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Abstract
Halpern has retracted an earlier claim that Cox’s Theorem is
deductively unsound, but he has renewed and amplified his
objections to the reasonableness of the theorem for finite
domains. His new argument highlights one functional
equation used by Cox in 1946 but which is missing in 1978.
The circumstances of its disappearance are explored, along
with some of the advances in knowledge since 1946 which
account for its absence.

Introduction

Cox’s Theorem (1946, 1961, 1978) is a well-known
foundational result for subjective probabilities. The
theorem concerns the existence of real-valued functions
which, when applied to suitable measures, yield ordinary
probabilities which obey the usual additivity and product
rules. Cox proves the theorem without reliance on any
frequentist notions. Since the measures and functions in
question exist under what many take to be mild
assumptions, the theorem is interpreted as a normative
motivation of belief models which feature probability.

In 1996, Halpern (also 1999a) claimed to have found 
eounterexample to Cox’s Theorem, and said that Cox
failed to disclose the domains of the variables which had
appeared in the functional equations used in the 1946
version of Cox’s proof. The bulk of Halpern’s 1996
discussion and his counterexample involved the functional
equation (8 on page 6 of 1946) which Cox had used 
motivate the product rule:

F[ F( x, y ), z ] = F[ x, F( y, z ) ] 

where the variables correspond to beliefs in selected
logically related conditional expressions. Halpern also held
that since the domains were of infinite density, that even if
this had been disclosed, the theorem would be inapplicable
to finite domains with fixed scalar beliefs.

In 1998, Snow pointed out that Cox had made the
required disclosure and that Cox had viewed his
probabilities to be real-valued variables, rather than
specific numbers. Thus, the equations were intended to
hold over the disclosed dense domains of these variables.
There clearly would be a problem if each of a finite
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number of conditional expressions a I b had a specific real
number attached to it, as Halpern had assumed and used in
the construction of his counterexample, but Cox did not
assume that. On the contrary, Cox would avoid such an
arrangement based upon his recorded ideas about the
nature of belief modeling and also upon the uses he made
of his own result.

Halpern (1999b) withdrew his claim of counterexample
relative to Cox, but persisted in his objection against the
reasonableness of Cox’s Theorem for finite domains.
Halpern also made one new claim. A functional equation
(15 on page 8 of 1946), which Cox derives using the
product rule and whose typical solutions exhibit total
probability, might raise some normative difficulties
beyond those discussed earlier:

xS[ S( y )/x ] = yS[ S( x)/y (CI5)

As before, the variables correspond to beliefs in some
conditional expressions. Halpern acknowledges that Cox
disclosed the domains of the variables in this equation, and
does not renew the earlier claims of deductive lapse. The
normative issue is whether assuming that this equation
holds in a finite domain for all values which x and y could
take is "natural."

In one sense, there is no new issue here. Halpern
identifies as the source of his dissatisfaction the same
domain density concerns as had figured in his earlier
discussions of (C8). Anyone is obviously free to disagree
with Cox that x and y should "naturally" be treated as
variables rather than as specific numbers. But that was true
for (C8), too.

On the other hand, (CI5) is different from (C8).
Equation (C8) expresses something interesting about belief
models: functions which combine beliefs in certain
logically related expressions might be expected to be
associative. In contrast, equation (CI 5) does not seem 
express anything fundamental about belief. Its symmetry is
pretty, and it follows just as surely from Cox’s assumptions
(if not Halpern’s) as (C8) does, but in itself it is a means 
an end, and uninteresting as a destination in its own right.

Unlike (C8), equation (CI5) disappeared from Cox’s
presentation of his theorem in 1978. Furthermore, Halpern
notes that with one exception, none of the commentators
on Cox whom he has read discuss (C 15). Halpern offers 
unsavory interpretation of these facts, and complains that
something has been "swept under the carpet."
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No such thing happened. (CI5) disappeared for good
reasons, and once lost, stayed lost. That it was superfluous
to any point Cox was making in 1978 probably suffices to
account for its absence there. But from a larger
perspective, the older Cox had the benefit of relevant
knowledge which was unavailable to him in 1946. A large
part of this was the wide-ranging work of Acz61 (1966) 
functional equations. Another likely strand would be the
twin papers of Schr6dinger (1947) on what was the
original question on Cox’s mind, the role of subjective
probability in the laws of physics. And although Cox did
not cite this, nor did he need to, he would plausibly be
aware of the famous counterexample of Kraft, Pratt, and
Seidenberg (1959) which prominently brought the
"density issue" to the attention of the mathematical
community. Kraft, et al. also showed that additivity can be
had more directly than by passing through total probability
and the oblique (C15), a point which was reinforced 
Acz61 a few years later.

