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Abstract

The widespread use of influence diagrams to represent
and solve Bayesian decision problems is still limited by
the inflexibility and rather restrictive semantics of in-
fluence diagrams. In this paper, we propose a number
of extensions and adjustments to the definition of in-
fluence diagrams in order to make the practical use of
influence diagrams more flexible and less restrictive. In
particular, we describe how deterministic relations can
be exploited to increase the flexibility and efficiency of
representing and solving Bayesian decision problems.
The issues addressed in this paper were motivated by
the construction of a decision support system for mis-
sion management of unmanned underwater vehicles.

Introduction

Much effort has been devoted to the formalization of de-
cision problems in order to provide automated support
for their solution. Influence diagrams (Howard & Math-
eson 1981; Shachter 1986) have proven to be a vital can-
didate for the solution of sequential decision problems
and the literature is rich on proposals that extend their
expressive power (Shenoy 1992; Nielsen & Jensen 1999),
improve their solution (Jensen, Jensen, & Dittmer 1994;
Madsen 1999), and extend their functionality (Dittmer
& Jensen 1997; Shachter 1999). It does seem, however,
that influence diagrams have major obstacles in finding
their way into widespread daily use. Experience shows
that users have difficulties with the construction of in-
fluence diagrams and in particular with the semantics
of information arcs. In the practical use of influence
diagrams, it is a frequently occurring problem that the
partial order imposed by the information arcs is dif-
ficult to predetermine. For diagnostic problems it is
often difficult to foresee exactly which observations will
be available at a given time. A similar problem arises
in the case of unreliable sensors. By exploiting the de-
terministic nature of observations we point out that the
strict order of calculations in the solution of influence
diagrams can be relaxed. Deterministic relations, in
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general, can be utilized to improve the efficiency and
flexibility of representing and solving decision problems.

The ideas presented in this paper rest on experience
from ADVOCATE - an EU funded project. The aim of
ADVOCATE is to design and develop new software ar-
chitectures which add intelligence to existing software
to cover different situations arising from any dysfunc-
tion of unmanned underwater vehicles (UUVs). ADVO-
CATE uses Bayesian networks and influence diagrams
in diagnosis, risk assessment, and mission management
decisions. Here we focus on mission management deci-
sions related to missions involving the UUV system K-
Fisch manufactured by STN-ATLAS Electronic. Dur-
ing the construction of an influence diagram represen-
tation of the mission management decision problem a
number of interesting issues related to exploiting deter-
ministic relations in the representation and solution of
influence diagrams have emerged. The issues are de-
scribed in terms of the influence diagram developed for
the underwater vehicle mission management.

The main contribution of this paper is a deeper
understanding of how to exploit deterministic relations
when modeling Bayesian decision problems as influence
diagrams in order to increase the efficiency and flexibi-
lity both representationally and computationally.

Preliminaries and Notation

An influence diagram is a triple ID = (G, ), U} where
G = (~;,E) is a directed acyclic graph with chance,
decision, and utility nodes, 7) is a set of conditional
probability distributions, and/4 is a set of local utility
functions. The nodes of G are connected by arcs. An
arc into a chance node indicates a possible probabilistic
dependence relation and an arc from a node X into a
decision node D indicates that the state of X is known
when decision D is to be made. Arcs into decision nodes
are referred to as information arcs. Arcs into a utility
node tl specify the domain of the corresponding local
utility function. To solve a decision problem is to deter-
mine an optimal strategy ~ = {Si}ie[lml consisting of
a decision rule 5i for each decision Di and to compute
the maximum expected utility {](z~} of z~.
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Let 7~ = {R1,..., R~} and D = {D1 .... , Dn} denote
the chance and decision variables, respectively. Fur-
thermore, let ~ = {P{R1 I pa(R1 )) .... , P(Rm [pa{Rm))}
and/4 = {U1 .... , Uo} be sets of probability distribu-
tions and local utility functions, respectively. From
and U, l:l(/~} can be computed as:

(1)

where M is the generalized marginalization operator
introduced by (Jensen, Jensen, & Dittmer 1994).

