Modeling of multi-dimensional relational constraints between point

objects

* Debasis Mitra (1), Gerard Ligozat (2), and Lail Hossain (1)

(1) Department of Computer Science
Jackson State University, P.O. Box 18839
Jackson, MS 39217, USA

E-mail. dmitra@ccaix.jsuins.edu, Ishossain@yahoo.com

Abstract

Most of the approaches in the spatio-temporal
reasoning area use a relational algebraic
framework where the domains of variables are
typically not given an explicit considerations (for
the purpose of constraint processing) in favor of
the relational constraints between those vanables.
However, some recent works have shown the
deficiency of those approaches in finding a
globally consistent solution. For example, in
cyclic time-interval problems even path-consistent
singleton models are not globally consistent. In
this article, we have developed a domain-theoretic
approach, which is routinely deployed in the
traditional discrete-domain constraint satisfaction
problems (CSP), for point-based rclations in a
multi-dimensional Carlesian-space. Our
algorithms are also developed for the insertion
problem (insert an object in a sct of existing ones),
which is at the core of any incremental approach
for checking global consistency (Mitra, 2001). The
results might be useful in a real-life modeling
activities in any relevant area (e.g., visualization
or data-modeling).

Key Words: Constraint Satisfaction Problem (CSP),
Spatial Rcasoning, Cardinal Algcbra, Continuous-domain
CSP.

1. Introduction

A spatio-temporal constraint satisfaction problem (STCSP)
is a binary CSP where the domain of every variable is
mapped onto the same space or time-related continuous -
and often densc and infinite - domain. The constraints here
arc disjunctive subscls of a predefincd exhaustive set of
rclational constraints that are possible between any two
points in thc respectlive domain (c.g.. for 1-dimensional
points the rclations are {<, >, =}). A typical discrete-domain
binary CSP is solved by instantiating the variables for their
respective values, which typically come from some discrete
and finite domains. However, STCSP problems are
typically handled within the rclational algebraic framework
(sce Chittaro and Montanari. 2000). The fundamental
opcration in this framecwork is a pre-defined composition

562 FLAIRS-2001

" (2) LIMSI, Universite Paris-Sud
Bldg. 508, P.O. Box 133
F-91403 ORSAY Cedex, France

E-mail. ligozat@limsi. fr

operation between any pair of relations (e.g., compose
(ll<ll’ I!<I|) = I|<II’ for ﬂme pOinlS).

While finding some approximate consistent (say,
3-consistent, between every triplet of variables) solution is
casy (often polynomial) in a relational algebraic
framework, extracting a global solution is quite tricky
there. So far in the literature it was presumcd that if we can
extract a 3-consistent singleton modcl (single rclation
between each pair of variables). then that indicates the
presence of a globally consistent solution. From such a
singleton model one could then extract an instantiation for
each variable satisfying the constraints. However, recent
works in the area of cyclic time (Balbiani and Osmani,
2000) shows that this situation is not universally true. In
cyclic-time (where the time-line wraps onto itself) time-
intervals may have a 3-consistent singlcton modecl that is
not globally consistent. This is thc primary motivation
behind developing domain-theorctic algorithins for STCSP
as is done in the traditional discrete-domain CSP. This
article makes a first attempt in such a dircction - for the
domain of points in a real space of one and two dimensions
(extendible to any arbitrary number of dimensions, which
is touched upon in the article). We have not addressed the
domain of cyclic time here. Our work is also likely to have
an impact on the modeling areas, €.g.. in graphics and
visualization, GIS, and data modcling in multi-dimcnsional
databases, by providing a disjunctive information handling
capability.

We start with the 1D case for cstablishing the
background. The next section deals with the 2D case,
followed by some discussion on the higher-dimensional
cases. Some relevant discussions are provided next. The
article concludes with a separate section.

