
Modeling of multi-dimensional relational constraints between point
objects

¯ Debasis Mitra (1), Gerard Ligozat (2), and Lail Hossain

(l) Department of Computer Science
Jackson State University, P.O. Box 18839
Jackson, MS 39217, USA
E-mail. dmitra@ccaix.isums.edu, Ishossain@.yahoo.com

(2) LIMSI, Universite Paris-Sud
Bldg. 508, P.O. Box 133
F-91403 ORSAY Cedex, France
E-mail. lieozat@limsi, fr

Abstract

Most of the approaches in the spatio-temporal
reasoning area use a relational algebraic
framework where the domains of variables are
typically not given an explicit considerations (for
the purlyo~ of constraint processing) ill favor of
tile relational constraints between those variables.
l lowever, some recent works have shown tile
deficiency of those apircoaches in finding a
globally consistent solution. For exmnple, in
cyclic time-interval problems even path-consistent
singleton models are not globally consistent. In
this article, we have developed a domain-theoretic
approach, wlfich is routinely deployed in the
traditional discrete-domain constraint satisfaction
problems (CSP), for point-based relations in
multi-dimensional Cartesian-space. Our
algoritluns are also develoix~d for the insertion
problem (insert an object in a set of existing ones),
which is at the core of any incremental approach
for checking global consistolcy (Mitra, 2001). The
results might be useful in a real-life modeling
activities in any relevant area (e.g., visualization
or data-medeling).

Key Words: Constraint Satisfaction Problem (CSP),
Spatial Reasoning, Cardinal Algebra, Continuous-domain
CSP.

1. Introduction

A spatio-tempoml constraint satisfaction problem (STCSP)
is a binary CSP where the domain of every variable is
mapped onto the same space or tilne-relaled continuous -
and often dense and infinite - domain. The constraints here
are disjtmctive subsets of a predefined e.,dtaustive set of
relational constraints that are possible between any two
points in the respective domain (e.g., for l-dimensional
points the relations are {<, >, =}). A typical discrete-domain
binary CSP is solved by instantiating the variables for their
respective values, which typically come from some discrete
and finite domains. However, STCSP problems are
typically handled within the relational algebraic framework
(see Chittaro and Montanari. 2000). The fundamental
operation in this framework is a pre-defined composition

operation between any pair of relations (e.g., compose
("<", "<") = "<", for tlu’ee points).

While finding some approximate consistent (say,
3-consistent, between every triplet of variables) solution is
easy (oRen polynomial) in a relational algebraic
framework, extracting a global solution is quite tricky
there. So far in the literature it was presmned tlmt if we can
extract a 3-consistent singleton model (single relation
between each pair of variables), then tlutt indicates the
presence of a globally consistent solution. From such a
singleton model one could then extract an instantiation for
each variable satisfying the constraints. However, recent
works in the area of cyclic time (Balbiani and Osmani,
2000) shows tlmt tltis situation is not universally true. In
cyclic-time (where the time-line wraps onto itself) time-
intervals may have a 3-.consistent singleton model tlmt is
not globally consistent. This is the prinu~’y motivation
behind developing domain-theoretic algorithms for STCSP
as is done in the traditional discrete-domain CSP. This
article makes a first attempt in such a direction - for the
domain of points in a real space of one and two dimensions
(extendible to any arbitrary number of dimensions, which
is touched upon in the article). We have not addressed the
domain of cyclic time here. Our work is also likely to have
an impact on the modeling areas, e.g.. in graphics and
visualization, GIS, and data modeling in multi-dimensional
databases, by providing a disjunctive information handling
capability.

We start with the ID ease for establislung the
background. The nex’l section deals with the 2D case,
followed by some discussion on the higher-dimensional
cases. Some relevant discussions are provided next. The
article concludes with a separate section.

2. ID-case

2.1 Language

This is a case of point algebra (Vilain and Kautz,
1986), we are discussing it here primarily for the sake of
creating a background for the lugher dimensional cases.
Some new results are also reported here. The language is
designed to express constraints between a node A, with

562 FLAIRS-2001 From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved.

some other nodes, say, At, A: Aa-i. Tile set is {(Aa Ri Ai)

I 1<= i <= n-l}, where any relation Ki is a non-null
disjunctive subset of the set of qualitative relations between a
pair of points {<, >, =}. Thus. Ri is an clement of the set
{"<", "<=", ">". ">=", "=", "<>", "<=>"}. The first four
relations indicate in which direction, left or right, file new
point. Aa should lie with respect to the point A.. The equality
is a strict relation making Aa coincide with Ai, and thus, be
ignored, subject to pointers between file two equivalent
points (say, for the purpose answering any query about An).
The last two relations cause An to ignore Ai in the process of
finding its position in the sequence. This issue will be further
explained latcr.

