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Abstract

Several models for handling vague and imprecise informa-
tion in decision situations have been suggested. In those
contexts, various interval methods have prevailed, i.e.
methods based on interval estimates of probabilities and, in
some cases, interval utility estimates. Even if these
approaches in general are well founded, little has been done
for demonstrating whether the approaches are comprehensi-
ble for a decision maker. In particular, it is far from always
clear what is actually expressed by a set of intervals where
linear dependencies do occur. Furthermore, it is difficult to
find reasonable decision rules that select an alternative out
of a set of alternatives and correspond to the intuition of a
decision maker. In this article, we investigate some problems
that are inherent in interval approaches and suggest how the
choice of particular evaluation rules might compensate for
this.

Introduction
A quite widespread opinion is that the principle of
maximising the expected utility captures the concept of
rationality. However, the shortcomings of this principle,
and of utility theory in general are severe, and have to be
compensated for (Ekenberg, et al, 2001). One of the main
problems with the principle is that it requires too hard
aggregation of background data. Nevertheless, there is a
need for efficient evaluation principles. A number of
models with representations allowing imprecise probability
statements have been suggested. Some of them are based
on
¯ capacities (of order 2),
¯ evidence theory and belief functions,
¯ various kinds of logic,
¯ upper and lower probabilities, or
¯ sets of probability measures.
The common feature of the approaches is that they do not
include the additivity axiom of probability theory and
consequently do not require a decision maker to model and
evaluate a decision situation using precise probability (and,
in some cases, utility) estimates. The approaches are in
general well founded, but quite little has been done in
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demonstrating whether they are understandable for a
decision maker facing a real decision situation. In
particular, it is not always clear what an agent expresses
when providing, for instance, a set of intervals where linear
dependencies do occur. The problem becomes of particular
signifcance when evaluation models are considered. An
advantage of approaches for upper and lower probabilities
is that it is not necessary to take particular probability
distributions into consideration. On the other hand, it is
then difficult to fred reasonable decision rules that chose an
alternative out of a set of alternatives, and that rcally
corresponds to the intuition of a decision maker. This
problem is emphasised by the fact that no distributions
over the intervals are taken into account to indicate values
of most significance. The low-dimensional intuition of
decision makers further adds to the problem. Effects of
changes on input data arc not always simple to
communicate. Wc have found two complementary views
on the input data to be particularly helpful to the decision
maker - symmetry and quadracy.

Preliminaries

Interval approaches model decision situations, where
numerically imprecise statements such as "the probability
of consequence c is greater than 25%" or "the value of
consequence c is between 100 and 300" occur. Further-
more, some such approaches also allow for comparative
sentences such as "consequence c is preferred to conse-
quence d". These statements are then represented in a
numerical format.

Typically, the alternatives are represented by the
consequences they might imply. Over these consequences,
convex sets of candidates of possible probability and utility
functions are defined. For instance, in (Danielson and
Ekenberg, 1998) an approach is suggested, where the
possible functions are expressed as vectors in polytopes
that are solution sets to sets of probability and utility esti-
mates. That the probability of c~j lies between the numbers
al and b~ is expressed as Pij e [a,b], i.e. P0 > a and Pij < b.
Similarly, that the probability of c~j is greater than the
probability of Ckj is expressed by the inequality Pij > Pu.
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Each statement is in this way represented by one or more
constraints. The sets of probability estimates under consid-
eration is the set of constraints of the types above, together

with the equation ~j p~j = 1, for each alternative involved.
The utility estimates are represented by a set of constraints
in a similar way.

Definition 1: A decision frame is a structure
({CI ..... Cm},P,V), where each Ci is a finite set 
consequences {cil ..... Cihi}. P is a finite list of linear
constraints in the probability variables and V is a finite
list of linear constraints in the value variables.

To evaluate a decision frame, it is important to find optima
for given objective functions. The following two defini-
tions are intended to simplify the procedures suggested in
the following sections.