2. 1D-case

2.1 Language

This is a case of point algecbra (Vilain and Kautz,
1986), we are discussing it here primarily for the sake of
creating a background for the higher dimensional cases.
Some new resulls are also reported here. The language is
designed to express constraints betwcen a node A, with

From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved.

some other nodes. say. A;. A,. ... A,.;. Thesetis {(A, R; A))
| 1<= i <= n-1}, where any relation R; is a non-null
disjunctive subsct of the sct of qualitative relations between a
pair of points {<, >, =}. Thus. R; is an clcment of the set
{||<u‘ u<=u. n>u. n>=u. n=u,'u<>u! u<=>u}. The ﬁrst four
rclations indicate in which dircction, left or right, the new
point. A, should lie with respect to the point A,. The equality
is a strict relation making A, coincide with A;, and thus, be
ignored, subject to pointers between the two equivalent
points (say, for the purpose answering any query about A,).
The last two relations cause A, to ignore Ai in the process of
finding its position in the scquence. This issue will be further
explained later.

A sct of valid rcgions for A, would be expressed
as: {(x;1. X;2) | 1<=j<= m}. m bcing the total number of valid
rcgions, with m <= 2n-1, since the total number of available
rcgions is 2(n-1)+1 = 2n-1. Typically for any region: x,<
x;j>. However. it is possible to have a region with x;= X2,
which means that the region is a point only. Some examples
(1 and 2) are providcd later.

Lemma 1: Valid regions for a point (on a real line, under
disjunctive constraints with respect to a scquence of points
existing on the linc) are contiguous, .thus forming a convex
interval (we call this interval the box), i.c., if it exists.
However, some of the existing points within the box may be
cxcluded themselves as valid regions.

Inductive Proof: Base. When S = {A,}. only one point is in
it, the lemma is trivially true. The box is [-infinity, A,], [A),
+infinity], [A,. A,], or [-infinity, +infinity]. Hypothesis:
Suppose the lemma is true without the point A, i.e., for S
= {A. Aa ... A,2}. and the box (convex interval, with
contiguous valid rcgions subject to some excluded point
boundarics bctween them) for An is [A. A, for
I<=k<=j<=(n-2). Steps. Then thc next point A,.icould be at
onc of the five regions with respect to this interval (when Ay
=/= Aj) : (1) lcft of Ay, (2) on A,. (3) within (A, A)), (4) on
A,, and (5) right of A;. For cascs (1) or (2), if (A, ">=" An1)
or (A, ™" A,.), then the box for A, remains the same.
Alternatively, if the relation is (An "<=" A,) or (A, "<" A,.
1) for these two cases, then the box will vanish - an
inconsistent rclation. Symmetrically opposite situations
cxist for cascs (4) and (5). For the casc (3), if the rclation is
(An "<=" A,) or (A, "<" A,..). then the box shrinks to [Ax.
A,..]. or if the rclations is (A, ">=" A,) or (A, ">" A,
then the box shrinks to [A,,. AJl.

The last situation here is for (A, "=" A,.;) whence
the box shrinks to [A,.;. A,.] for case (3) and to Null
(inconsistency) for other cascs.

Note that the box remains unaffected for (A, "<>"
A,y) or (A, "<=>" A,.,). However, the set of valid regions
gets split into morc contiguous regions. subjcct to the
exclusion of the point A,... depending on if the relation is
"<>" (A, iscxcluded from the hox) or "<=>",

A last scenario is when the box is a point {Ay. Ay
to start with, Then there arc three regions for Ang: (1) left of
Ai. (2) on A,. or (3) right of A,. It is trivial to sec that A, in

that case either will coincide with A, for (A, "=" A,..;) with
case (2), for (A, ">" or ">=" A,,;) with casc (1), for (A,
"<" or "<=" A.,) with casc (3), or be inconsistent. End of
proof for Lemma 1.

Lemma 2: There is no consisicnt region if the hox docs not
exist (in other words the box is Null).

Proof: Form Lemma 1 it is clear that all the valid rcgions
must lie within the box. Hence, if the box is Null, then
there is no valid region or consistent solution for the
problem. End proof.

Theorem 1: A sct of valid regions could be found for a
new point A, having point-to-point disjunctive relations
with a sequence of points {A, Aa..... A1} as expressed
in our language. if and only if a valid convex interval on
the sequence (defined as the box beforc) exists for A,,.
Proof: Trivial. Lemma 1 proves the "if' part, and the
Lemma 2 proves the "only-if" part. End proof

The Theorem 1 is used to preprocess the
constraints in finding the convex interval - the box. Lemma
1 providces additional power in cxtracting the valid rcgions
within this box. The valid regions arc crcated by splitting
the box with respect to those points having "<>" and <=>"
relations with respect to the new point A,

2.2 Algorithm

Input: (1) A non-empty sequence of points S =

{a;, a,..... a,}. with n >= 1. (2) A new point a,.,, with
relations set {(a; I Anew): 1 <=i<=n}
Output: A valid region sct for a,.,. ValidRcgSct = {(ay.
ap): 1<=k <= il <= i2 <= j <= n}. for il and i2 within
some bound between k and j (following Lemma 1), OR.
ValidRegSet = Null. indicating inconsistency.