The set of chance variables T~ is partitioned into dis-
joint information sets Z0,..., Za relative to the deci-
sion variables. The partition induces a partial order-
ing -~ on the variables of the decision problem. The
set of variables Z~ observed between decisions D~ and
Di+l precedes Di+l and succeeds Dt in the ordering:
27o -~ D1 -~ Z1 ... -~ DrL -~ Zn. We will for ease of ex-
position assume a total order on the decision variables.
Equation 1 can be computed using local computation
by iteratively eliminating variables one at a time. Let Y
be the next variable to eliminate and let (gy = {qb E (9 
Y E dora(~)} and ~gy = {~ E lg [ y E dom(~)} where
(9 and lg are the current sets of probability and utility
potentials, respectively. Calculate ~} = My I-Ieecy
and ~ = My l’-I,~eey ¢ )’-*e~’r ~b and update the sets

f q,*1(9 and ¯ as (9" = (gu(¢V}\(gy 
An elimination order a is a legal elimination order, if
all variables in information set Zi are eliminated before
Di for all i. Thus, Zo is the set of variables initially ob-
served and Za is the set of variables never be observed
or observed after the last decision has been made. A
legal elimination order can be organized as a strong
junction tree (Jensen, Jensen, & Dittmer 1994).

An observation on a variable R implies that the exact
state r of R is known and is entered as an instantiation
potential. A instantiation potential f{R) is a determini-
stic function with domain R taking on the value 1 for
the state r and 0 otherwise.

The ADVOCATE Project

ADVOCATE describes a distributed system for diagno-
sis and control of UUVs. The ADVOCATE system con-
sists of a number of modules which communicate via a
logical bus based on the CORBA standard, see figure 1.
In this paper we focus on the mission management prob-
lem which involves monitoring the energy consumption
in an autonomous underwater vehicle (AUV) and con-
sequently the decisions on the further continuation of
the mission.

The assumption is that at some point during opera-
tion of the AUV an unexpected reduction in the remain-
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logical ¢ommunlation bun (ORB)

Figure 1: The CORBA architecture.

ing energy will occur. At this point a decision on the
further continuation of the mission has to be made by
the mission management. An influence diagram model
has been developed to support this decision. In order
to support mission management decisions on the con-
tinuation of a mission is it necessary to represent the
planned mission in the influence diagram. A decision
on the continuation of the mission is based on the re-
maining energy and the estimated energy consumption
of the underwater vehicle. The decision is either to pro-
ceed with the mission as planned, to abort the mission,
or to decrease or increase the speed of the vehicle. A
rough sketch of the model is shown in figure 2.

Figure 2: A rough sketch of the ADVOCATE model.

The influence diagram model was extracted from do-
main experts describing the physical relations between
the components of the AUV, in particular the power
supply. The uncertain relations stem from the uncer-
tain measurements of the remaining energy and the ex-
act discharge characteristics of the power supply as well
as the expected energy consumption.

Uncertain Information Arcs

The information arcs of an influence diagram indicate
the order in which information becomes available to the
decision maker. During the construction of an influence
diagram representation of a Bayesian decision problem,
the model builder asks the domain expert to specify
the order in which information becomes available. This
may, however, not always be possible. For instance,
a domain expert may want to specify that either she
has made an observation on a particular variable R be-
fore the first decision, R will never observed, or R will
be observed after the last decision has been made. In
this case the set of variables initially observed (20) 
not known until the decision maker has specified which
variables are observed. If the solution of an influence



diagram is postponed until 270 and the states of the
variables of 270 are known, then the computational ef-
ficiency can be improved w.r.t, both space and time.
Usually, the variables of 770 are the last variables to be
eliminated when solving an influence diagram ID, but
since the solution of ID is postponed until 270 and the
states of the variables of 270 are known, the variables of
770 can in fact be eliminated at any point.

The computational saving is caused by a reduction in
the size of the effective junction trees. An effective junc-
tion tree is the junction tree used to perform the compu-
tations and not the junction tree constructed from the
influence diagram representation of the problem. We
propose to extend the definition of influence diagrams
to include a notation - a dashed arc - specifying that
a variable R either is observed prior to the first deci-
sion, after the last decision, or not at all. These arcs
will be referred to as uncertain information arcs. The
proposed extension can simplify the modeling task con-
siderably as it facilitates the representation of different
decision scenarios within the same influence diagram.

