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Abstract
In recent times, several extensions of data mining methods
and techniques have been explored aiming at dealing with
advanced databases. Many promising applications of
inductive logic programming (ILP) to knowledge discovery
in databases have also emerged in order to benefit from
semantics and inference rules of first-order logic. In this
paper, an ILP framework for frequent pattern discovery in
spatial data is presented. The pattern discovery algorithm
operates on first-order logic descriptions computed by an
initial step of feature extraction from a spatial database. The
algorithm benefits of the available background knowledge
on the spatial domain and systematically explores the
hierarchical structure of task-relevant geographic layers.
Preliminary results have been obtained by running the
algorithm SPADA on spatial data from an Italian province.

1 Introduction

In recent times, several extensions of data mining methods
and techniques have been explored to deal with advanced
databases such as spatial databases, temporal databases,
object-oriented databases and multimedia databases.
Progress in spatial databases, such as spatial data structures
(Gating 1994), spatial reasoning (Egenhofer 1991), 
computational geometry (Preparata and Shames, 1985),
etc., paved the way for the study of knowledge discovery in
spatial databases which aims at the extraction of implicit
knowledge, spatial relations, or other patterns not
explicitly stored in spatial databases (Koperski, Adhikary
and Hen 1996). Generally speaking, a spatial pattern is a
pattern showing the interaction of two or more spatial
objects or space-depending attributes according to a
particular spacing or set of arrangements (DeMers 2000).
For instance, cities across nations are often clustered near
lakes, oceans and streams. Actually such an arrangement
reveals a spatial association, meaning that one spatial
pattern is totally or partially related to some other spatial
pattern. Furthermore, questions can be raised about the
causes not only of single distributions but also of spatially
correlated distributions of phenomena. For instance, we
may explain that the tendency of cities to cluster near water
bodies is driven by the need for sources of drinking water
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and recreation and for commerce facilities. Thus, once the
language of geography has been acquired, the major tasks
among geographers are to observe the relevant spatial
features, to identify spatial patterns, to describe and
quantify spatial associations and to elicit explanations for
pattern interactions. With the advent of geographical
information systems (GIS), advanced functionalities 
spatial data mining such as frequent pattern discovery are
of great interest to GIS users.

The design of algorithms for frequent pattern discovery
has turned out to be a popular topic in data mining. This is
not surprising given the relevance of data and patterns in
the definition of data mining as a core step in the KDD
process (Fayyad, Piatetsky-Shapiro, Smyth 1996). The
blueprint for most algorithms proposed in the literature is
the levelwise method by Mannila and Toivonen (1997),
which is based on a breadth-first search in the lattice
spanned by a generality order between patterns. The space
is searched one level at a time, starting from the most
general patterns and iterating between candidate
generation and candidate evaluation phases. Frequent
patterns are commonly not considered useful for
presentation to the user as such. They can be efficiently
post-processed into rules that exceed given threshold
values. In the case of association rules the threshold values
of support and confidence offer a natural way of pruning
weak and rare rules (Agrawal and Srikant 1994).

In this paper, we propose a logical framework for
frequent pattern discovery in spatial data. The main novelty
with respect to previous contributions to spatial data
mining (Koperski and Han 1995) is the expressive power
of the language chosen for representing both data and
patterns. Indeed, the research to date in the field has
generally taken the path of merely embedding spatial
constructs on the top of well-established statistical
techniques in order to accommodate the space dimension
(Roddick and Spiliopoulu 1999). We claim the application
of Inductive Logic Programming (ILP) methods and
techniques (Lavrac and Dzeroski 1994) to knowledge
discovery in spatial databases in order to benefit from
semantics and inference rules of first-order logic.

The paper is organized as follows. Section 2 will
introduce the task of mining spatial association rules
viewed as context for frequent pattern discovery in spatial
data. In Section 3, representation, problem and algorithmic
issues in the ILP approach to the task at hand will be
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discussed and illustrated by means of a sample task of
frequent pattern discovery in data of an Italian province.
Conclusions and future work are given in Section 4.