An example ValidRegSet = {(as. a4). (as.a4), (A,
as), (as, as), (3.)}, a region from a; (k=3) through as
(j=6) excluding points a;. and as. Mathematically a correct
notation for the second region above should have been [as.
a,4], a closcd interval, but we will ignore bracket in favor of
parenthesis in our syntax in the ValidRegSet. for the sake
of uniformity.

We call the interval [a. a] as the box.

Example 1:

Input: S ={3.7, 9. 11, 15, 18, 22}. R = {(A, >= 3). (A,
<=>T7), (An>=9), (Aa < 11), (Au < 15). (Aq < 18), (A,
<=22)}.

Output: ValidRegSet = {(9. 9), (9, 11), (11. 15)}. The box,
which is not an output. here is [9, 15].

Example 2:

‘Input: S ={3.7.9, 11, 15, 18, 22}. R = {(A, >= 3). (A,

<=> 7). (As >=9). (An < 11). (A, < 15). (A, > 18). (A,
<=22)}.

SPATIOTEMPORAL REASONING 563

Output: ValidRegSet = Null. The relation (A, > 18) in the
input spoilt any attempt to find a consistent box (see line 9
of the Algorithm 1D bclow).

Algorithm 1D:
(1) validRegSet = Null;
(2) // FIND THE BOX FIRST: PRE-PROCESSING
(3) I=-infinity; r =+ infinity;
/1 11,] is the box, initialized with the two extremes
(4) state = "findLeft";
// the state variable to keep track of the status
(5)for each a; in the sequence S do
(6) if (@i "<=" new) OF (4 "<" Auew) then
@) if (state == "findLeft") then
(8) 1= a
clse
9 rcturn validRegSet;
// Null, INCONSITENCY;
(10) if (a; "=" anw) then

(11) 1= a; r=a;
(12) state = "foundEq";
(13) if (a; "™>=" auew) OF (& ">=" a,w) then
(14) if (statc == "foundEq") then
{} // ignore

clsc
(15) r = a;
(16) state = "foundRight";

(17) if (& "<" aew) OF (@ "<=>" a,) then
{}, /ignore
end for;
(18) if (1 == r) then
/1 case of cquality. and consislcnt

8] validRegSct = {(1. D}:
(20) rcturn validRegSct:
// FIND VALID REGIONS NOW

21 if (Auew "<="1) then
validRcgSet = {(l, 1). (1, nextPoint (a,))};
(22) for cach a, starting from nextPoint(ay)
through previousPoint(a;)) do
// this loop may never execute when r is next point to 1in §
23) if (@new "<=>"a,) then

validRegSet = validRegSct U{(a,. a,)};
elsc { }:
// ignorc a, as a rcgion when a,,, "=/="a,

(29) validRegSet=validRegSctU{(a,. nextPoint (a))};
cnd for;
(25) if (anew >=" r) then

validRegSet = validRegSet U {(r,1)};
(26) return validRegSet;
End Algorithm.
In the first part of the algorithm the for-loop runs
over all the nodes. leading to an O(n) complexity. for n
points in input S. The sccond for-loop in the last part runs
over a subset of the points (only within the box), also

564 FLAIRS-2001

having worst case complexity O(n). Hence, the asymptotic
time-complexity of the algorithm is O(n).

The above algorithmn inscrts a new objcct/point in
a sequence of objects/points. However. it has to also check
for inconsistency while doing so. That is wherc it primarily
differs from any traditional numbcr-inscrtion algorithm,
and that is the reason why it has to pass over all the points
(in the first part) even when it has found the bound within
which the solution is supposed to lic (finding the box in the
first part). Also, it has disjunctive relations like "<" or
"<=>" Points with those relations are ignored initially (in
the first part), but they are used to extract scparate valid
regions from within the dox in the sccond part.

