the
composition of R and S, and R~ is the converse of R;
the definitions of these are well-known. For ternary rela-
tions, we have additionally the rotation of a relation R, de-
noted by R’-’, The definitions of the operations for ternary
relations are as follows (see (Isli & Cohn 2000) for 
tails): R(~S = {(a,b,c) : (a,b,c) E Rand(a,b,c) 
s},nus = {(,~,b,c): (~,b,c) e nor (a,b,c) s},no
S = {(a,b,e) : forsomed,(a,b,d) G Rand(a,d,c) 
S},R~ : {(a,b,c) : (a,c,b) e R},R~ = {(a,b,e) 
(c, a, b) ~ R}.

Constraint matrices. A binary CSP P of order n over
a universe U can be associated with the following binary
constraint matrix, denoted MR: (1) initialise all entries
to the universal relation: (Vi, j < n)((MP)# T~);
(2) initialise the diagonal elements to the identity relation:
(Vi < n)((MP)i~ 278); and(3) for all pairs (x~,xj) of
variables on which a constraint (zi, :cj) ~ R is specified:
(MP)~j +- (M~’)~j n R, (MPb~ +- ((MP)~j)".

A ternary CSP P of order n over a universe U can be
associated with the following ternary constraint matrix, de-
noted MP: (1) initialise all entries to the universal relation:
(Yi,j, k < n)((MP)~jk Tit) ; (2) init ialise the diagonal
elements to the identity relation: (Vi < n)((MP)iu ~);
and (3) for all triples (xl, xj,xk) of variables on which a
constraint (xi, x j, Xk) E R is specified:
(MP)~j~ +- (M~’)~ (MP)~ +-- ((MP)~j~)~,
(M-~)j~ +- ((MP)~j~)"-’, (Me)j~ +- ((Me)~d"-’,
(Me)~ +- ((Me)~d~, (MZ)~ +- ((MP)~)~.
We make the assumption that, unless explicitly specified

otherwise, a CSP is given as a constraint matrix.
The constraint graph of a binary CSE The constraint

graph, ~p, of a binary CSP P on n variables x~,... ,z~ is
defined in the standard way: (1) the vertices of ~ are the
variables of P; (2) there exists an adge of ~, from vertex 
to vertex zj if and only if P contains a constraint on the pair
(x¢, xj); and (3) the label on edge (xi, x)) is the relation 

auk.lit tllal, ttl~., k,’,Jlt~tlalllt ffl a~ UII tll~ |Jail ~d,,~ ,kj} 15 lt[ibi~ Jij),

Strong k-consistency, refinement. Let P be a CSP of
order n, V its set of variables and U its universe, An instan-
tiation of P is any n-tuple (a~, a~,..., a,~) of n, represent-
ing an assignment of a value to each variable. A consistent
instantiation is an instantiation (a~, a~,..,, a,~) which is 
solution; i,e., an instantiation satisfying all the constraints.
P is consistent if it has at least one solution; it is inconsis-
tent otherwise, The consistency problem of P is the problem
of verifying whether P is consistent.

Let V’ = {x~,...,xi~} be a subset of V. The sub-
CSP of P generated by W, denoted PLY’, is the CSP with
set of variables V’ and whose constraint matrix is obtained
by projecting the constraint matrix of P onto V’. P is k-
consistent (Freuder I982) if for any subset V’ of V contain-
ing k - 1 variables, and for any variable X ~ V, every
solution to Ply’ can be extended to a solution to P~v’~{x}.
P is strongly k-consistent if it is j-consistent, for all j < k.
1-consistency, 2-consistency and 3-consistency correspond
to node-consistency, arc-consistency and path-consistency,
respectively (Mackworth 1977; Montanari 1974). Strong
n-consistency of P corresponds to what is called global
consistency in (Dechter 1992). Global consistency facili-
tates the important task of searching for a solution, which
can be done, when the property is met, without back-
tracking (Freuder 1982). A refinement of P is a CSP
P’ with the same set of variables and such that: (1)
(Vi,j)((MP’)i~ C (MP)ij), in the case of P being binary;

and (2) (Vi,j, k)((MP’)i~ C_ (M~)~3~)~ in the case of P
being ternary.