2 The mining task

The discovery of spatial association rules is a descriptive
mining task aiming at the detection of associations between
reference objects and some task-relevant objects, the
former being the main subject of the description while the
latter being spatial objects that are relevant for the task at
hand and spatially related to the former. The discovery
process may be activated by a user query expressed in a
database mining query language such as

MINE ASSOCIATIONS DESCRIBING "large_towns’
WITH RESPECT TO topology(T.geo, R.geo), R.name,
topology(T.geo, W.geo), W.name, topology(T.geo, B.geo),
B.admin_region2
FROM town T, road R, water W, boundary B
WHERE T.type=*large" AND distance(T.geo, R.geo) < "5 km’

AND distance(T.geo, W.geo) < "5 kin"
AND distance(T.geo, B.geo) < "30 km"

where large towns play the role of reference objects while
roads, water bodies and boundaries play the role of
geographic layers from which task-relevant objects are
taken. Query processing involves massive spatial
computation to extract spatial relations from the underlying
spatial database. Some kind of taxonomic knowledge on
task-relevant geographic layers may also be taken into
account to get descriptions at different concept levels
(multiple-level association rules). As usual in the problem
setting of association rule mining, we search for
associations with large support and high confidence (strong
rules).

Formally, the problem can be stated as follows:

Given
¯ a spatial database SDB,
¯ a set of reference objects S,
¯ some task-relevant geographic layers Rk, I<k<m,

together with spatial hierarchies defined on them,
¯ a couple of thresholds for each level 1 in the spatial

hierarchies, minsup[l] and minconj[ l]
Find strong multiple-level spatial association rules.

The most representative work in the literature for the
mining task of interest is the progressive-refinement
method by Koperski and Han (1995). It relies on the so-
called attribute-value approach (AV) to data mining,
namely it can deal only with data represented by attribute-
value couples. It is noteworthy that the AV approach to
spatial data mining suffers from the following limits:
¯ Patterns are represented by languages with the

expressive power of propositional logic
¯ Domain knowledge is represented in a poor form
¯ Mining is restricted to a single relation/data file

The ILP approach promises to overcome these limits. To
the best of our knowledge, the only contribution from ILP
to spatial data mining is the system GwiM (Popelinski
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1998). Anyway, no insight in the algorithmic issues has
been provided. A proposal of logical framework inspired to
the work on mining association rules from multiple
relations by Dehaspe and De Raedt (1997) is sketched 
the following Section.

3 The logical framework

The basic idea in our proposal of logical framework is that
a spatial database boils down to a deductive relational
database (DDB) once the spatial relationships between
reference objects and task-relevant objects have been
extracted. Indeed, DDBs define relations both
extensionally as ground facts (extensional database, EDB)
and intensionally as rules (intensional database, IDB).
Thus, the expressive power of first-order logic in databases
allows to specify background knowledge (BK) such 
spatial hierarchies, spatial constraints and rules for spatial
qualitative reasoning.

3.1 Representation issues
Let L={al, a2 ..... a~} a set of Datalog atoms of the form
p(h,..,t,), where each term tj may be either a variable or a
constant (Ceri, Gottlob and Tanca 1989). A conjunction 
atoms is named atomset. In our framework patterns are
represented as atomsets. Since the ILP approach operates
in the context of a DDB, we denote the DDB at hand D(S)
to mean that it is obtained by adding spatial relations
extracted from SDB as concerns the set of reference objects
S to the previously supplied BK. The tuples in D(S) can 
grouped into distinct subsets: Each group, uniquely
identified by the corresponding reference object sES, is
called spatial observation and denoted O[s]. Actually, a
spatial observation is multi-key, namely it contains not only
spatial relations between the reference object seS and some
task-relevant object rjeRt but also spatial relations between
rj and some s’ES. Thus, a spatial observation is given by

O[s] = O[sls] u{O[r~[s] [ 3 tuple 0~D(S): 0(s, r~)} 
where O[r~ls] is the observation with key rj given s.

Example I Suppose the mining task is to discover
associations relating large towns (S) with water bodies (R=),
roads (R2) and province boundaries (R3) in the Province 
Bari, Italy. We are also given a BK including the spatial
hierarchies of interest (see Figure 1 for a graphical
representation of the layer of roads).
spatial_hierarchy(town, 1, null, [town]).
spatial_hierarchy(town, 2, town, [large_town,

medium_size_town, small_town]).
spatial_hierarchy(town, 3, large_town, [bari, altamura, andria,

barletta, trani, bitonto, molfetta, gravina, monopoli, corato,
gioia_del_colle]).