In the current paper, the development of these ideas
begins with a clarification of Cox’s views and some
indication of their evolution. We then review
Schr6dinger’s crisp dispatch of total probability without
benefit of (C15). Aczgl’s and Kraft, et al.’s direct
approaches to additivity are recalled next, along with the
counterexample which seems to dispose of a conjecture
discussed by Halpern. The parsimony of assumptions
permitted by a direct derivation of additivity is illustrated
by a simple recovery of ordinal Bayesian revision, both in
typical statistical situations and in cases like one studied by
Kyburg (I 978).

Cox’s Three Theorems

One complication in discussing "Cox’s Theorem" as if it
were a single thing is that Cox gave a distinct
interpretation of his result on each occasion and varied his
assumptions to match. Only the first (1946) version began
with the assumption that there existed unspecified
measures of "reasonable credibility," some of which turn
out to be probabilities. In both 1961 and 1978, Cox took
probabilities or functions of probabilities as his starting
point. In 1961, this led to the conclusion that subjective
probabilities shared a common mathematical foundation
with frequentist ones. In 1978, his emphasis was on the
usefulness of subjective probability as a general-purpose
tool to support inductive reasoning. What relationship
probabilities might enjoy with a possibly larger universe of
reasonable measures of belief was explored in 1946, but
simply does not come up in the later works.

The content of the theorem also changed subtly over
time. It is now routine to say that Cox stated conditions for
the existence of order preserving functions which
transform suitable measures into probability measures. In
fact, the order preserving attribute is not claimed in 1946.
A basis for the usual statement is Cox’s expression of
kinship in 1978 with the closely related associativity

equation results developed by Aczgl (1966), which 
include the order preserving feature.

To the extent that the phrase Cox’s Theorem is meant to
refer to a straightforward existence result, then the order
preserving aspect, which Halpern rightly describes as an
"informal" understanding, is a reasonable interpretation,
apparently satisfactory to Cox himself. However, if one
seeks in Cox’s work what Halpern calls a "compelling
justification" for the use of some selected belief
representations, then the absence of ordinal restrictions is
crucial if one wishes to identify what representations are
being justified.

At no time did Cox hold that the existence of such an
order preserving function was necessary for a measure of
belief to be reasonable. According to the standards of his
1946 paper, the only time when Cox discussed generic
reasonable measures of belief, some possibility measures
satisfy his criteria for reasonableness (Snow 2001).
Possibility measures, of course, do not display ordinal
agreement with any probability distribution other than in
their shared special case of the Boolean assignment of
zeros and ones. At the same time, many people obviously
consider possibilities as quite reasonable. Had Cox implied
otherwise, one would be entitled simply to dismiss his
views on reasonableness as idiosyncratic.

Cox and Keynes

Another possible source of confusion is that Cox was an
advocate of Keynes’ (1921) perspective on probability
rather than of the now more familiar Bayesianism. This is
discussed on page 4 of the 1946 paper and in the preface of
the 1961 book. A distinguishing characteristic of Keynes’
theory is that not all conditional expressions are
comparable to one another in credibility. That is, it is not
the case that all a I b would either be greater than, or less
than, or else equal in credibility with all c I d. One of Cox’s
achievements was to give Keynes’ partial-order doctrine a
felicitous mathematical form, sets of belief measures. This
occurred in the 1961 book. In 1946, he expressed partial-
order differently and perhaps more simply as variable
belief measures.

While Cox’s 1946 theorem begins with talk of a
"measure of reasonable credibility," one also finds on
page 9, "It is hardly to be supposed that every reasonable
expectation should have a precise numerical value." The
explanation of this apparent equivocation is that in Cox’s
view an individual scalar measure is generally inadequate
to represent a state of belief. Presumably, it was obvious to
his readers in 1946 that an avowed Keynesian would not
propose any individual measure as the entirety of a general
belief representation. And, as is evident from even casual
inspection of (C8) or (CI5), Cox is treating the beliefs
attached to conditional expressions as variables. That is
understandable: Cox is treating these things as variables
because for him they are variable.