Definition 2: Given a consistent constraint set X in
{xi}ie I and a function f,

Xmax(f(x)) =def sup(a [ {f(x) > a} u X is consistent).

Similarly, Xmin(f(x)) =def inf(a [ {fix) < a} 

consistent)

Definition 3: Given a consistent constraint set X in

{xi}i~I, the set of pairs {(Xmin(xi),Xmax(xi))} 

the orthogonal hull of the set and is denoted
(Xmin(xi),Xmax(xi))n. 

The focal point is the most likely vector as perceived by
the decision maker. It can be changed during the course of
interaction, and varying focal points can be chosen by the
decision maker at different times according to his appre-
ciation of the current decision situation.

Definition 4: Given a constraint set X in {xi}i~ I and

the orthogonal hull H = (ai,bi) n of X, a focal point is a

solution vector (r 1 ..... rn) with i <__ri _<bi, Viii. T he

hull midpoint is (m1 .... ,ran) with i =a,+ b~
2

Further, an acceptable metric should be defined that
complies with the decision maker’s understanding of the
decision problem. Thus, the standard concept of distance is
introduced.

Definition 5: Given two vectors a and b, the distance
function d is a function that satisfies

(i a) d(a,b) > 0 if a 
(i b) d(a,a) = 
(ii) d(a,b) = d(b,a)

(iii) d(a,b) _~l(a,e) + d(e,b) for 

For the definition to be meaningful in this context, the
distance function must be reasonable, even though this

1 i is an index set, i.e. a set of integers.
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does not follow directly from the definition. In general, the
focal point does not need to coincide with the orthogonal
hull midpoint. In fact, the hull midpoint need not even be
consistent. In those cases, a set of constraints is said to be
skewed, and the concept of skewness is introduced to
describe this.

Definition 6: Given a constraint set X in {xi}i~i, two

real vectors a = (a1 ..... an) and b = (b1 ..... bn) of the

orthogonal hull (ai,bi) n of X, a distance function d, a

constant k ~ [0,1], a hull midpoint m, and a focal point
r. The skewness of the base X with respect to r is

k. d(r, m__.....~).

d(a,b)

As will be discussed in the section on symmetry, when a set
of constraints is skewed, there exists a way of aiding the
decision maker in avoiding this asymmetry by using the
symmetric hull instead.

Definition 7: Given a constraint set X in {xi}i~ I, the

orthogonal hull (ai,bi) n of X, and a focal point

(rl ..... rn). Let i =min(ri-ai, bi-ri), Vi eI. Th

symmetric hull is (ri-di,ri+di)n.2

Evaluation

Once the decision maker has entered his decision data into
an evaluation tool, the evaluation phase commences. In any
interesting decision problem stated by intervals, the solu-
tions overlap in the sense that there exists no single course
of action preferred regardless of which vectors are chosen
from the polytope defined by the intervals. If there would
be such a single course of action, then any experienced
decision maker would be able to realize this without the aid
of a decision support machinery.

The decision situation can be evaluated by calculating
the expected value for each alternative, but which of the
infinite number of vectors should be chosen as representa-
tive for the alternative in the calculation? And what if
comparisons exist between consequences in the two alter-
natives? There is a strong element of comparison inherent
in a decision procedure. The evaluation results are
interesting in comparison to the results of the other conse-
quence sets. Hence, it is reasonable to consider the differ-
ences in expected value (strength) as well. Then it makes
sense to evaluate the relative strength of Ci compared to Cj
in addition to the strengths themselves, since such strength
values are compared to some other strengths anyway in
order to rank the consequence sets.

2 If the symmetric hull coincides with the orthogonal hull, then the

skewness is zero. This follows from d(r,m) = 0 if the midpoint m is equal
to the local point r.