spatial_hierarchy(town, 3, medium_size_town, [modugno,
palo_del_colle, terlizzi, ruvo, noicattaro, adelfia, grumo,
giovinazzo, mola_di_bari]).

spatial_hierarchy(town, 3, small_town, Loalese, bitetto, binetto,
toritto, valenzano, cassano, mariotto, palombaio]).



confidence at level I in the spatial hierarchies. An atomset
C is large (or frequent) at level l if a(C)>_minsup[l] and all
ancestors of C with respect to the taxonomies are large at
their corresponding levels. The confidence of a spatial
association rule A--}B is high at level l if
q~(B[A)>_minconj[l]. spatial as sociation rule A--}B is
strong at level ! if the atomset AuB is large and the
confidence is high at level L

3.2 Problem issues
Within the ILP approach, the problem of mining spatial
association rules can be decomposed into four sub-
problems:
I) Extract spatial relationships between reference objects

and task-relevant objects
2) Represent each extracted relationship as atom
3) Find large (or frequent) atomsets
4) Generate highly-confident spatial association rules

Both the problem statement and the problem solution are
quite complicated since the spatial domain is inherently
complex. The preliminary feature extraction step may be
performed by the two-step spatial computation proposed by
Koperski and Hart (1995). Such a pre-processing 
necessary for saving computational effort both in time (on-
line computation of spatial relations) and in space
(materialization of spatial relations). The relations returned
by the spatial computation are represented as facts to be
inserted into D(S). A solution to the third sub-problem
(frequent pattern discovery) is illustrated in the following
Section. The sub-problem of generating highly-confident
rules from frequent patterns is solved as usual in the
problem setting of association rule mining (Agrawal and
Srikant 1994).

3.3 Algorithmic issues
The algorithm SPADA (Spatial Pattern Discovery
Algorithm) being proposed for frequent pattern discovery
in spatial data implements the aforementioned levelwise
method (see Figure 2). It can be considered as an extension
of WARMR (Dehaspe and De Raedt 1997) to explore
systematically the hierarchical structure of task-relevant
geographic layers. The pattern space is structured
according to 0-subsumption (Plotkin 1970). The candidate
generation phase consists of a refinement step followed by
a pruning step. The former applies a specialization operator
under 0-subsumption to patterns previously found frequent
by preserving the property of linkedness (Helft 1987). The
latter involves verifying that candidate patterns do not 0-
subsume any infrequent pattern. The candidate evaluation
phase is performed by comparing the support of the
candidate pattern with the minimum support threshold set
for the level being explored. If the pattern turns out not to
be a large one, it is rejected. As for the support count, the
candidate is transformed into an existential query whose
answer set supplies all the substitutions that make the
pattern true in D(S). In particular, the number of different
bindings for the variable which is the placeholder for
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reference objects is assumed as absolute frequency of the
pattern in D(S). It is noteworthy that the property 
linkedness guarantees the equivalence between the absolute
frequency of a pattern and the number of observations
covered by the pattern. The support is obtained as relative
frequency of the pattern in D(S).

Cycle on the level (l_>l) of the spatial hierarchies
Find large l-atomsets at level l
Cycle on the size (k> 1) of the atomsets

Generate candidate k-atomsets at level l
from large (k-1)-atomsets

Generate large k-atomsets at level l
from candidate k-atomse~s

until no more large atomsets are found.

Figure 2. The algorithm SPADA

A rough preliminary remark on the computational
complexity of SPADA leads to the notorious trade-off
between expressivity and efficiency in first-order
representations. Indeed, it is well known that a simple
matching of two expressions with commutative and
associative operators (such as the logical OR of atoms in 
clause) is NP-complete (Garey and Johnson 1979).
Therefore, any known algorithm that checks the coverage
of an atomset or equivalently that evaluates a query with
respect to a relational database has an exponential
complexity. Nevertheless, it has been also proved that
queries with up to k atoms, where each atom contains at
most j terms, can be evaluated in polynomial time (De
Raedt and Dzeroski 1994). Whether these constraints are
applicable to the domain of spatial data analysis is still
under investigation.