A set of valid regions for A., would be expressed
as: {(xjL, xj2) [l<=j<= in}. m being the total number of valid
regions, with m <= 2n-l, since the total number of available
regions is 2(n-l)+l = 2n-l. Typically for any region: xjt<
xj.~. However, it is possible to lmve a region with xjl = xj2,
which means that the region is a point only. Some examples
(1 and 2) are provided later.
Lemma 1: Valid regions for a point (on a real line, under

disjunctivc constraints with respect to a sequence of points
existing on the line) are contiguous, thus forming a convex
interval (we call tiffs interval the box), i.e:, if it exists.
However, some of the existing points within tile box may be
excluded themselves as valid regions.
Inductivc Proof: Base¯ When S --- {At }, only one point is in
it, the lemma is trivially true. The box is [-infinity, All, [A1,
+infinity], [At, A1], or [-infinity, +infinity]. Hypothesis:
Suppose the lemma is true without the point Aa.~, i.e., for S
= {At, A_, Aa-2}, and the box (convex interval, with
contiguous valid regions subject to some excluded point
boundaries between thcm) for An is [Ak, Aj], for
l<=k<=j<=Cn-2). Steps. Then thc next point Aa.tcould be at
one of the five rcgions with respect to this interval (when Ak
=/= Aj) ̄ (1) left of Aa, (2) on Ak, (3) within (Ak, Aj),
Aj, and (5) right of Aj. For cases (1) or (2), if (A, ">="
or (A, ">" A..t), then the box for An remains file same.
Altermltively, if the relation is (An "<=" An-t) or (An "<"
~) for these two cases, then the box will vanish - an
inconsistent relation. Symmetrically opposite situations
exist for cases (4) and (5). For the case (3), if the relation
(An "<=" A~t4) or (A,a "<" A,,.t). then the box shrinks to [Ak,
A,.t]. or if the relations is (An ">=" A.,.l) or (A, ">" An-t)
then the box slu’inks to [A._t. Aj].

The last situation here is for (An "=" Aa-t) whence
the box shrinks to [Aa-t, An_t] for case (3) and to Null
(inconsistency) for other cases.

Note that the box remains unaffected for (An "<>"
A,_)) or (A, "<=>" Aa-D. However, the set of valid regions
gets split into more contiguous regions, subject to the
exclusion of the point Aa.~. depending on if the relation is
"<>" (A,,.~ is excluded from the box) or "<->"

A last scenario is when the box is a point [Ak. Ak]
to starl with. Then there are Iiu’ee regions for Aa.~: (I) left
Ak. (2) on Ak. or (3) right of Ak. It is trivial to see tlmt An

that case either will coincide with At, for (A,, "=" A,.0 with
case (2), for CAn ">" or ">=" Aa-i) with case (1), for
"<" or "<=" Aa-0 with case (3), or be inconsistent. End of
proof for Lemma 1.

Lemma 2: There is no consistent region if the box does not
exist (in other words the box is Null).
Proof: Form Lelmna 1 it is clear that all the valid regions

must lie within the box. Hence, if the box is Null, then
there is no valid region or consistent solution for the
problem. End proof.

Theorem 1: A set of valid regions could be found for a
new point Aa having point-to-point disjunctive relations
with a sequence of points {A~, A~ Aa.~ }. as expressed
in our language, if and only if a valid convex interval on
the sequence (defined as the box before) exists for Aa.
Proof: Trivial. Lemma 1 proves the "it" part, and the

Lemma 2 proves the "only-if" part. Endproof
The Theorem 1 is used to preprocess the

constraints in finding the convex interval - the box. LeImna
1 provides additional power in extracting the valid regions
within this box. The valid regions are created by splitting
the box with respect to those points having "<>" and <=>"
relations with respect to ti~e new point Aa.