3. 2D-case

3.1 Language

This is the case of Cardinal algebra (Ligozat,
1998). In two dimensions disjunctive relations on a
particular dimension could not be expressed (in general)
independent of the relation in the other dimension. Thus,
((Ax <> By) and (A, >= B,)) expresses four regions ((Ag <
B,) and (A, > B,)). (A« < B,) and (A, = B,)). (A, > By)
and (A, > By)), OR ((A« > By) and (A, = B,)). Dropping
any one of these four relations will make it impossible to
collapse disjunctive relations over different dimensions.
For example, we might only have ((Ax > B,) and (A, >
B,)) OR ((Ax < By) and (A, = B)). that cannot be
expressed as ((Ax <> B,) OR (A, <= B,)) or any such
compact cxpression.

A constraint between a nodc A, and a sct of other
nodes A,, Aa....,A,y Will be expressed as: {((Ax Ry, Ay)
AND (A, Ry Ay)): 1<=j<=9, 1<=i<n-1}, whcrc a rclation
R is an clement of the point-relations {<. >, =}. and j could
run over up to nine (3x3) disjunctive possibilitics on the
two dimensions. [We have used a notation with flattenced
suffices/indices for the sake of convenience.]

A set of valid regions for A,, would be expressed
as: {((Ly- Ly). Ry;. Ryy)) | 1<=j< m}. for m valid rcgions.
L stands for lower left corner of a rectangular region. and
R stands for thc upper right comner of that rcgion. The
corner points and the bounding linc scgments of the
region arc cxcluded from the laticr (open region). Here.
L,=R; and L,;=R,; indicatcs a point. whereas an cquality
on only one dimension indicates a linc scgment.

3.2 Algorithm

Input; (1) A non-empty list of points in the 2D space: S =
{(ai. ay) | 1 <=1 <= n}, with n >= 1. Note that a, and a,
are strictly ordered in their respective dimensions,
although the orderings may not be the same.

(2) A ncw point ay: (anx. any) and its relations with
the list in S,

R = {((ax rux an:) && (ay Ty any)) || ... upto ||
((ax Tisx anx) && (ay Ty any)) | 1 <= i <=n}, with any
ix OF Iy is one of the {"<", ">", "="} k may run up to 9
because those many combinations are possible for each of
the three valucs over riy and ryy. ["&&" is the logical AND,
and "||" is the logical OR] (note slight differences in
notations with respcct to those in the previous sub-section).
Output: A valid region sct for ay, ValidRegSet = {(vqy,
Vaiy)s (Vg Vazy) | 1 <= q <= m}, where m is the number of
regions bound by (2n-1)%. the number of total regions
created in two dimension by the points in S. A Null set for
validRegSet would indicate inconsistency. Examples: see
at the end of this section (examples 3 and 4).

Algorithm 2D: _
// BOX EXTRACTION: PREPROCESSING
// sort the x-projections :
(1)Say. S, = {Ax. Ax. ... A} = Sort(ay , I<=i<=n),
(2)Say, Ry = {(Axi rx ans) | 1 <= i <= n}, where ri = (Tx

U... upto U rig):
// Union x-relations with respect to each point (collapsing)
// run 1D algorithm to find the x-component of the box
(3)Box, = Algorithin_1D (Sy, Ry, any);
(4) if (Boxy, == Null) then
(5) ValidRegSct = Null:
6) return ValidRegSct: // INCONSISTENCY
(7 /I Repeat steps (1) through (6) for finding S,, and
R,. and for finding and checking Box,
// Now the solution rcgions must lie within the

Box € (8 X S,), if both S, and S, exist

(8) ValidRegSet = Null;

) for each vy, in S, starting from Ix through
previousPoint (r, Sy) do

/! lincar regions on the X = vy, line

(10) if (anx "<=" vp) € R then

// initialize comners, sce "output” above

(1 l) - VYqIx = Vpx: Vgx = Vpx;

(12) else if (anx "<" vy) € R then

(13) Vaix = Vpxs Vgzx = NEXtPoint(vpy, Sy);
/l ignore the line on vpx

(14) for each vy, in§, starting fromly through

previousPoint(r,. Sy) do

(15) if (any "<=" vy) €ER, then

(16) Valy = Vpys Vazy = Vpys

17 elsc if (ans "<" vp) € Ry then

(18) Valy = Vpy! Vg2y = NEXtPoInt(vpy, Sy);