Example 3 The algorithm SPADA has been run on the
mining task in Example 1 with support thresholds
minsup[l]=70%, minsup[2]=68%, and minsup[3]=50%.
Some interesting patterns have been discovered. For
instance, at level l=2 in the spatial hierarchies, the
following candidate C:
is_a(X, large_town), intersects(X,R), is_a(R, main_trunk_road),

intersects(Y, R), diff(Y,X), is_a(Y, large_town)
has been generated after k=-5 refinement steps and
evaluated with respect to D(S) by means of the query:
?- is_a(X, large_town), intersects(X,R), is_a(R, main_trunk_road),
intersects(Y, R), diff(Y,X), is_a(Y, large_town)

The answer set includes two substitutions, 9t={X~
barletta, R\ss16, Y~bari} and 02={X~barletta, Rkss16bis,
Y~bari}. Therefore, the spatial observation O[barletta], shown
in Example 2, is covered. However, while computing the
support, the two substitutions count as only one because
both refer to the same large town. Since ten of eleven
spatial observations are covered and all the ancestor
patterns are large at their level (1<2), the pattern is a large
one at level/--2 with support 91%. For the sake of clarity,
the following pattern discovered after k=-5 refinement steps
at level l=l
is_a(X, large_town), intersects(X,R), is_a(R, 

intersects(Y, R), diff(Y,X), is_a(Y, large_town)



spatial_hierarchy(road, 1, null, [road]).
spatial_hierarchy(road, 2, road, [motorway, mainjrunk_road,

regional_road]).
spatial_hierarchy(road, 3, moterway, [a14]).
spatial_hierarchy(road, 3, main_trunk_road, [ss16, ss16bis, ss96,

ss98, ss99, ssl00]).
spatial_hierarchy(road, 3, regional_road, [r16, r93, r97, r170,

r171, r172, r271, r378]).
spatial_hierarchy(water, 1, null, [water]).
spatial_hierarchy(water, 2, water, [sea, river]).
spatial_hierarchy(water, 3, sea, [adriatico]).
spatial_hierarchy(water, 3, river, [ofanto, lacone]).
spatial_hierarchy(boundary, 1, null, [boundary]).
spatial_hierarchy(boundary, 2, boundary, [fg_boundary,

ta_boundary, br_boundary, mr_boundary, pz_boundary]).
is_a(X, Y) :- spatial_hierarchy(_, _, Y, Nodes),

member(X, Nodes).
is_a(X, Y) :- spatial_hierarchy(Root, _, Father, Nodes),

member(X, Nodes), is_a(Father, 
Here, the is-a relationship is overloaded, namely it may

stand for kind-of as well as for instance_of depending on
the context. Spatial relations between objects in S and
objects in any of R~, R2 and R3, are extracted by means of
spatial computation and transformed into facts of kind
<spatial relation>(RefObj, TaskRelevantObj) to be added 
D(S). Spatial observations are portions of D(S), 
concerning a reference object. In our case, there are eleven
distinct spatial observations, one for each large town. For
instance, O[barletta] is given by the union of the following
sets of ground facts

O[barlatta I barletta]
is_a(barletta, large_town).
adjacent_to(barletta, adriatico).
intersects(badetta, a14).
intersects(barletta, ss16).
intersects(badetta, ss16bis).
intersects(badetta, r170).
intersects(barletta, r193).
close_to(barletta, fg_boundary).
,,.

O[adriatico I badetta]
is_a(adriatico, water).
adjacent_to(bari, adriatico).
adjacent_to(trani, addatico).
adjacent_to(molfetta, addatico).
adjacent_to(monopoli,
adriatico).

Clia141 barletta]
is_a(a14, road).
intersects(bari, a14).
intersects(trani, a14).
intersects(bitonto, a14).
intersects(gioia_del_colle, a14).
intersects(molfetta, a14).

O[ssl6 1 barletta]
is_a(ss16, road).
intersects(bad, ss16).
intersects(trani, ss16).
intersects(monopoli, ss16).
intersects(molfetta, ss16).

O[sslSbis I badetta]
is_a(ss16bis, road).
intersects(bad, ss16bis).
intersects(trani, ss16bis).
intersects(molfetta, ss16bis).

Oir170 1 barletta]
is_a(r170, road).
intersects(andria, r170).

0[r193 1 badetta]
is_a(r193, road).

O[fg_boundary I barletta]
is_a(fg_boundary, boundary).
adjacent_to(l~ani,
fg_boundary).