The algebra of cyclic time intervals

The algebra of cyclic time intervals (Balbiani & Osmani
2000; Hornsby, Egenhofer, & Hayes 1999), ~Z,A, is the
cyclic time counterpart of Allen’s (1983) well-known alge-
bra of linear time intervals,/22".A. Throughout the rest of
the paper, we make the assumption that the 2D space is as-
sociated with a reference system (O, x, y), and refer to the
circle centred at O and of unit radius as Co.~. In order to
describe ~2:¢1, we can consider any fixed circle as the model
of cyclic time; in particular, we can, and do, consider that
cyclic time is modelled by circle CoA. Cyclic time inter-
vals, or c-intervals for short, are in this way arcs of Co,~. A
c-interval I will be represented as I = (I-, I+), where 
is the starting endpoint of I and I+ is the finishing endpoint
of 1. The two endpoints of a c-interval are supposed distinct,
i.e., a c-interval is durative (not of null length), and cannot
cover the entire cyclic time; furthermore, we assume that a c-
interval is directed in an anticlockwise direction, i.e., cyclic
time is supposed to flow in an anticlockwise direction, Sum-
marised, a c-interval I -- (I-, I+) satisfies the following:
(1) I- ¢ I+; and (2) we move in an anticlockwise direc-
tion when we scan the c-interval from its starting endpoint
to its finishing endpoint; in other words, using the unique
relation, cyc, of the CYCORD theory (Megiddo 1976;
R~Shrig 1994), which we will see shortly, if P is a point
strictly inside I then we have eye(I+, P, I-),

We refer to the set of all c-intervals, or, equivalently, to
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the set of all (anticlockwisely) directed arcs of Co,1, as cI.
Two intervals of linear time can stand in one and only one of
13 possible qualitative configurations; these 13 possible con-
figurations correspond to the 13 atomic relations of Allen’s
(1983) algebra EZ.A. In the case of cyclic time, there are 
possible qualitative configurations of two c-intervals, corre-
sponding to the 16 atomic relations of the cyclic time inter-
val algebra CZ.A (Balbiani & Osmani 2000; Hornsby, Egen-
hofer, & Hayes 1999). These 16 atomic relations are dc (dis-
connected), m (meets), o (overlaps),fi (finished-by), di (con-
tains), s (starts), eq (equals), si (started-by), d (during),f(fin-
ishes), oi (overlapped-by), moi (meets and overlapped-by),
ooi (overlaps and overlapped-by), mi (met-by), mmi (meets
and met-by), omi (overlaps and met-by). If c-ntervals I and
J are such that I overlaps J, we represent the configura-
tion as o(I, J) or as (I, J) E o; generally, if I is related
to J by the atomic relation r, we represent the situation as
r(I, J) or as (I, J) E r. An illustration of the 16 atomic
relations of CZ.A can be found in (Balbiani & Osmani 2000;
Hornsby, Egenhofer, & Hayes 1999). A (general) relation 
CZ.A, say R, is any subset of the set CZ.A-at of all CZ.A

atomic relations: (VI, J)(R(I, J) ¢~ V r(I, The
rER

CZ.A converse table and composition table can be found in
(Balbiani & Osmani 2000).

The algebra of 2D orientations

We refer to the set of 2D orientations as 2DO. Two natural
isomorphisms will be of use in the rest of the paper. In order
to facilitate their defnitions, we refer to the set of all directed
lines containing O as dEo.

Definition 1 The isomorphisms Z1 and Z2 are defined as
follows:

1. Z1 : 2DO --+ Co,1; Zl (z) is the point Pz E Co,x such that
the orientation of the vector OP~ is z.

2. I2 : 2DO --+ dEo; Z2(z) is the line go,z E df-.o of
orientation z.

Definition 2 The angle determined by two directed lines D1
and D2, denoted (D1, D2), is the one corresponding to the
move in an anticlockwise direction from D1 to D2. The an-
gle ( zl , z2 ) determined by orientations zl and z2 is the angle
(go .... gO,z~ ), where gO,z1 = ~-2 (z1) and gO,z2 = 2"2 (z2).

The set 2DO can thus be viewed as the set of points of C0,1
(or of any fixed circle), or as the set of directed lines con-
taining O (or any fixed point).