Example 1
Consider a decision problem involving an uncertain en-
tity A which the decision maker may have two obser-
vations F1 and F2 on. This produces 4 different infor-
mation scenarios, see figure 3. If F1 and F2 are known
prior to the first decision D, then:

0(~) ~-mDax ~’- P(A)P(FIIA)P(F2IA)U(A,D).
F1 ,Fz A

Figure 3: Observations on F1 and F2 are possible.

The deterministic relations induced by the instantia-
tion potentials on F1 and F2 can be exploited to reduce
the computational complexity of computing I:1(/~):

0(,~} =mDax ~--" P(A)U(A, ~-"P(F11A)f(F1)
A F1

~’- P(F2 IA)f(F:z).
F2

The difference in computational complexity of the
above equations is even further emphasized, if the in-
stantiations on F1 and Fz are entered by domain reduc-
tion rather than by marginalization. []

Eliminating the variables of 270 before any decision
variable is eliminated will reduce the size of the junc-
tion tree. b-hrthermore, it is possible to exploit the same

junction tree structure for a set of different decision
scenarios. Due to the deterministic nature of instanti-
ations, the variables of 270 can in fact be eliminated at
any point during the solution of the influence diagram.

Proposition 1. A deterministic potential f(X} on a
variable X E 270 implies that X can be eliminated at any
point.

The fact that observed variables of 270 in decision
problems with a single decision can be eliminated at
any point has been used extensively when representing
and solving influence diagrams. Corollary 2 shows that
this property holds in general.

Corollary 2. Observed variables of 27o can be elimi-
nated at any point.

Eliminating an instantiated chance variable R E 270
before decision variable D1 may produce decision rules
with too large domains. That is, the domain of a de-
cision rule 5t (dora(fit}) for decision variable Dt 
contain variables which are irrelevant for Dr. However,
it is possible through a structural analysis to determine
whether all variables of dora(St) are relevant for Dr,
see e.g. (Nielsen & Jensen 1999). This can also be de-
termined through a numerical analysis of 5t.

Mission and Background Information

For the task of mission replanning it is necessary to
represent information about the planned mission in the
model. A planned mission is represented by the dis-
tance to cover (Dp) and the speed to cover the distance
with (Sp). From Dp and Sp the time planned for the
mission -I’p is computed. At the point of decision, the
progress of the mission (M) is known. This is used
to compute the remaining distance (DR) and the time
used so far (Tu), see figure 4(a).

At the point of decision (D) information about the
planned mission such as the planned speed (Sp), the
progress of the mission (M), the remaining energy
(RM), and the planned distance to cover (Dp) may 
known, see figure 4(b).

(a) (b)

Figure 4: Planned mission(a) and the information avail-
able to the decision maker(b).

The time to complete the mission Tp is a determini-
stic function of De and Sp. This implies that 1:1{~)
is independent of whether or not Tp is specified to be
known by the decision maker before the decision.
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In ADVOCATE readings on sensors and data in gene-
ral might be lost. Thus, it is impossible for the do-
main experts to specify the set of background informa-
tion variables. The solution of the decision problem is
postponed until the set of observed variables is known.
Thus, a single junction tree can be used to solve the
decision problem for different decision scenarios.

Reduction of Possibilities

In a symmetric Bayesian decision problem the set of
the decision options dom(Di) available to the decision
maker at a decision Di are assumed to be independent
of the past. This is, however, almost never the case
in practice. It is often desirable to reduce the possible
decision options at a decision in the future based on
decisions and observations made in the past. The set
of decision options available to the decision maker can
be constrained by introducing a constraint variable C
with two states ~ and n. The state of C is a determini-
stic function of its parent variables which returns ~ for
all legal parent configurations and rt otherwise. The
legal configurations are enforced by instantiating C to
!$ before the decision problem is solved.

Example 2
Assume that we are modeling a single player card game
where the decision maker holds three cards (an ace CA),
a king (K), and a queen (Q)). Assume the decision
maker has to make two decisions. The first card to play
(D1) and the second card to play (D2). Once a card 
been played it cannot be played at a later point. Thus,
the decision options at the second decision has to be
constrained such that the same card is not played twice.
This can be achieved by introducing a child constraint
variable CC) of D1 and D2, see figure 5.