(19) if CheckRegion ((Vqix, Vqiy)s (Vazxs

Vqzy)) then
(20) validRegSet = validRegSet U {((vqix,

Vqu), (Vqlx, Vqu))}'y
21) if (any ">=" ry) € R, then //boundary point

(22) Valy = TY: Vazy =TY,
(23) if CheckRegion ((Vqix. Vqiy)s (Vgax. ¥q2y)) then
(24) ValidRegSet = validRegSet U {((vqix. Vqiy)- (Vg
quy))};
end for;
end for,

(25)if (ans ">=" 1x) € R, then // right boundary point
(26) Vqix = IX; Vgox = INX.

(27*%) /! repeat the for-loop from stcps (14) through
(28) return validRegSet;

End Algorithm.

Algorithm CheckRegion ((x1, y1), (x2, y2))

(Dfor each A, € S, (where A, =a, inS) do
(2) if (ax is before x! in§,) then

3 say, ((ax "<" anJ) && (@, 1 any)) ER.
and say, (ay r2y2)inS,.
// ay, and y2 are not having the same rcl with ay

@) if (r=/=r2) then

(5) return False; // INCONSISTENCY

(6) if (ax isafterx2 inS,) then

) say, ((ax ">" and && (ay 1 any)) €ER,
and say, (aj, r2y2)inS,;

8) if (r=/=r2) then

9 return False: // INCONSISTENCY

(10) return True;

End Algorithm.

The algorithm 2D first collapses x-relations and
y-relations. For example. ((A, > By) and (A, > B,)) OR
((A, <By) and (A, = B,)) becomes ((A, <> By) OR (A, <=
B,)). Next it extracts Box, and Boxy from the
corresponding total orders on each axes and their collapsed
relations with respect to ay« and any. If the Box is not
empty then it picks up regions within it one by onc to
check the latter's validity. These regions within the box are
created by the points with "<>" and "<=>" rclations on
each axis with respect to anx and any. Checking a region's
validity is done by noting wherc docs it lic with respect to
each point, and if ay could lie in that spacc with respect to
that point. All such valid regions arc collected in the
ValidRegSet.

CheckRegion has O(n) complexity with the for-
loop at line (1). and because lines (3) and (7) can be
performed in constant time. Algoritlun 2D has O(n logn)
(actually O(n)+O(n logn)) complexity for lincs (1) through
(6) and for lines in (7*). Its main loops run for cxtracting
regions from within the box with complexity O(n’). within
which the CheckRegion runs. Hence the total asymplotic
complexity of the Algorithm 2D is O(n’).

Lemma 3: There does not exist any valid region if thc Box
is empty.

Proof: It can be trivially proved that the Box is empty if
and only if its projections Box, and Box, are also empty.
Any valid region will have valid projections on X and Y

SPATIOTEMPORAL REASONING 565

axes, such that all relations on X-axis (in R,) and on Y-axis
(in R,) will support it. When cither Box, or Box, is empty
then there is no such universal support in R, or in R, or in
both of them. Thus, no valid region for the point ay can
exist. End proof. '

This lemma is uscd in Algorithm 2D to preprocess for
checking inconsistency and cxtracting the Box. Lemma 3 is
a 2D version of lemma 2.

Alternative version of Lemma 3: No valid region can exist
outside the box.

Proof: Can be easily proved by contradiction. End proof.

Lemma 3 is used to reduce the processing time for
further constraint propagation by working only within the
Box. in the sccond part of Algorithm 2D (as well as in
Algorithin 1D). Lcmma 3 is an extension of a part of the
lemma | for 1D-casc. However, a crucial aspect of the
lcmma 1. namcly. the contiguous-ness (subject to the
possible exclusions of some existing points) property, is not
valid in 2D. That is, even if a Box exists, (1) the valid
regions within it may not be contiguous, and (2) no valid
region may exist at all. This could be easily verified with
the following cxamplcs.

Example 3: S = {ay, a;}. such that S, ={axx. a;x}. S, = {ayy,
ayl. '

R = {((a;x ">" a;x) and (azy ">" a1y). OR (asx "<" a;x) and
(azy "<" ay)).