Isli and Cohn (2000) have defined two algebras of orien-
tations of the 2-dimensional space: one of binary relations,
the other of ternary relations. The binary algebra, CYCb,
contains four atomic relations: e (equal), l (left), o (oppo-
site) and r (right); these are interpreted as follows: (’v’x, 
2DO)(e(y,x) ¢:> (x,y) = 0); (Vx, y E 2DO)(l(y,x) 
(x,y) E (0,~)); (Vx, y E 2DO)(o(y,x) ¢:~ (x,y) = ~’);
(Vx, y E 2DO)(r(y,x) ¢:~ (x,y) E (Tr,27r)). A (general)
relation of CYCb is any subset, say R, of the set CYCb-at
of all CyCb atomic relations: (Vx, y E 2DO)(R(y, 

V r(y,x)). The algebra CYCb is very similar in struc-
rER
ture to Allen’s (Allen 1983) algebra, EZ.4, and, indeed, to
the cyclic time interval algebra (Balbiani & Osmani 2000;
Hornsby, Egenhofer, & Hayes 1999), CZ.A: for each of
the three, Allen’s (1983) well-known propagation algo-
rithm can be used to propagate knowledge expressed in
the algebra as a CSP. Allen’s algorithm decides consis-
tency for EZ.A CSPs of atomic relations (van Beek 1992;
van Beek & Cohen 1990). As shown in (Isli & Cohn 2000),
path consistency does not decide consistency for CyCb CSPs
of atomic relations. Finally, as we show in the present work,
path consistency does not decide consistency for CZ.A CSPs
of atomic relations.

The algebra CYCb cannot express the relation cyc of the
CYCORD theory (Megiddo 1976; R6hrig 1994), known 
be important for robot navigation, one of the privileged ap-
plication domains of QSR (Qualitative Spatial Reasoning):
the relation cyc can be used to represent the panorama of a
robot. Based on CYCb, Isli and Cohn (2000) have built 
algebra of ternary relations, CYCt, for cyclic ordering of 2D
orientations: CYCt has 24 atomic relations, thus 224 (gen-
eral) relations, and the unique relation cyc of the CYCORD
theory (Megiddo 1976; R6hrig 1994) is just one particular
relation of CYCt. The atomic relations of CYCt are written
as blbzb3, where ba, b2, b3 are atomic relations of CYCb, and
such an atomic relation is interpreted as follows: (Vx, y, z 
2DO) (bl b263 (x, y, z) ¢* ba (y, x) A b2 (z, y) A b3 (z, An
illustration of the 24 atomic relations can be found in (Isli
& Cohn 2000). A (general) relation Cyct is anysub-
set, say R, of the set CyCt-at of all 24 atomic relations:
(Vx, y,z E 2DO)(n(x,y,z) ¢~ V r(x,y,z)). TheeyCt

rGR
converse table, rotation table and composition tables can be
found in (Isli & Cohn 2000).

CSPs of c-intervals and CSPs of 2D
orientations

We define a CZ.A CSP as a CSP of which the constraints are
CZJt relations on pairs of the variables; a CyCt CSP as a
CSP of which the constraints are CyCt relations on triples
of the variables. For CZ.A CSPs, the universe is the set cI
of c-intervals; for CYCt CSPs, the universe is the set 2DO
of 2D orientations. We use the term CYC-CSP to refer to a
CSP which is either a CZ.A CSP or a CYC~ CSP.

A CZA.-matrix (resp. CyCt-matrix) of order n is a con-
straint matrix of order n of which the entries are CZ.A (resp.
CYCt) relations. The constraint matrix associated with 
CZ.A CSP (resp. CYCt CSP) is a CZA-matrix (resp. CYCt-
matrix).

A scenario of a CYC-CSP is a refinement P’ such that all
entries of MP’ are atomic relations. A consistent scenario
is a scenario which is consistent. An atomic CyC-CSP is a
CY¢-CSP of which all entries of the constraint matrix are
atomic relations.

SPATIOTEMPORAL REASONING 549



X2

X3

I+ 4-
X4

P PI{X1,X2,X3} PI{XI,X2,X4}

(a) (b) (c)

X2 X2

X1
X 3 X,_~ X3

X4 X4
p, p

(f) (~) (h)

I+ 4+

Figure 1 : Incompleteness of path consistency for CZ.A atomic relations.