Figure 5: A single card can only be played once.

The influence diagram ID of figure 5 specifies that
the state of C is not known until after both decisions
have been made. This is, however, not the case. In
fact, the state of C is known prior to the solution of
ID. According to the traditional definition of influence
diagrams the decision maker observes the variables of
2:0 and nothing else before the first decision is made.
However, C ¢ 2:o and C is known before the first de-
cision. Thus, according to the traditional definition of
influence diagrams, IO is not a valid influence diagram
due to the missing arcs from C to D1 and D2. However,
due to the deterministic nature of constraint variables
these arcs are not required. []
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If some of the utilities are negative, then constraint
variables can introduce serious problems as expected
utilities might be zero CELl = 0) due to the utility being
zero (U = 0) or due to zero probabilities (p = 0) repre-
senting illegal state space configurations. Thus, the use
of constraint variables can imply that a decision option
d for a decision variable Di can have EU(Di = d} = 
while EU(Di = d’) < 0 for all d’ ¢ d. This, implies
that maxD~ )-’~WD~ ~ = d, but selecting Di = d will

produce an illegal state space configuration. Further-
more, the introduction of constraint variables makes the
semantics of the model less clear. Notice that a linear
transformation of the (total) utility function solves the
problem of negative utilities.

We propose to model the asymmetry using determini-
stic functions specifying the legal configurations of de-
cision variables based on the fact that constraint vari-
ables correspond to introducing a deterministic function
f{:D’, T~’} where :D’ C_ :D and T~’ C T~. We are not intro-
ducing a new formalism to represent and solve asym-
metric decision problems in general. Rather, we are
proposing methods to handle restricted kinds of asym-
metry within the framework of symmetric Bayesian de-
cision problems and to solve these problems using ex-
isting efficient methods for solving symmetric decision
problems. None of the existing methods for repre-
senting and solving asymmetric Bayesian decision prob-
lems (e.g. (Shenoy 2000) or CNielsen & Jensen 2000))
are complete in the sense that all asymmetries can be
represented without the introduction of special states
and solved efficiently without some unnecessary com-
putations. Therefore, it is still necessary to develop or
extend the existing framework of influence diagrams for
representing symmetric Bayesian decision problems to
cope with asymmetries more efficiently.

Mission Termination

We want to model the fact that the mission should be
aborted CA), if the mission cannot be completed given
any of the possible speeds (D). That is, the mission
should be aborted if the remaining energy (RM) is less
than the required energy CRQ) to complete the mission
given any speed, see figure 6.

Figure 6: The mission is aborted if there is not enough
energy to cover the distance given any speed.

The variable R specifies whether or not RM < RQ.
The variable L specifies whether or not the vehicle is lost
during the mission. To ensure the mission is aborted
when RM < RQ, the vehicle is assumed to be lost if the
mission is not aborted. This situation could be modeled



more elegantly, if the possible decision options could be
restricted using a deterministic function over D, RQ,
and RM.

Deterministic Relations

In general, deterministic relations in influence diagrams
are not only introduced by instantiations of variables
and constraint variables. Deterministic relations can
be specified in the conditional probability distributions
of the model. Deterministic relations can be exploited
to relax the constraints imposed by information arcs on
the possible orders of elimination. Additional degrees
of freedom in the selection of elimination orders can
be exploited to increase the computational efficiency
of solving Bayesian decision problems. A deterministic
child variable X can be eliminated at any point in time
up to the point where all its parent variables are known.

Example 3
Consider the influence diagram ID depicted in fig-
ure 7(a) and assume the relationship between S and
T can be described as a deterministic function.

(a) (b)

Figure 7: Two examples where the relationship between
S and T is assumed to be deterministic.

Due to the deterministic relation between S and T,
we can compute maximum expected utility ~1(~) of the
optimal strategy ~ as:

= )-- ~-- p(S) mDax ~-- PCTI S)P(VIT)UCT, )
v S T

= ~-~-P(S)~-mDaxP(TIS)P(VIT)U(T,D).
V $ T

That is, the marginalization of D and T can be com-
muted. Next, assume S = s is known which implies
T -- t and produces:

fl(~} = ~e(VIt}e(s)P(tls)mDaxU(t,D)
V

= ~--P(VIt}P(S)mDaxU(t,D).