2.2 Algorithm

Input: (1) A non-empty sequence of points =

{at, a2 a,,}. with n >= 1. (2) A new point a,,=,,, with
relations set {(ai ri an=.): 1 <= i <= n}
Output: A valid region set for a ValidRegSet = {(a~t,
ai2): <= k<=il <= i2 <= j <= n}.for il a nd i2 with in
some bound between k and j (following Lemma 1). OR.
ValidRegSet = Null. indicating inconsistency.

An example ValidRegSet = {(a.~. a.0, (a4.a,0, (a4.
as), (as, a6), (a6, ae)}, a region from a.~ (k=3) tlu’ough
(j=6) excluding points a3, and as. Mathematically a correct
notation for the second region above should have been [a,
a4], a closed interval, but we will ignore bracket in favor of
parenthesis in our syntax in the ValidRegSet. for the s=d~e
of uniformity.

We call the interval [ak. aj] as the box.
Example 1:
Input: S = {3.7, 9, 11, 15. 18. 22}. R = {(An >= 3). (An
<=> 7), (An >= 9), (An ~ I 1), (Aa < 15). (Aa ~ 18),
<= 22) }.
Output: ValidRegSet = {(9, 9), (9, IlL (11, 15)}. box,
which is not an output, here is [9, ! 5].
Example 2:

’Input: S = {3.7. 9. 11, 15, 18, 22}. R = {(An >= 3). (Aa
<=> 7), (Aa >= 9), (An o 11). (A,~ < 15). (A, >
<= 22)}.

SPATIOTEMPORAL REASONING S63

Output: ValidRegSet = Null. The relation (A, > 18) in tile
input spoilt any attempt to find a consistent box (see line 9
of tile Algorithm 1D bclow).

Algorithm ID:
(1) validRegSet = Null,
(2)//FIND THE BOX FIRST: PRE-PROCESSING
(3) 1 = - infinity, r = + infinity;
//[!, r] is tile box, initialized with the two extremes
(4) state = "findLefl";
//the state variable to keep track of the status
(5)for each ai in the sequence S
(6) if (ai "<=" a,.w) or (ai °’<" a..w)
(7) if (state == "findLeft")
(8) i =

else
(9) return validRegSet,
//Null, INCONSITENCY,
(10) if (ai "=" a~,w) then
(II) I = ai; r = ai;
(12) state = "foundEq";
(13) if (ai ">=" a,,~w) or (ai ">=" a,,,w)
(14) if (state == "foundEq") then

{ } //ignore
else

(15) r = a,;
(i 6 state = "fou ndRight":
(17) if (a, ".c>" a..,J or (a "<=>" a,,.w) then

{ }; //ignore
end for;

(18) if (1 == r) then
//case of cquality, and consistent

(19) validRegSet = {(I. I)}:
(20) return validRegScr

//FIND VALID REGIONS NOW
(21) if (a "<=" 1)

validRegSct = {(I, 1). (1. nextPoint (ak))};
(22) for each ap starting from nextPoint(aO

flu:ough previousPoint(aj)
//this loop may never execute when r is next point to I in S
(23) if (a~, "<=>" ap) then

validRcgSct = validRcgSct U {(ap, ap)};
clsc { }:
//ignore as, as a region when a,,w "=/=" ap

(24) validRcgSct=validRcgSctU {(ap, ncxlPoint (ap))};
end for:

(25) if (a,ow ">=" r)

validRegSct = validRcgSct U {(r, r)};
(26) return validRegSct;
End Algorithm.

In the first part of the algorithm the for-loop runs
ovcr all the nodes, leading to an O(n) complexity, for
points in input S. The second for-loop in the last part runs
ovcr a subset of the points (only within the box), also

having worst case complexity O(n). Hence, the asymptotic
time-complexity of the algoritiun is O(n).

The above algoriflun inserts a new object/point in
a sequence of objects/points. However, it has to also check
for inconsistency while doing so. That is where it primarily
differs from any traditional numbcr-inscrlion algorithm,
and that isthc mason why it has to pass ovcr all thc points
(in the first part) even when it has found the bound within
which the solution is supposed to tic (finding the box in the
first pan). Also, it Ires disjunctive relations like "<>" or
"<=>". Points with those relations arc ignored initially (in
the first part), but they arc used to extract separate valid
regions from witlun the box in the second pan.