Definition 8: Given a decision frame

({ {Cik}mi}m,P0,V0), 5ij denotes the expression

~k Pik’Vik - ~k Pjk’Vjk =

Pil’Vil + Pi2"vi2 +-" + Pimi’Vimi - Pj 1 .vj 1 - Pj2"vj2 -

¯ " - Pjmj’Vjmj over all consequences in the

consequence sets Ci and Cj.

This is, however, not enough. Sometimes, the decision
maker wants to put more emphasis on the maximal differ-
ence (displaying a difference-prone behavior). At other
times, the minimal difference is of more importance. This
is captured in the medium difference.

Definition 9: Given a decision frame (C,P,V), let
a e [0,1] be real number. The a-medium difference of

in the frame is PV[ot]mid(Sii)_ = a.PVmax(Sij) + 5ij

o0.PVmin(Sij). The average difference of Sij in the frame

is PVavg(Sij) = PV[0.5]mid(~Sij).

The a can be considered a precedence parameter that indi-
cates if one boundary should be given more weight than the
other. The average is also the relative strength, i.e. the
difference in maximal 5-values when the frame is consid-
ered from the viewpoint of each consequence set respec-
tively. Thus, it is a measure of difference in strength
between the consequence sets. This view duality is a key to
understanding the selection process proposed later.

Definition 10: The relative strength of Ci compared to

Cj in a decision frame is

’*" max(6j)- ,.v max(8~,)pV .
mld ( 8,j ) 

2

Dominance
The selection procedure suggested in this paper is based on
the contraction principle as introduced below and on the
concepts of strong, marked, and weak dominance as intro-
duced in definition 11.

Definition 11: Given a decision frame (C,P,V),
Ci strongly dominates Cj iff

"Vmin(~pi,’v,-~~p,,.v/~)>-O"

Ci markedly dominates Cj iff

Ci weakly dominates Cj iff

The decision maker’s selection procedure then proceeds as
follows. Usually a number of consequence sets are still
being considered. An example shows the use of
dominance.

Contraction
The contraction is a generalized sensitivity analysis to be
carried out in a large number of dimensions. In non-trivial
decision situations, when a decision frame contains
numerically imprecise information, the domination princi-
ples suggested above are often too weak to yield a conclu-
sive result by themselves. Thus, after the elimination of
undesirable consequence sets, the decision maker could
still find that no conclusive decision has been made. One
way to proceed could be to determine the stability of the
relation between the consequence sets under consideration.
A natural way to investigate this is to consider values near
the boundaries of the constraint intervals as being less
reliable than the core due to the former being deliberately
imprecise. This is taken into account by measuring the
dominated regions indirectly using the concept of
contraction.

Definition 12: Given a decision frame X with the
variables Xl ..... Xn, 7r ~ [0,1] is a real number, and {Tri
[0,1] : i = 1 ..... n} is a set of real numbers. [ai, bi] is the
interval corresponding to the variable xi in the solution

set of the system of constraints, and (kI ..... kn) is a focal
point in X. A r-contraction of X is to add the interval
statements {xi ~ [ai+Tr’ri’(ki-ai), bi-r’Tri’(bi-ki)] : 
1 .....n} to the frame X.

Contrary to volume estimates, contractions are not
measures of sizes of solution sets but rather of the strength
of statements when the original solution sets are modified
in controlled ways. Both the set of intervals under investi-
gation and the scale of individual contractions can be
controlled. Consequently, an expansion can be regarded as
a focus parameter that zooms out from central sub-intervals
(the core) to the full statement intervals. This is not 
precise selection procedure, and it is not meant to be. It
should be guided by the aims and investigation patterns of
the decision maker. Its particular instantiation depends on
the decision situation, whether the decision maker is a
human or a machine, and whether the goal is to make an
ultimate decision or (very common for humans) to gain 
better understanding of the decision problem.