((asx ">" apx) and (azy ">" azy), OR (asx "<" a;x)
and (ayy "<" azy)) }

The output will have non-contiguous valid regions (with
box being = [-infinity, +infinity] on both axes).

Example 4 : S = {a,, ay, a3}, such that S, ={a,x, a;x, a;x}, S,
= {a)y. azy. axy}.

R = {((a«x ">" a)x) and (asy ">" a,y). OR (asx "<" a;x) and
(aqgy "<" a1y)).

((aax ">" a5x) and (aqy ">" a>y). OR (asx "<" a2x)
and (asy "<" axy)).

((asx ">" a3x) and (asy "<" asy), OR (asx "<" a;X)
and (asy ">" a3))}.

One could find valid regions (for a,) independently
for relationships with any pair of points from (a,, a;, and ay),
but their overlap (set intersection) is Null. This makes the
CheckRegion algorithin nccessary within the Algorithm 2D.
Once again. the Box is fully open infinite region in the 2-
dimcnsions in this cxample.

4. n-D case forn>2

The language and algorithun for two dimensions
can be trivially extended toward any d-dimensional space
with d>2. All the results will have a corresponding
cxtension. However. the complexity of the algorithm will
differ.

The box extraction in preprocessing par is done in
cach axis indcpendently. Hence. the complexity of that part
will remain same O(n) for n points in S, although the loops

566 FLAIRS-2001

from lines (1) through (6), as in Algorithm 2D, will run
separately (as in lines (7*)) for d timcs. The sub-algorithm
CheckRegion will also have the same complexity O(n).
However, the loops (as in lines (9) and (14)) in crealing the
higher dimensional regions will have as many nesting as
the f‘u}mber of dimensions. So, the total complexity will be
O™,

5. Discussion

What we have discusscd here is the problem of
inserting a new point with disjunctive relations with
respect to a set of points in d-dimensional space (d = 1. 2
or >2). where all those old points have non-disjunctivc
complete relationships with respect to each other (as
expressed by the strict orderings of their projections on the
respective axes). Once a valid region is chosen for the new
point in the space out of the validRegSet, that would
extend the old set to a new one including the new point,
where their mutual relations once again arc complcte non-
disjunctive ones. This is truc becausc each valid region can
be defined by a sct of complele relationships with respect
all the existing points (and the inverse of a complcte
relation is another complcetc relation).

A complete binary CSP in this domain is wherc a
set of points and some binary constraints between them are
provided as the input. In such a problem the requirement is
to check consistency and find a solution. A backtracking
algorithm could easily be developed that would utilize the
appropriatc incremental algorithm discusscd here for
inscrting points one by onc in the partially dcvcloping
solution (until all points arc inscricd there). Backtracking
may be nceded when one fails to inscrt a point at any
stage. Backtracking may undo somnc of these relationships
by choosing a diffcrent valid region for any such old-point
with respect to the points entercd before it. A failure of
backtracking would indicate a global inconsistency.
Although the insertion problem has polynomial algorithm
as indicated here, the global consistency-checking (CSP)
problem may not be so. However. we know that the ID-
case (point algebra) is polynomial whercas the higher-
dimensional cases are intractablc ones. We conjecture that
the non-contiguous property of the valid regions in the
higher-dimensional cases (d>1) is responsible for the
intractability. If that is true, then we could casily find how
to restrict the language in order to have any tractable case.
The current methodology of studying such tractable sub-
cases is semi-empirical (partly with exhaustive search by
running programs, as in Nebel. 1995) and not
generalizable across different STCSPs.

Note that although we are talking about complcte
relationship between all points "instantiated" in the space
(beforc a new point is to be inscrted) we arc still handling
only qualitative relationships. It is not nccessary o have
real co-ordinates for any point.