3. 2D-case

3.1 Language

This is the case of Cardinal algebra (Ligozat,
1998). In two dimensions disjunctive relations on
particular dimension could not bc expressed (in general)
independent of the relation in the other dimension. Thus.
((A~ <> B~) and (Ay >= By)) expresses four regions ((A.,
B~) and (Ay > By)), ((As < Bx) and (Ay = By)). ((Ax
and (Ay > By)), OR ((A~ > B~) and (Ay = By)).
any one of these four relations will make it impossible to
collapse disjunctivc relations over different dimensions.
For example, we might only have ((A~ > B~) and (Ay
Br)) OR ((A~ < B~) and (A~ = By)). that cannot
expressed as ((A~ <> B~) OR (Ay <= By)) or any
compact cxprcssion.

A constraint between a node A, and a set of other
nodes A~. A2 A,.I will bc expressed as: {((A,~, R~,j A~,)
AND (A,y Ryij Aiy)): l<=j<=9, l<=i<n-I }. where a relation
R is an clement of the point-relations { <. >. = }. and j could
run over up to nine (3x3) disjunctive possibilities on the
two dimensions. [We have used a notation with flattened
suffices/indices for the sake of convenience.]

A set of valid regions for A, would be expressed
as: {((~j. Lyi). (R,,j, Ryj)) < m}. for m valid regions.
L stands for lower left corner of a rectangular region, and
R stands for the upper right comer of that region. The
corner points and the bounding line segments of the
region are excluded from the latter (open region). Here.
L,,j=R.~j and Lyi=Ryi indicates a point, whereas an equality
on only one dimension indicates a line segment.

3.2 Algorithm

Input: (1) A non-empty list of points in the 2D space: S
{(aa, a~r) I 1 <= i <= n}, with n >= 1. Note that a~, and %
are strictly ordered in their respective dimensions,
although the orderings may not be the same.

564 FLAIRS-2001

(2) A new point aN: (aNy any) and its relations with
the list in S,

R = {((a~, r,x aNx) && (aiy r,y asy)) II ... up to II
((ai.~ rigs aNx)&& (aiy rigy asy))I 1 <= i <= n}, with
r~ or r~ is one of the {"<", "’>", "="), k may run up to
because those many combinations are possible for each of
the three values over r~, and r~. ["&&" is the logical AND,
and "11" is tile logical OR] (note slight differences in
notations with respect to those in the previous sub-section).
Output: A valid region set for as, ValidRegSet = {(Vql~,
Vqly), (Vq2x. Vq2y) 1 <=q <= m},where m isthe number of
regions bound by (2n-l) 2, the number of total regions
created in two dimension by the points in S. A Null set for
validRegSet would indicate inconsistency. Examples: see
at file end of tl~is section (examples 3 and 4).

Algorithm 2D:
//BOX EXTRACTION: PREPROCESSING

//sort the x-projections
(l)Say, S~ = {A~l, A~2 A,o~} = Sort(a~,, 1<= i <=
(2)Say, R~ = {(Axi rix aNx) 1 <=i <= n},where ri~ = (r il

U... up to U rigx):
//Union x-relations with respect to each point (collapsing)
// run 1D algoritlun to find the x-component of the box
(3)Box~ = Algoritlun_lD (S,,, R,,, ag,,);
(4) if (Boxx == Null) then
(5) ValidRegSet = Null:
(6) return ValidRegSet: //INCONSISTENCY
(7*) ///Repeat steps (!) through (6) for finding Sy,

Ry. and for finding and checking Boxy
//Now the solution regions must lie within the

Box c (S~ X Sy), ifboth S~ and Sy exist
(8) ValidRegSet = Null;
(9) for each Vp~ in S~ starling from Ix through

previousPoint (r~, S~)
//linear regions on the x = Vp~ line

(10) if (asx "<=" vpx) E R~ then
//initialize comers, see "output" above
(II)

(12)
(13)

(14)

(15)
(16)

(17)
(18)
(19)

(20)

(21)

Vql x = Vpx; Vq2x = Vpx;

else if(aN~ "<" Vp~)E R~ then
Vqlx = vpx; Vq2x = nextPoint(vpx, Sx);