Cox’s identification of the partially ordered beliefs of
Keynes with algebraic variables was innovative, but not
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unprecedented. Polya (194 I), who acknowledged influence
by Keynes (although not to the same extent as Cox), had
also offered a formalism in which subjective probabilities
were treated as algebraic variables rather than as specific
real numbers. The idea of incompletely specified
probabilities itself is older than Keynes, and can be found
throughout the later chapters of Boole (1854), who used 
different algebraic notation.

In a similar vein, it is simply untrue that in 1946 Cox
contemplates that even the individual measures of
credibility would typically assign a real number to every
pair of sentences in some domain of sentences, contrary to
Halpern’s report (1999b, at 129). Cox specifically denies
this on page 6, where we read that "It is not to be supposed
that a relation of likelihood exists between any two
propositions." Ironically, Halpem (at 130) goes on 
recite what is at stake for a Keynesian in this and in the
passage from page 9 quoted earlier. If a real number were
assigned to every conditional expression and this
assignment was the representation of one’s belief, then
every conditional expression would be ordinally
comparable to every other. That is, as Halpern observes, a
strong assumption, one which Cox and Keynes abjured.

On the other hand, while Cox was not a Bayesian writer,
he was not an anti-Bayesian writer, either. Cox imagined
that belief could be represented by sets of probability
measures defined by algebraic constraints. Bayesians could
imagine that, too. It is, for example, an early step in the
application of the maximum entropy method, was
enthusiastically pursued for a while by de Finetti (1937),
and appears congenial with some Bayesian approaches to
practical probability elicitation, robustness, and opinion
pooling.

Where Cox would part company with the Bayesians is in
the next step. An orthodox Bayesian would choose one
particular member of the set of probabilities as the
representation of his or her belief. Cox would be content
not to choose a particular member of the set, but rather
would accept the whole set as representative of his belief.

The difference between partially ordered and completely
ordered belief is important. For one thing, sets allow all
possibility measures, not just those which satisfy the 1946
equations, to qualify as reasonable measures of belief by
Cox’s standards (Snow 2001). The difference also makes
for some interesting problems when Cox’s Theorem is
interpreted as a normative finding in a Bayesian context.

For example, Jaynes (1963) reported that Cox had
proven that "the mathematical rules of probability theory
given by Laplace" are "unique in the sense that any set of
rules in which we represent plausibility by real numbers is
either equivalent to Laplace’s, or inconsistent." Possibility
is a difficult case. Although there are close relationships
between it and some probabilities (Benferhat, et al. 1997),
to describe it as flatly "equivalent" to anything in Laplace
is strained or worse. The real difficulty with Jaynes’
statement, however, is its omission of Cox’s own view that
we cannot in general represent plausibility by specific real
numbers.

And yet, any argument which endorses representing
belief by sets of probability distributions could, with the
additional requirement that one ought to select a particular
distribution, be fashioned into an argument for a kind of
Bayesianism. Thus, with some care, a Bayesian would be
entitled to cite Cox’s Theorem as lending support and
comfort to one’s position. In the context of Halpern’s
criticisms, however, it would be important to note that
while traffic with specific real numbers might be the
conclusion of such an argument, it need not be an
assumption of that part of the argument which leads to the
sets, and might profit from some justification in any case.

SchrOdinger

In 1946, independently of Cox, Erwin Schr6dinger
presented an axiomatic derivation of subjective probability
free of any reference to frequentist notions. Cox cited
SchrOdinger (1947) without discussion in his 1961 book.
SchrOdinger did not use functional equations, nor did his
derivation of total probability depend upon the product
rule. To achieve his total probability result, he used a very
strong assumption: the belief value bO attached to ~a must
be a monotonically decreasing, self-inverse function nO of
the value attached to a.

The bluntness of the assumption is to some extent
mitigated by the narrow scope of SchrSdinger’s theory:
only events (things which happen or do not) can be the
subject of probability valuation. The assumption is
motivated by the observation that "’a conjecture about an
event coming true amounts to the same as a conjecture
about its not coming true;" If the assumption is granted,
then total probability emerges from it by simple algebra.