Incompleteness of path consistency
Balbiani and Osmani (2000) have built a composition table
for the algebra CZ.A. The table can be used by a constraint
propagation algorithm, such as Allen’s (1983), to propagate
knowledge expressed in CZ.A as a CZ.A CSP. Once such
an algorithm applied to such a CSP, say P, has completed,
the CSP P verifies the following: (1) (Vi, j)(((MP)ij) v --
(MP)ji); and (2) (Vi,j, k)((Mg)ij (MP)ik o ( MP)kj).
In other words, the CSP P is made path consistent. Balbiani
and Osmani (2000) have shown that when the input CSP 
"nice", path consistency decides its consistency. Since it is
not the case that all CZ.A atomic CSPs are nice, one question
not answered by previous work (Balbiani & Osmani 2000;
Hornsby, Egenhofer, & Hayes 1999) is whether path con-
sistency decides consistency for CZA atomic CSPs. For an
Allen-style algebra, a positive answer to such a question is
important for at least two reasons: (1) complete knowledge
can be checked for consistency in polynomial time (in the
case of CZ.A, complete knowledge describes a scene of c-
intervals where we know precisely the CZ.A atomic relation
holding on each pair of the involved c-intervals; complete
knowledge coincides thus with a CZA atomic CSP); and
(2) a general CZA CSP can be solved using a backtracking
search algorithm such as Ladkin and Reinefeld’s (1992). 
show that the answer to the question of whether path consis-
tency decides consistency for CZ,A atomic CSPs is unfortu-
nately negative; this is done in the following example which
provides a CZ.A atomic CSP that is path consistent but in-
consistent.

Example 1 Consider the CZA CSP P given as a constraint
graph in Figure l(a). Figures l(b-e) provide for each 
the four 3-variable sub- CSPs of P, PI {x~ ,x~ ,x, }, i, j, k E
{1, 2, 3, 4}, a consistent instantiation (the instantiation of
variable X.i, i = 1... 4, is given as a c-interval (i-, i+)).
Thus all 3-variable sub-CSPs of P are consistent, which
derives straightforwardly from path consistency of P:

(Vi,j,k)((MP)ij C_ (MP)ik o (MP)kj). Path consistency
of P, on the other hand, can be checked using Balbiani
and Osmani’s (2000) composition table: for the purpose 
the example, the only thing that needs to be known is that
{o, oi } C o o oi. The point now is that none of the consistent
instantiations provided in Figures l (b-e) can be consistently
extended to the missing fourth variable of P. Indeed, if we
consider the CSP P’ of Figure 109, which differs from P in
that the relation on the pair (X4, X2) is not 0 but the (un-
shown) universal relation (P is thus a scenario of P’), 
is consistent and its unique consistent scenario is the one il-
lustrated in Figure l(g), for which a consistent instantiation
is given in Figure l(h): all edges other than (X4, X2) are
labelled as in the CSP P (Figure l(a)); the edge (X4, X2)
is labelled with oi.

From Example 1, we get:

Theorem 1 Path consistency does not decide consistency
for CZ, A atomic CSPs.

As a consequence, we cannot use path consistency to check
complete knowledge for consistency, and we cannot use
Ladkin and Reinefeld’s (1992) search algorithm (which uses
path consistency as the filtering method during the search) to
solve a general CZ.A CSP.

The algebra of cyclic time points
In this section, we present a cyclic time point algebra
(CT~.A), which somehow represents for the cyclic time in-
terval algebra (CZ.A) (Balbiani & Osmani 2000; Hornsby,
Egenhofer, & Hayes 1999) what Vilain and Kautz’s (1986)
linear time point algebra (£T’.A) represents for Allen’s
(1983) linear time interval algebra (EZ.A). The relations
of CT~.A are ternary relations on (triples of) points of cyclic
time: we keep supposing that cyclic time is modelled by
Co,1.

The CT’.A relations. Consider a configuration of two
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B
A A

(a) (b)

Figure 2: Illustration of the 6 CT’.A atomic relations.

points, A and/3, of cyclic time: A and/3 are either equal or
distinct from each other (see Figure 2).