//ignore the line on Vp,,
for each Vpy in Sy starting from ly through
previousPoint(ry, Sy)

if (asy "<=" Vpy) E Ry then
Vqly ---- Vpy: Vq2y -- Vpy;

else if(as~ "<" Vp~)E R~ then
Vq~y = Vpy; Vq2y = nextPoint(Vpy, Sy);

if CheckRcgion ((Vqt~, Vqly), (Vq2~,
Vq2y)) then

validRegSet = validRegSet tO {((Vql~,
vq~), (vq:,,, v,ay))};

if (asy ">=" ry) E Ry then //boundary point

(22) Vqly = ry; Vq2y-- ry;

(23) if CheckRegion ((Vqlx, Vqly), (Vq2x, Vq:y)) then

(24) ValidRegSet = validRegSet tO {((Vql~. vqly). (Vq2~,
Vq2y))};

end for;
end for;

(25)if (as/ ">=" rx) E R~ then //right boundary., point
(26) Vql x

= IX; Vq2x m IX:

(27*) /// repeat the for-loop from steps (14) through
(28) return validRegSet;
End Algoritlun.

Algorithm CheckRegion ((xl, yl), (x2,

(l)for each A~ ~ S~ (where A~ - a~, in S)
(2) if (aix is before x I in S,,)

(3) say, ((a~, "<" aND && (aiy r asy)) E
and say, (aiy r2 y2) in St:

//any and y2 are not ltaving the stone rel with a~y
(4) if (r =/= r2) then
(5) return False; //INCONSISTENCY
(6) if (at, is after x2 in SD then

(7) say, ((a~, ">" as~) (ai y r a ny)) E R,
and say, (a~y r2 y2) in Sy;

(8) if (r =/= r2) then
(9) return False: II INCONSISTENCY
(10) return True;
End Algorithm.

The algoritlun 2D first collapses x-relations and
y-relations. For example. ((A~ > B~) and (Ay > By))
((A~ < Bx) and (Ay = By)) becomes ((A~ <> B.~) OR (Ay
By)). Next it extracts Box~ and Boxy from the
corresponding total orders on each axes and their collapsed
relations with respect to aN~ and asy. If the Box is not
empty then it picks up regions within it one by one to
check the latter’s validity. These regions within the box are
created by the points with "<>" and "<=>" relations on
each axis with respect to as~ and a~y. Checking a region’s
validity is done by noting where does it lie with respect to
each point, and if aN could lie in that space with respect to
that point. All such valid regions are collected in the
ValidRegSet.

CheekRegion has O(n) complexity with tile for-
loop at line (1), and because lines (3) and (7)
performed in constant time. Algoritlun 2D has O(n Iogn)
(actually O(n)+O(n logn)) complexity for lines (I)
(6) and for lines in (7*). Its main loops run for extracting
regions from within the box with complexity O(n"). within
which the CheckRegion rtms. Hence tile total asymptotic
complexity of the Algoriflun 2D is O(n~).
Lemma 3: There does not exist any valid region if the Box
is empty.
Proof: It can be trivially proved that the Box is empty if
and only if its projections Boxx and Boxy are also empty.
Any valid region will Imve valid projections on X and Y

SPATIOTEMPORAL REASONING 565

axes, such that all relations on X-axis (in R,) and on Y-axis
(in Ry) will support it. When either Box, or Boxy is empty
then there is no such universal support in R,, or in 1~, or in
both of them. Thus, no valid region for the point aN can
exist. End proof
This le~mna is used in Algorithm 2D to preprocess for
checking inconsistency and extracting tile Box. Lemma 3 is
a 2D version of lemma 2.
Alternative version of Lemma 3: No valid region can exist
outside the box.
Proof: Can be easily proved by contradiction. Endproof.

Lem,na 3 is used to reduce tile processing time for
further constraint propagation by working only witlun the
Box. in the second part of Algoritlun 2D (as well as in
Algoritlun I D). Lemma 3 is an extension of a part of tile
lemma ! for l D-case. However, a crucial aspect of the
iemma I. namely, the contiguous-ness (subject to tile
possible exclusions of some existing points) property, is not
valid in 2D. That is, even if a Box exists, (1) the valid
regions within it may not be contiguous, ,and (2) no valid
region may exist at all. This could be easily verified with
the following examples.
Example 3: S = {ab a2}, such that S, ={a:x, alx}, Sr

= {aty,
a.-y}.
R = {((a3x ">" atx) and (a3y ">" aly). OR (a3x "<" alx)
(a.~y "<" aly)).

