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Abstract

One aspect of evolutionary computing as a
method of data mining, is its intrinsic ability to
drive model selection according to a mixed set
of criteria. Based on natural selection,
evolutionary computing utilizes evaluation of
candidate solutions according to a ftness
criteria that ~xfight or might not share the exact
same implementation as the metric used to
measure the performance of the selected
solution. This paper presents the results of
using four different fitness functions to evolve
nai’ve Bayesian networks based on a
combination of Mean Absolute Percent Error
and Worst Absolute Percent Error values tbr
individual population members. In addition to
the error measurements tiom both the training
and lbrecast evaluations, data is presented that
shows APE lbr individual members during the
tbrecast generation and evahtation phase.

Introduction

One aspect of evolutionary computfi~g as a
method of data mining, is its intrinsic ability to drive
model selection according to a mixed set of criteria.
Based on natural selection, evolutionary computing
utilizes evaluation of candidate solutions according to
a fitness criteria that might or might not share the
exact same implementation as the metric used to
measure the performance of the selected solution [1].
For example, the final measurement of a solution
might be one of"does it work" while the ftness
criteria might be implemented in such a way to give
weight to not only does the solution work, but to also
consider particular characteristics of the solution such
as its overall complexity and ability to accommodate
chall,,e

In previous work, a fiamework tbr inferencing
Bayesian Networks from time series data was
presented that used genetic programming to evolve
predictive models [2]. The t?amework relied upon a
fitness ftmction that was computed using a normalized
version of mean square error to direct the natural
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selection process. Although additional work shown in
[3] validates the use of this fitness metric, it became
apparent that in order to compare the results of the
natural selection framework with results from other
forecasting methods in forecasting competitions such
as M-3 [4], a more standard measurement would be
needed, with Mean Absolute Percent Error [5], or
MAPE, being the best initial candidate for exploration.

One interesting outcome of the work done to
utilize MAPE as a performance measure of the
generated predictive model, was the exploration of the
use of MAPE as part of the fitness function. During
this activity, it was noted that reliance upon MAPE as
the sole contributor to fitness would cause the
fi’amework to produce predictive models that would do
consistently well in the Absolute Percent Error (APE)
sense for most tbrecast values, but noticeably worse
tbr others. Given this observation, the question arises
as to what impact, if any, would making fitness a
thnction of MAPE and the Worst Absolute Percent
Error (WAPE) observed over the training set have 
the overall performance of the evolved predictive
model.

]’his paper presents the results of using lbur
different fitness functions to evolve na’l’ve Bayesian
networks based on a combination of MAPE and
WAPE values for individual population menabel’s.
The natural selection framework is used to generate
predictive models tbr both a stationary and no,a-
stationary time series from synthesized data. In
addition to the error measurements from both the
training and forecast evaluations, data is presented that
shows the change in MAPE and WAPE by generation
during the natural selection process, and the APE for
individual members during the forecast generation and
evaluation phase.

Fitness and Model Evolution

Simply put, utilizing natural selection to identity
predictive models based on time series data involves
lbur basic steps that are common to both genetic
algorithms [6] and genetic programming [7]. First, an
initial population of candidate models is created
randomly from the space of all possible models.
Second, the individual members of the population (thc
predictive models) are trained and then measured as to
their relative fitness to other members in the same
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population. Third, a new population (or generation) 
created by selecting members from the existing
population in proportion to their fitness to be either
carried forward as-is, or combined using the genetic
operations of cross-over and/or mutation. Fourth, the
second and third steps are repeated until a maximum
number of generations have been evolved, or a
predetermined criteria for success has been met.

The key step in ranking the members of the
population relative to each other is the application of a
fitness function to each individual member of the
population. The higher the ftness, the more likely the
member (an the predictive model it represents) 
copied directly tbrward into the next generation, or is
used during the operation of reproduction. For many
applications, a simple tbrm of fitness is to measure
how well a solution solves the problem. For example,
a genetic programming approach might be used to
identify a design of a bridge to support a certain
amount of weight. In order to rank population
members with respect to each other, the major
consideration would be whether the bridge can support
the required weight. Additional characteristics such as
cost to build, number of supports, etc. might also be
incorporated in determining fitness to separate
acceptable solutions from preferred solutions.