It is difficult to imagine that Cox failed to notice that
SchrOdinger’s argument for his strictly decreasing
functional negation was little different from Cox’s own
sole justification in 1946 for functional negation (with its
decreasing character to be derived), "’Since ~b is
determined when b is specified, a reasonable assumption,
and the least restrictive possible, appears to be that ~b I a
is determined by b I a." (Note that Cox did not restrict his
theory to events, and b I a here is not any reasonable
measure of credibility, but only a measure which obeys the
product rule.) By 1961, the conclusion of the quoted
passage is simply offered as an axiom (at page 3).

Turning ahead to 1978, by the time Cox takes up total
probability, he has already assumed that his b / a is a
probability (at 133). Complementary negation obtains
necessarily. There is nothing for (C15) to prove, and sure
enough, it is gone. Moreover, so far as we know, Cox has
nothing to say about negation beyond what was
satisfactory to SchrOdinger to motivate strictly decreasing
negation, from which total probability follows by
convention. How surprising is it, then, that Cox would
simply offer total probability as an assumption, bolstered
with some brief remarks and a footnoted reference to his
earlier work?
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The 1959 Counterexample and Additivity

While Cox’s own lack of interest in 1978 regarding (C15)
appears sensible, it remains to be explained why later
commentators would not be moved to revisit the issue, in
light of the uncompelling character of arguments like
Schr6dinger’s (and Cox’s own) which attempt to motivate
total probability. The short answer is that it has long been
known that ordinal agreement with full additivity, of which
total probability is a special case, can be had for about the
same cost in assumptions as the product rule. And as we
shall see in the next section, if additivity is motivated,
ordinal Bayesian revision can be explained in many cases
with an assumption less strenuous than Cox and
Schr6dinger’s assumption for functional negation.

A motivation for associative disjunction,

bel( a v b ) = F[ bel( a ), bei( b ̂  

would be little different from Cox’s arguments for
associative conjunction leading to (C8). The case that such
an FO should also be increasing in each place was
reviewed by de Finetti (1937), and FO would then display
the property which he called quasi-additivity. Acz61 (1966)
reported a variety of technical conditions which yield
additive solutions for associative functional equations,
including order-preserving solutions for the quasi-additive
ones. To recover something comparable to Cox (1946),
that under gentle conditions associative functional
equations have additive solutions in some function of the
original beliefs, would be straightforward. To the extent
that the variables which appear in the functional equations
would need dense domains, the same Keynesian
considerations would supply them.

Although it is not relevant to Cox’s concerns, there is
also interest in which discrete domains might support
additive order-preserving representations of quasi-additive
disjunction. That not all discrete domains do so was
established by Kraft, Pratt, and Seidenberg in 1959. They
created the following arrangement of the 32 sentences
formed from 5 atoms, in ascending order of credibility:

O, a, b, c, a v b, a v c, d, a v d, b v c, e, a v b v c,
b vd, ev d, a ve, av b v d, b v e, a v c v d, c v e,
by cvd, av bve, av cve, dve, av by cvd,
av d re, by cve, av bvc v e, b v d v e,
cv dve, avbvdve, avcv dve, b v c vdv e,
avbvcvdve

It is easily verified that the rank of any disjunctive
sentence is an associative function of the ranks of its
disjuncts, and this function is strictly increasing in each
place. No ordinally agreeing additive PO exists, since:

p(a)+p(c) <p(d)
p(a) + p(d) <p(b)+p(c)
p(c) +p(d) <p(a)+ 
p(b) + p(e) < p(a) + p(c) 

but the first three inequalities imply that p( a ) + p( c 
p( d ) < p( b ) + p( contradicting the fourth inequality.

This appears to dispose of a conjecture which Halpern
attributes to a former student, that distinct degrees of belief
might suffice for a finite discrete version of Cox’s
Theorem with order preservation. All the beliefs in the
Kraft, et al. example are distinct, so distinct degrees of
belief seem unhelpful. Kraft, et al. went on to state a
sufficient condition for finite additive agreement, and
research into the matter continues (Fishburn 1996).