((a3x ">" a2x) and (a.~y ">" a2y), OR (a3x "<"
and (a.~y "<" a2y))
The output will have non-contiguous valid regions (with
box being = [-infinity, +infinity] on both axes).
Example 4 : S = {al, a2, a3}, such that S, ={a2x, a3x, atx}, Sy
= {aly, a.~y. a,,y}.
R = {((a4x ">" alx) and (a4y ">" aly), OR (a4x "<" alx)
(a4y "<" a~y)).

((a4x ">" azx) and (a4y ">" a,,y), OR (a4x "<"
and (a4y "<" a2y)),

((a4x ">" a3x) and (a4y "<" a3y), OR (a4x "<"
and (a4y ">" a~y))}.

One could find valid regions (for a4) independently
for relationships with any pair of points from (a~, a2, and aa),
but their overlap (set intersection) is Null. This makes the
CheckRcgion algoritiun necessary within the Algorithm 2D.
Once again, the Box is fully open infinite region in the 2-
dimensions in this example.

4. n-D case for n > 2

The language and algoritiun for two dimensions
can be trivially extended toward any d-dimensional space
with d>2. All the results will have a corresponding
extension. However. the complexity of the algorithm will
differ.

Tile box exlraclion in prcprocessing part is done in
each axis independently. Hence, the complexity of tlmt part
will remain same O(n) for n points in S, although the loops

from lines (1) tiu’ough (6), as in Algoritlun 2D, will
separately (as in lines (7*)) for d times. The sub-algorithm
CheckRegion will also have the same complexity O(n).
However, the loops (as in lines (9) and (14)) in creating
higher dimensional regions will have as many nesting as
tile number of dimensions. So, tile total complexity will be
O(nd+l).

5. Discussion

Wlmt we have discussed here is tile problem of
inserting a new point with disjunctive relations with
respect to a set of points in d-dimensional space (d = i.
or >2), where all those old points have non-disjunctive
complete relationships with respect to each other (as
expressed by the strict orderings of their projections on the
respective axes). Once a valid region is chosen for the new
point in file space out of tile validRegSet, that would
extend tile old set to a new one including tile new point,
where their mutual relations once again are complete non-
disjunctive ones. This is true because each valid region can
be defined by a set of complete relationships with respect
all the existing points (and tile inverse of a complete
relation is another complete relation).

A complete binary CSP in this domain is where a
set of points and some binary constraints between them are
provided as tile input. In such a problem the requirement is
to check consistency and find a solution. A backtracking
algoritlun could easily be developed that would utilize the
appropriate incremental algoritlun discussed here for
inserting points one by one in the I~irlially developing
solution (until all points are inserted there). Backtracking
may be needed when one fails to insert a point at any
stage. Backtracking may undo some of these relationships
by choosing a different valid region for any such old-point
with respect to the points entered before it. A failure of
backtracking would indicate a global inconsistency.
Although tile insertion problem has polynomial algorithm
as indicated here, the global consistency-checking (CSP)
problem may not be so. However. we know that the ID-
case (point algebra) is polynomial whereas file higher-
dimensional cases are intractable ones. We conjecture tlmt
tile non-contiguous property of the valid regions in the
ltigher-dimensional cases (d>l) is responsible for the
intractability. If that is true, then we could easily find how
to restrict the language in order to have any tractable case.
The current methodology of studying such tractable sub-
cases is semi-empirical (partly with exhaustive search by
naming programs, as in Nebel. 1995) and not
generalizable across different STCSPs.

Note that although we are talking about complete
relationship between all points "instantiated" in the space
(before a new point is to be inserted) we are still lmndling
only qualitative relationships. It is not necessa .ry to have
real co-ordinates for any point.