In the case of naturally selecting naive Bayesian
networks for use as predictive models for time series
data, there are no absolute acceptable or unacceptable
solutions. Therefore, the fitness of a particular
individual in the population needs to be related to the
individual predictive model’s ability to forecast future
values of the time series. For the purposes of the work
described here, the final measurement of perfbrmance
will be the Mean Absolute Percent Error, oz" MAPE.
MAPE is defined as:

By using MAPE as the sole component of the
fitness measurement, the natural selection process will
evolve a solution that minimizes the average error
across the entire training set. However, in the case of
several of the experimental datasets used in the
framework for past research, this tended to produce a
predictive model that was very good for the majority
of forecasts and very poor for the others. This lack of
consistency in the predictive model’s performance
causes difficulty in its application to decision-theoretic
planning [8], where the ability to identify the utility of
the predictive model in terms of how well the model
represents the future for all forecasts is an important
aspect of solving the problem.

To address this problem, a second form of error
measurement could be employed for the fitness

function that would seek to minimize the Worst
Absolute Percent Error, or WAPE, of all tbrecasts
made by the predictive model being evaluated. WAPE
is defined as:

,~ 0 ..., .v I Y.

The next step in the experimental process was to
study the impact of using a third fitness fnnction based
on the average MAPE and WAPE for a given
predictive model. It was hoped that by combining
both types of information, the fitness function would
drive the natural selection process towards evolving a
predictive model that would outperform MAPE alone,
while increasing the consistency of the forecasts
generated across the entire set of evaluation data.
Experimental data supported this hypothesis, but not
as strongly as was hoped. Although the consistency of
the solution improved, the overall perfolxnance did not
and in most cases, was out performed by MAPE alone.

Building on the concept of combining MAPE and
WAPE, a fourth fitness function was developed that
would itself change as the overall performance of the
individual predictive model changed. The MAPE and
WAPE errors were combined according to:

a M.qPE ÷ p N’:-IPE

where:
a =l-fl

and:
MAPE/3 =I---
WAPE

Using this weighted combination of MAPE and
WAPE causes the fitness function to rank predictive
models with the lowest MAPE that is closest to the
WAPE as most preferred, while encouraging the
natural selection process to separate members that are
close in overall performance by how consistent they
are in forecasting values across the entire training
dataset. This affects the desired behavior of
identifying predictive models from the data that are
consistent and perfoma reasonably with respect to the
measurement of the Mean Absolute Percent Error
across the forecast of both training and evaluation
data.

Experimental Results
In order to test the hypothesis that a fitness

function based on a variance weighted combination of
Mean Absolute Percent Error and Worst Absolute
Percent Error, a set of experiments were performed on
synthesized data for both a stationary and non-
stationary process. The experiments used the
framework for naturally selecting Bayesian networks
to evolve forecast models based on naive Bayesian
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networks tbr the following four fitness functions:
FkIAPE = I..-- MAPE
Fw,,pe = 1.- WAPE
FAVG = MAPE + WAPE

I , --
2

F,.j~ = 1.- (ctMAPE + flWAPE 

The first series, representing the stationary
process:

Y(O =y(t-27) + 
where at is a normally distributed random variable
with mean 0 is shown in Figure 2. The second series,
representing the non-stationary process:

y(t) = 1.01 y(t-3)- .001 y(t-5) 
is shown in Figure 3. Both series consisted of 200
data points or which were used to create a training
case set of 132 records and an evaluation case set of
56 records. Each training record consisted of the
target value combined with the 10 previous values of
the time series. The evolutionary search process was
further restricted to 10 attributes per variable selected
as part of the predictive model. Finally, the population
size was selected to be 50 members, with 70
generations evolved from the initial population. The
evolutionary process was allowed to continue for the
full 70 generations regardless of the convergence of
the fitness function, worse case error or mean absolute
percent error of the population members. For this
experiment, only the fittest member of the population
was used in the forecasting part of the experiment.
Finally, the synthesized data was chosen to minimize
the possibility of APE growing beyond a value of 1.0.

il^ ̂  ̂ _A ^ ..... ......= k,_._J k,__J k,_J V
time

Figure 2 - A synthesized stationary process.