1. Case 1 (A and B equal). This gives rise to two atomic
relations, == and =~, which correspond, respectively, to
the regions marked 0 and 1 in Figure 2(a) (region 0 is 
location common to A and B, and region 1 is the rest of
circle Co,1). Given a third point C of Co,1, we have ==
(A, B, C) if C belongs to region 0, and =¢ (A, B, C) 
C belongs to region 1.

2. Case 2 (A and/3 distinct from each other). This gives rise
to four atomic relations, _¢=1, cbac ¢=2 and ~bc which
correspond, respectively, to the regions marked 2, 3, 4 and
5 in Figure 2(b) (region 2 is the location of A; region 3 
the open arc of Co,1 corresponding to the move in an anti-
clockwise direction from A to B; region 4 is the location
of B; and region 5 is the open arc of Co,1 correspond-
ing to the move in a clockwise direction from A to B).
Given a third point C of Co,1, we have ¢=~ (A, B, C),

cb,~c (A, B, C), ¢:2 (A, B, C) or ¢bc (A,/3, C) 
pending on whether C belongs to region 2, to region 3, to
region 4 or to region 5.

A (general) relation of CP~4, say R, is any subset of the
set CT’A-at = {==, =~, ¢=~, Chat, 5=2, cbc} of all CT~A
atomic relations: (Vx, y,z)(R(x,y,z) ¢* V r(x,y,z)).

rER
Since C’PA is a subalgebra of Isli and Cohn’s (2000) CYCt,
the C~PA converse, rotation and composition tables can be
obtained in a straightforward manner from the CYCt con-
verse, rotation and composition tables (Isli & Cohn 2000).

We define the pointisable part, pCZ.A, of CZA as the set
of all CZ.4 relations one can translate into a conjunction of
CT’¢4 relations on endpoints of the involved intervals. The
enumeration of pCZ.A can be found in the longer version of
this work (Isli 2000).

The solution search procedure

We are now in a position to present a complete solution
search procedure for CZ.A CSPs: (I) use Ladkin and Reine-
feld’s (1992) procedure to search for a path consistent sce-
nario: use of path consistency in the preprocessing step and
as the filtering method during the search, and the policy of
instantiating an edge with an atomic relation at each node
of the search tree; (2) when the search reaches a leaf with-
out detecting any inconsistency (we are then in the presence

of a path consistent scenario), translate the scenario of the
original CSP into C79.A (thus into CYCt) and use Isli and
Cohn’s (2000) complete search procedure to solve the re-
sulting CYCt CSR

Summary
We have considered reasoning in an algebra of cyclic time
intervals, CZ.A, recently known in the literature (Balbiani
& Osmani 2000; Hornsby, Egenhofer, & Hayes 1999). We
have shown that path consistency does not decide consis-
tency for the CZ.A subset consisting only of the atomic re-
lations. This means that we cannot use path consistency to
check consistency of complete knowledge expressed in CZ.A
as a CSP, and we cannot use the well-known Ladkin and
Reinefeld’s (1992) search procedure to solve a general CZ.A
CSP: completeness of Ladkin and Reinefeld’s procedure is
lost because of the incompleteness of path consistency for
CZA atomic relations (Theorem 1). We have then shown
how to get a complete search procedure for CZ.A CSPs by
combining Ladkin and Reinefeld’s (1992) search procedure
with Isli and Cohn’s (2000) complete search procedure for
ternary CSPs expressed in another algebra, Cyct, also re-
cently known in the literature: (1) use Ladkin and Reine-
feld’s procedure (Ladkin & Reinefeld 1992) with its policy
of using path consistency in the preprocessing step and as
the filtering method during the search, and of instantiating
an edge with an atomic relation at each node of the search
tree; and (2) when the search reaches a leaf without detecting
any inconsistency (we are then in the presence of a path con-
sistent scenario), translate the scenario of the original CSP
into the cyclic time point algebra CT’J[, also defined in this
work, and is a subalgebra of the algebra CYCt of 2D orien-
tations (Isli & Cohn 2000), and use Isli and Cohn’s complete
search procedure (Isli & Cohn 2000) to solve the resulting
CT’A CSP.
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