566 FLAIRS-2001

Tile fundan~ental properly of tile domain (re’,fl
space in d-dimensions Rd) addressed here is: the space is a
cross product of total orders on each dimension. Also, we
Imvc prcsulncd dense infinite space. The algoritluns may
have to be modified if the space is not dense, and not
infinite. In applications related to visualization such
restrictions may create problems that we have managed to
avoid in this article. Also. our algorithms took the
advantage of the fact that for a complete non-disjunctive set
of relationships between points, their projections on the
respective axes will have strict ordcrings and each of fllcsc
orderings is independent of the others. This is not the case if
we work in the canonical space for time intervals (Ligozat,
1996) where Y-axis represents the end points of intervals
and X-axis represents the starting point of the
corresponding intervals. Any valid time-interval there lies
in a half space above y=x line (indicating end-point must be
> starting-point for any interval). Tlffs relationship will
make the ordcrings of projections somewhat dependent on
each othcr. An immediate future step in our work is to
devclop similar algoritluns for time intervals (or for
generalized intcrvals with more than two points in an
interval).

The contiguous-ness properly of valid regions in 1-
D creates an interesting practical possibility. Suppose a user
provides the input, and the output regions are displayed on a
graplffcal user intcrface (over a line), where the user
supposed to pick up a valid rcgion (say. by clicking the
mouse) in order to insert the next point. Now, if the user
wants to play with the possible solutions and "drags" the
new point beyond a boundary of the box, then flint should
be mtcrprctcd as an attcmpt to force backtrack and find a
new "neighboring" solution. Such a solution should be
found by automatically moving file corresponding boundary
point over to a different valid region wiflffn the
corresponding box for that boundary point. Since each
solution in ID-casc may be considered as a topological sort
of the points, the attempt to find a neighboring solution
demands that we consider a topological structure of such
solution space itself. However, as fl~e solutions in a higher
dimensional space do not follow the contiguous-ness
property as stated in thc Lemma ! for the ID-case. fl~e
topological structure of solutions in n-D space (n>l) would
be significantly different from that in the ID-case, possibly
resulting in the intractability of the corresponding CSP
problem.

6. Conclusion

In this article we have presented some algorithms for
inserting a new point in a space where a set of points
already exist. The existing points need not be fixed in file
space, ralher they could have a relative positioning wifll
respect to each other that is uniquely represented wifl~ a
total order of their projections on each of the axes of file
Cartesiatx-space. The input relationships between the new

point and each of the existing points are disjunctive. The
algorifluns output a set of valid regions (if any exist) in the
space for the new point, any one of wlffch could be chosen
later. These algorithms could be utilized incrementally in
order to solve a binary CSP problem within the domain.
Such algorithms are useful for doing modeling activity in a
multi-dimensional real space, where disjunctive
information is provided between point objects. We have
implemented the incremental algorithm for the I D-case
and currently implementing the one for the 2D-case. The
work is a first attempt toward developing domain-theoretic
algoritluns in spatio-lempoml (or more generally in the
continuous-domain) CSP areas, and delving into related
consistency issues, e.g., the issues of finding tractable sub-
algebras. The article provides some discussion toward this
direction.

Acknowledgment: Tiffs work is supported by the US
National Science Foundation (IIS-9733018).

References

Balbiani, P., and Osmani, A., 2000. "A model for
reasoning about topological relations between cyclic
intervals." Proceedings of the Seventh International
Conference on Principles of Knowledge Representation
and Reasoning (K.R), Brekenridge. CO.

Clfittaro. L.. and Montanari, A., 200(1. "Temporal
representation and reasoning in artificial intelligence:
issues and approaches." Annals of Mathematics and
A rtificial Intelligence.

Ligozat, G., 1998. "Reasoning about Cardinal Directions,"
Journal of I Tsual Languages and Computing. Vol. 9, 23-
44.

Ligozat, G., 1996. "A new proof of tractability for ORD-
Horn relations." Proceedings of the Thirteenth National
Conference on Artificial Intelligence (.,I,L.11), Portland.
Oregon, USA, pp. 395-401.

Mitra, D., 2001. "A path consistent singleton modeling
(CSM) algoritlun for arc-constrained networks," to appear
in the Applied Intelligence Journal.

Nebel, B., 1995, "Reasoning about Temporal Relations: A
Maximum Tractable Subclass of Allen’s Interval Algebra."
Journal of Association for Computer Machinery. Vol.42,
No. 1, 43-66.

Vilain, M., and Kautz. H.. 1986. "Constraint propagation
algoritluns for temporal reasoning." Proceedings of the
Fifth National Conference on Artificial Intelligence
(AAA1), Plffladelphia, PA. pp. 377-382.

SPATIOTEMPORAL REASONING 567