Frame Symmetry
A couple of frame views may affect the evaluation. They
can be regarded as views taken by the decision maker on
the input data. The first view is the symmetry of the deci-
sion frame as introduced above. A frame is skewed (or
asymmetric) if the focal point does not coincide with the
hull midpoint. For skewed frames, the symmetric hull is
meaningful and constructed by adjusting the interval of
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each hull dimension from one side so that the focal and
midpoints coincide. The idea is that considerably skewed
bases might be the result of misconceptions or mistakes
from the decision maker. This is a view taken on the input
material, and it might be changed during the evaluation to
appreciate its effect on the outcome of the selection
process.

Example 1: Consider a decision situation involving two
consequence sets C1 and C2. C1 has ten consequences

while C2 has only one. There are no probability

constraints and the probability focal point for C1 is 0.1 for
each consequence. While the orthogonal hull covers all
consistent probability assignments, i.e. [0,1] for each
probability variable, the symmetric hull is symmetric
around the focal point, i.e. [0,0.2]. The value base
contains.

vll ~ [1.00, 1.00]
vii ~ [0.00, 0.00] for i=2..10
v21 ~ [0.10, 0.20]

An evaluation using the orthogonal hull results in the
consequence set CI being the preferred one for almost all
contractions. This is counter to many decision maker’s
appreciation of the example. An evaluation using the
symmetric hull, on the other hand, yields that
consequence set C2 is the preferred one for all
contractions and the result is stable. This result is
perceived to be more indicative by many decision
makers.

Quadratic Compensation
Another frame view is the quadracy of the expected value.
The idea is that the decision maker works in a very low-
dimensional fashion, considering only a few statements at
the same time. Then it is sometimes perceived as an unex-
pected effect when wider intervals centered around the
same focal point evaluates to better numeric values. One
candidate to alleviate this effect is the quadratic compen-
sation. Perhaps it is easiest pointed out by some examples.

Example 2: Consider a decision situation in,,olving two
consequence sets C1 and C2 that have two consequences

each. The corresponding
following statements.

Pll ~ [0.00, 1.00]
PI2 ¢ [0.00, 1.00]
P2i ~ [0.40, 0.60]
P22 ~ [0.00, 1.00]

decision frame contains the

Vl I E [0.30, 0.70]
vl2 = 0.00
v21 ~ [0.30, 0.70]
v22 = 0.00

The orthogonal hull for the probability base is

Pli ~ [0.00, 1.00] for i=1..2
P2i ~ [0.40, 0.60] for i=1..2

For a r-contraction, the probability variables for 7r e [0,1 ]
become
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Pli ~ [7r/2, 1-7r/2] for i=1..2
P2i ~ [0.40+~r/10, 0.60-~r/10] for i=1..2

Since the example is simple, the calculations can be done
directly.

PVavg(~512) = ((!-7r/2)’0’7 - (0.4+~r/l 0)-0.3 - ((0.6-~r/10).0.7 
r/2-0.3))/2 = 0.08 - 0.08.~r

According to the rule, consequence set C1 is the preferred

one for all contractions 7r e [0,1 [. ¯

The only difference between the two consequence sets in
the example is the width of the probability statement for
the first consequence, reflecting greater uncertainty. This
translates into higher 6-values because of the quadracy of
the expected value. While this is mathematically correct, it
is perceived by some decision makers as a deficiency. It
does not fit into their view of the data, and the evaluation
of dominance should allow for this to be compensated. For
small, local changes to single intervals, the effect on the
expected value of adjusting both probability and value
statements may be linearized by using quadratic compen-

sation. The quadratically compensated medium 8ij for the
expected value becomes the following expression)

Definition 13: Given a decision frame (C,P,V), the

quadratic average difference of Sij in the frame is

PVqavg(~ij) 

The quadratically compensated average concept leads to a
modification of the rule for marked dominance.

Definition 14: Given a decision frame (C,P,V),
Ci q-markedly dominates Cj iff

It is not the case that either the standard or the quad-
compensated marked dominance is the "natural" one, even
though formally the case is clear. They represent different
views on the input data, preferably to be considered
together, depending on the type of application at band.