The experimental results, shown in table 1,
describe the impact on forecast accuracy using each of
the fitness functions has on both the stationary and non
stationary process in terms of training error, forecast
error, and the difference in performance between
training and tbrecasting. The predictive model
delivering the best performance during training
evolved during natural selection for both the stationary
and non-stationary processes was the one in which
Fx, t:xPt: was used as the fitness fimction. However,
even though the same predictive model evolved using
FMAPE performed best for forecasting the stationary
process over the evaluation data, it was the F,~ that did
best with the non-stationary process. One interesting
point is that in both the stationary and non-stationary
process forecasts, the predictive model based on the

Faa fitness function showed the minimum anaount of
variance between its performance over both the
training data and the forecast evaluation data.

...........................

time

Figure 3 - A synthesized non-stationary process.

Figure 4 presents the results of the forecasts made
using predictive models evolved under each of the
four fitness functions for the stationary process. It is
interesting to note that the combination of both MAPE

and WAPE with either the FAvo or F,~ results in a
more consistent Absolute Percent Error during the
forecasting process. Also, the best early forecasts are
made by FmAPE and F~,~, where the fitness function
prefers the minimization of MAPE over WAPE.

The ability of the predictive models produced by
fitness functions FmAPE and F,~ to perform well in the
early part of the forecast process is also seen in the
models evolved for the non-stationary process. Shown
in Figure 5, the results of forecast made using the
predictive models evolved under each of the lbur
fitness functions for the non-stationary process show
those made by Fwa~r and FAV~ to have larger APE
values than the others. It is also interesting to note,
that there is a noticeable difference in the performance
of the predictive models for the first 12 forecasts
made, with the predictive model generated by the F,,l~
fitness model performing more evenly that that of the
model generated by the FmaPz fitness function.

Based on these results, several areas for future
study present themselves. First, the type of time series
could be expanded to include actual data from
multiple interest areas such as economic impact,
financial market movement, manufacturing processes,
etc. Second, it would be interesting to find out if
what, if any, affect the type of Bayesian network
(na~’ve, modified nai’ve, and classical) would have 
the relative quality of predictive models produced by
the evolutionary process as driven by the tbur fitness
functions under consideration. Finally, a second set of
experiments could be performed to measure the
performance of the various predictive models under
the constraint of making forecasts that rely upon
previous forecast values, versus the current
implementation of using laaown data to affect the
forecast value.
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Conclusions

Based on the experimental data presented, it is
concluded that the fitness function based on the ctl3
weighted combination of MAPE and WAPE had a
positive impact on the consistency of the naive
Bayesian predictive model produced by the natural
selection process. Although not producing the best
pertbrming model over the training data, it did
produce the model that performed the most
consistently of all fitness functions across both the

stationary and non-stationary datasets. Finally, the
predictive model evolved by the ct~ weighted fitness
function performed better than the one evolved using
MAPE alone for the non-stationary sample data and
performed .006 worse than that of MAPE alone for the
stationary sample. This indicates that the ctl3 weighted
fitness function would be the best choice in fitness
functions when the dataset being mined had equal
probability of being produced by a stationary or non-
stationary process.

STATIONARY NON-STATIONARY
FORECAST FORECAST

FITNESS TRAINING ERROR ERROR % DIFF TRAINING ERROR ERROR % DIFF
FMAI’E 0.006403 0.016444 157% 0.006112 0.021415 250oA
F~ APE 0.042368 0.055986 32% 0.007074 0.051604 629%
FAV(, 0.025857 0.027557 7% 0.007209 0.037668 423°h
F,=I~ 0.021284 0.021843 3% 0.009496 0.018246 92%

Tabl~ 1 - Composite performance data for evolution of naive Bayesian forecast models.
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