Bayes’ Rule and Kyburg’s Parrot

If one has achieved a motivation of additivity, and selected
a single probability as the representative of belief, then
ordinal agreement with a form of Bayesian revision can be
motivated with a weaker additional assumption than the
strictly increasing associative conjunction used by Acz61 to
motivate the product rule. The argument is also simple,
and with no functional equations, no density issue would
come up. (A longer version for sets can also be spun.)

The additional assumption was offered by de Finetti
(1937), and abstracts in ordinal form an earlier principle
which Boole (1854) adopted and attributed to the
astronomer W.F. Donkin. The assumption is that p(a ] e) >
p(b [ e) just when p(ae) >_ p(be). The intuition seems
acceptable to wider audience than the probabilist
community. It is consistent, for example, with the
orderings in the revision scheme for possibility of Dubois
and Prade (1986).

The revision argument itself is straightforward, and a
form of it has been used by DeGroot (1970). In the usual
Bayesian case, common in statistical and Bayes nets work,
there is a prior commitment to a comprehensive joint
probability distribution which anticipates the possible
evidence, at least in principle. The observation of a piece
of evidence corresponds to the discard of all joint events
contradictory to the observation, and Bayesian revision
corresponds to a normalization of the probabilities of the
surviving events. Obviously, the ordinal relationships are
just those captured in de Finetti’s principle. The discarded
events conjoined with a contradictory observation would
have prior and posterior probability of zero, also consistent
with the principle. If one were only claiming ordinal
agreement in the first place, then the task is accomplished.

The argument also works at least in a behavioral sense
for what at first glance appears to be a polar opposite case,
that of unforeseen evidence. That is, one has additive
beliefs over some domain of interest, and something
happens (outside the domain) which changes those beliefs,
now also additive. The situation recalls that proposed by
Kyburg (1978), where belief change may proceed not 
conditioning, but by any mechanism at all, including the
memorable image of adopting new additive beliefs by
consulting with a parrot.

If we modify Kyburg’s conditions to incorporate
de Finetti’s principle, then no observable violation of
Bayes rule will occur even though formally no
conditioning occurs to link earlier and later belief states.
While there is no comprehensive corpus of beliefs which
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includes the new observation before it is seen, de Finetti’s
intuition does suggest one prior constraint on foresight:
p(a) = 0 implies thatp(a I e) = O. That is, one imagines that
p(ae) is never greater than p(a) on typical belief-modeling
grounds, and that de Finetti’s assumption applies at least to
this modest extent. Of course, even Bayesians sometimes
learn that the "impossible" is true, but then they must rely
on something other than simple conditioning in such cases.

If prior zeroes are respected, then the posterior
probability values qO are the same as would have been
achieved had one performed a Bayesian revision of the
prior values PO by something proportional to q(a)/p(a) for
those atoms a where p(a) > O. The specialized version of
de Finetti’s principle ensures that when p(a) -- O, then q(a)
= O, and so any multiplier at all could be imputed to such
an atom. One never need consider what might have been
other than what was, although it is easy enough to impute a
hypothetical value to the evidence’s negation to impose
"total probability" on "conditional probabilities" based
upon the imputed "likelihoods."

Nothing in the above disputes anything in Kyburg. The
moral is that it is difficult for a believer with additive
beliefs to behave inconsistently with Bayesian teaching. In
cases where evidence is foreseen and planned for, a
Bayesian need motivate little more than additivity to
explain one’s credal practices. The full-length paper
discusses how de Finetti’s principle can also help motivate
additivity in light of Kraft, Pratt and Seidenberg’s work.

Conclusions

Because many people have relied upon Cox’s Theorem,
there was great interest in the unfounded claim of its
deductive unsoundness. While that has been cleared up, a
principled normative dissent also deserves attention, since
normative appeal is among the theorem’s chief virtues.
Because of its apparently unilluminating character and its
unexplained disappearance from view, equation (CI 5) may
have seemed like an apt place to probe.

With respect to Cox’s original paper, (CI5) is derived,
not assumed, and the density of the domains of its
variables reflects a distinctive assumption about the
underdetermined character of all the belief-related
variables throughout the argument. It has been widely
known for four decades that a finite set of fixed scalars will
not serve in such an argument. The question of whether
beliefs are "naturally" fixed or variable has also been
discussed for a long time, and one might have wished the
liveliness of the issue to have been acknowledged.

As to the later Cox and those who have come after, the
progress of knowledge has simply mooted (C 15).
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