Definition 15: Given a decision frame (C,P,V), the

medium difference 8ij in the frame is
,. v rain(S j) + e

PVmid(5~)= max
min max(~j)

2

Then it follows that

3PmaxVmin( ~,k Pik’Vik) should be interpreted as Pmax(VEimm) with

VEjmin-" as an optimizing procedure to find the local minimum in the
value constraint set..



pVqavgfS;;) = ""avg( ~j ) + ""mid ( ~j 
2

This simplifies the calculations in the example.

Example 2 (eont’d): Let the example above continue 

applying the newly defined functions. PVqavg(Sij) 
calculated as follows.

PVmid(812) = (( I-r/2).0.3 - (0.4+r/l 0).0.7 - ((0.6-r/10).0.3 
r/2.0.7))/2 = -0.08 + 0.08.7r

PVqavg(~12) = (0.08 - 0.08.7r- 0.08 + 0.08.70/2 = 

The PVmid(512) is the same as PVavg(812) but 

opposite signs. In a sense, PVmid(812) balances out

PVavg(Sl2). Since the only difference between the conse-

quence sets is the width of the intervals, the pVqavg(812)
difference is zero.

Example 3: Next consider a similar decision situation
involving two consequence sets C1 and C2 having two

consequences each. In this case, C1 has wider statements

but C2 has the most favorable focal point. The corre-
sponding decision flame contains the following con-
straints:

Pll ~ [0.00, 1.00]
PI2 e [0.00, 1.00]
P21 ~ [0.50, 0.70]
P22 e [0.00, 1.00]

Vll ~ [0.00, 1.00]
v12 = 0.00
v21 e [0.50, 0.70]
v22 = 0.00

The orthogonal hull for the probability base is

Pli ~ [0.00, 1.00] for i=1..2
P21~ [0.50, {).70]
P22~ [0.30, 0.50]

For a ~r-contraction the probability variables for 7r ~ [0,1]
become

Pli ~ [7r/2, l-~r/2] for i=1..2
P21~ [0.50+rr/10, 0.70-7r/10]
P22~ [0.30+7r/10, 0.50-7r/10]

Then PVavg(612) and PVmid(612) becomes:

PVavg(Sl2) = ((I-7r/2)" I - (0.5+7r/10).0.5 - ((0.7-7r/I 0).0.7))/2 
0.13 - 0.24.7r

PVmid(812) = (-(0.5+7r/10).0.7 - ((0.7-7r/I 0).0.5 - 7r/2. l 
0.35 + 0.24-7r
PVqavg(Sl2) = (0.13 - 0.24-7r- 0.35 + 0.24.70/2 = -0.1 

According to PVavg(812), consequence set 1 i s t he

preferred one for contractions 7r up to 54%, after which

C2 is to prefer. According to PVmid(Sl2), consequence set

C2 is again to prefer for all 7r. The contraction dependent
term in PVavg(812) is the same as in PVmid(S12) but 

opposite signs. Thus, they cancel out in PVqavg(Sl2), but

the constant -0.11 remains. This is in accordance with

many decision maker’s understanding of the input data.

Conclusions
Using interval approaches, it is difficult to find reasonable
decision rules that choose an alternative out of a set of
alternatives, and that really corresponds to the intuition of a
decision maker. We have found two complementary views
on the input data to be particularly helpful to the decision
maker - symmetry and quadracy. The idea of symmetry is
that considerably skewed bases might be the result of
misconceptions or mistakes from the decision maker. The
idea of quadracy of the expected value is that the decision
maker works in a very low-dimensional fashion,
considering only a few statements at the same time. Then it
is sometimes perceived as an unexpected effect when wider
intervals centered around the same focal point evaluates to
better numeric values. By offering the decision maker
alternative views on the data, he is in a better position to
appreciate the situation. These concepts scale well.
especially when there are no comparisons of probability
values between different consequence sets. Then ordinary
linear programming methods can be employed (Danielson
and Ekenberg, 1998).
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