Thus, the deterministic relationship between S and
T can be exploited both if the computations are per-

formed before S is known, but especially if the compu-
tations are performed after S is known. []

Deterministic relations cannot only be exploited to
commute the marginalization of chance and decision
variables, they can also be exploited to distribute the
marginalization of decision variables over local utility
functions.

Example 4
Consider the influence diagram ID depicted in fig-
ure ?(b) and assume once again that the relationship
between S and T can be described as a deterministic
function. Exploiting the deterministic relationship be-
tween S and T, the maximum expected utility Q(~) 
the optimal strategy ~ is computed as:

= ~- PCW) ~-" PCS) mDax ~- P(TIS)

+P{TI S) ~- P(VIT)U{S, V,W}). (3)
V

Equation 3 does not offer a decrease in the total num-
ber of operations performed in order to solve ID com-
pared to equation 2. It can, however, be used to reduce
the number of multiplications and additions by increas-
ing the number of maximizations. []

Battery Model

The estimated energy consumption (RQ) to cover the
remaining distance (DR) given different speeds (SR) 
a function of the current (C) drawn from the battery
and the remaining time (TR), see figure 8(a). The speed
SR should be selected such that RM > RQ. In order to
compute RO, it is necessary to represent the battery
in the model. The power (P) drawn from the battery
is computed as a function of SR, the drag factor (DF),
the efficiency of the thrusters (ET), the cross section
(Cs), and the density of the water (Dw). The current
C drawn from the battery is a function of P and the
voltage (V), see figure 8(b).

The age and type of the battery and the water tem-
perature are factors affecting the efficiency of the bat-
tery. As the age and type of the battery are not known
for certain a probability distribution is specified.

Costs and Rewards

For the sake of completeness we briefly describe the
cost and reward functions of the ADVOCATE model.
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Figure 8: Energy consumption(a) and battery(b).

The utility function is decomposed into several local
functions combining measures such as the cost of losing
an AUV, cost of mission, cost of delays, reward from
successful mission, e.t.c. The cost of a mission is in part
determined by the total time used on the mission TT =
TR + Tu and whether or not the mission is completed
with a delay (TD), see figure 9. Besides the costs of 
mission there are rewards of completing a mission.

Figure 9: The cost of a mission is in part determined
by the time used to complete the mission.

Discussion

Deterministic relations can be exploited to reduce the
computational complexity of solving Bayesian decision
problems and to ease the construction of influence di-
agram representations of Bayesian decision problems.
The deterministic relations we have considered are in-
duced by knowledge about the state of a variable, con-
straints on decision options, or deterministic condi-
tional probability distributions. We have proposed ex-
tensions to the traditional definition of influence dia-
grams exploiting deterministic relations in order to in-
crease the efficiency of representation and solution of
Bayesian decision problem. Furthermore, deterministic
relations between variables can, for instance, be used
to simplify value of information analysis (Dittmer 
Jensen 1997; Shachter 1999). Due to space constraints
the applicability of deterministic relations cannot be
described properly.

The extensions of representation and solution of in-
fluence diagrams proposed were motivated by the con-
struction of a real-world decision support system for
mission management of UUVs. At any given point
in time of a mission the remaining energy of the bat-
tery can be measured and the progress of the mission
is known. Thus, the influence diagram model can be
used to continuously monitor the energy consumption.
If the remaining energy of the battery is insufficient to
complete the planned mission with the selected speed,
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the mission is replanned. The mission can be adjusted
by either aborting the mission, or reducing or increasing
the speed. The effectiveness of the mission management
model constructed in the ADVOCATE project is cur-
rently being evaluated through the use of data gathered
during previous missions with the K-Fisch UUV sys-
tem. STN-ATLAS has found the model to be very use-
ful for the mission management decision making. The
usefulness of the model is emphasized by the intuitive
structure and the close relationship between the model
and the way decisions are made by mission manage-
ment. The model decomposes into different subnet-
works which naturally can be associated with entities
of the modeled problem domain. This makes it partic-
ularly simple to apply the model in a different setting,
i.e. to consider a different battery model.
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