By definition, the observation encompasses not only spatial
relations between the reference object badetta¢S and task-
relevant objects in R~ (adriatico, etc.), R2 (a14, etc.), 
(fg_boundary, etc.), but also spatial relations between each
of these task-relevant objects and some other s’ES such as
adjacent_to(bari, adriatico), where bariES. 

To the atomset C we assign an existentially quantified
conjunctive formula eqc(C).
Definition (coverage) An atomset C covers an observation
O[s] if eqc(C) is true in O[s] uBK.
Example 2 Let us suppose that BK includes the rule

diff(X,Y) :- X \= 
where ~= is the ISO Prolog Standard built-in predicate for
non-unifiability of two variables. The pattern
C- is_a(X, large_town), intersects(X,Y), intersects(Z,Y),

diff(X, Z), is_a(Y, road)
covers the spatial observation O[barletta] shown in Example
1 because the corresponding existentially quantified
conjunctive formula
eqc(C) -- :] is_a(X, large_town)^intersects(X,Y)^

intersects(Z,Y)^diff(X, Z)^is_a(Y, 
is satisfied by O[barletta] uBK. []

road

main_lTunk_road motorway regional_road

ss96~’:ss16~ a14 ~
,E ..........................................

~~7~
ss16bis r93

Figure 1. A spatial hierarchy for the layer of roads

Definition Let O be the set of spatial observations in D(S)
and Oc denote the subset of O containing the spatial
observations covered by the atomset C. The support of C is
defined as

~(c) = lOft/IOl
Definition A spatial association rule in D(S) is 
implication of the form

A-->B (s%, c%),
where Ac_L, BcL, AnB=-O, and at least one atom in AuB
represents a spatial relationship. The percentages s% and
c% are respectively called the support and the confidence
of the rule, meaning that s% of spatial observations in D(S)
are covered by AuB and c% of spatial observations in D(S)
that are covered by A are also covered by AuB.

Definition The support and the confidence of a spatial
association rule A-->B are given by s = tr(AuB) and c =
~(Bla) = o(AuB) / tr(X).

The frequency of a pattern depends on the level
currently explored in the hierarchical structure of task-
relevant geographic layers.
Definition Let minsup[l] and minconj[l] be two thresholds
setting respectively the minimum support and the minimum
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is one of the large ancestors for the pattern C.
Such a way of taking the taxonomies into account during

the pattern discovery process implements what we referred
to as the systematic exploration of the hierarchical structure
of task-relevant geographic layers. Furthermore, it is
noteworthy that the use of variables and the addition of the
atom diff(Y,Z) derived from the BK allow the algorithm 
distinguish between multiple instances of the same class of
spatial objects (e.g. the class large town).

During the transformation of frequent patterns into rules,
the following strong rule (91% support, 91% confidence)

is_a(X, large_town), is_a(Y,large_town), diff(Y,X)
-> intersects(X,R); is_a(R,main_trunk_road), intersects(Y,R)

has been derived from the pattern C. It states that "Given
that 91% of large towns intersect a main trunk road which
in turn is intersected by another large town distinct from
the previous one, 91% of pairs of distinct large towns are
crossed by the same main trunk roaa~’. []

4 Conclusions and future work

A logical framework for pattern discovery in spatial data
has been sketched. The sample task shows that the
expressive power of first-order logic enables us to tackle
applications that cannot be handled by the AV approach.
The work being presented in this paper is in partial
fulfillment of the research objectives set by the project
SPIN! (Spatial Mining for Data of Public Interest) funded
by the European Union.

For the future, we plan to optimize and test the
algorithm SPADA on real-world data sets. Besides the
issues of efficiency and scalability that are of great interest
to data mining community, the issue of robustness (noise
handling, for instance) will be faced. It is noteworthy that
very few works tackled this problem in data mining,
generally because huge amounts of data to be mined are
available. In this case, the presence of low levels of noise
can be easily kept under control by tuning the two main
parameters of the association rule mining algorithms,
namely support and confidence. In spatial data mining,
robustness has another facet. Indeed, while the discovery of
association rules in transactions requires little
transformation of stored data, the task of mining spatial
association rules relies on a more complex data pre-
processing which is error-prone. For instance, the
generation of the predicates close_to or adjacent_to is based
on the user-defined semantics of the closeness and
adjacency relations, which should necessarily be
approximated. Further work on the automated extraction of
symbolic descriptions from vectorised maps is expected to
give some hints on this issue.
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