The fundamental property of the domain (real
spacc in d-dimensions R,) addresscd here is: the space is a
cross product of total orders on cach dimension. Also, we
have presumed dense infinite space. The algorithms may
have to be modified if the space is not dense, and not
infinite. In applications related to visualization such
restrictions may create problems that we have managed to
avoid in this articlc. Also. our algorithms took the
advantage of the fact that for a complete non-disjunctive sct
of rclationships between points. their projections on the
respective axcs will have strict orderings and each of these
orderings is independent of the others. This is not the case if
we work in the canonical space for time intervals (Ligozat,
1996) where Y-axis rcpresents the end points of intervals
and X-axis represents the starting point of the
corresponding intervals. Any valid time-interval there lies
in a half spacc above y=x line (indicating end-point must be
> starling-point for any infcrval). This rclationship will
make the orderings of projections sommcwhat dependent on
cach other. An immcdiatc future step in our work is to
devclop similar algorithms for time intervals (or for
generalized intervals with morc than two points in an
interval).

The contiguous-ness property of valid regions in 1-
D creatcs an intcresting practical possibility. Suppose a user
provides the input, and the output regions are displayed on a
graphical uscr intcrface (over a line). where the user is
supposcd 1o pick up a valid rcgion (say. by clicking the
mousc) in order 10 inscrt the next point. Now. if the user
wants to play with the possible solutions and "drags" the
new point beyond a boundary of the box, then that should
be interpreted as an attempt to force backtrack and find a
new "neighboring" solution. Such a solution should be
found by automatically moving the corresponding boundary
point over to a different valid region within the
corresponding box for that boundary point. Since each
solution in 1D-casc may be considcred as a topological sort
of the points, the attempt to find a neighboring solution
demands that we consider a topological structurc of such
solution spacc itsclf. However, as the solutions in a higher
dimensional spacc do not follow thc contiguous-ness
property as staled in the Lemma 1 for the 1D-case. the
topological structure of solutions in n-D space (n>1) would
be significantly different from that in the 1D-case, possibly
resulting in the intractability of the corresponding CSP
problem.

6. Conclusion

In this article we have presented some algorithms for
inseriing a new point in a spacc where a set of points
alrcady cxist. The existing points need not be fixed in the
space. rather they could have a relative positioning with
respect to each other that is uniquely represented with a
total order of their projections on each of the axes of the
Cartesian-space. The input relationships between the new

point and each of the existing points arc disjunctive. The
algorithins output a set of valid regions (if any exist) in the
space for the new point, any onc of which could be choscn
later. These algorithms could be utilized incrementally in
order to solve a binary CSP problem within thc domain.
Such algorithms are useful for doing modcling activity ina
multi-dimensional real space, where disjunctive
information is provided bctween point objects. We have
implemented the incremental algorithm for the 1D-casc
and currently implementing the one for the 2D-casc. The
work is a first atiempt toward developing domain-thcoretic
algorithims in spatio-temporal (or more generally in the
continuous-domain) CSP areas. and dclving into rclated
consistency issues, e.g.. the issues of finding tractable sub-
algebras. The article provides some discussion toward this
direction.

Acknowledgment: This work is supported by the US
National Science Foundation (I11S-9733018).

References

Balbiani, P., and Osmani, A., 2000. "A model for
reasoning about topological rclations between cyclic
intervals." Proceedings of the Scventh International
Conference on Principles of Knowledge Representation
and Reasoning (KR). Brekenridge. CO.

Chittaro. L., and Montanari, A.. 2000. "Temporal
represcntation and reasoning in artificial intclligence:
issucs and approaches." Annals of Alathematics and
Artificial Intelligence,

Ligozat, G., 1998. "Rcasoning about Cardinal Dircctions."
Journal of Visual Languages and Compuling. Vol, 9. 23-
44.

Ligozat, G.. 1996. "A new proof of tractabilitv for ORD-
Horn rclations." Proccedings of the Thiricenth National
Conference on Artificial Intelligence (/111), Portland.
Oregon, USA, pp. 395-401.

Mitra, D., 2001. "A path consistcnt singlcton modcling
(CSM) algorithum for arc-constrained networks," to appcar
in the Applied Intelligence Journal.

Nebel, B.. 1995, "Reasoning about Temporal Relations: A
Maximum Tractable Subclass of Allen’s Interval Algebra."
Journal of Association for Computer Alachinery, Vol .42,
No.1, 43-66.

Vilain, M., and Kautz. H.. 1986. "Constraint propagation
algorithms for temporal reasoning." Proceedings of the
Fifth National Conference on Artificial Intelligence
(AAAI), Philadelphia, PA. pp. 377-382.

SPATIOTEMPORAL REASONING 567

