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Abstract

We present an objective approach for evaluating probabil-
it,, clicitati~m methods in probabilistic models. Our method
draw~, tm ideas from research on learning Bayesian networks:
iI ~c assume that the expert’s knowledge is manifested es-
~,cntially a.,, a database of records that have been collected in
the course of the expert’s experience, and if this database of
records is available It:, us, then the ~tructure and parameters of
the expert’s beliefs could be reliabl)’ constructed using tech-
niques for Bayesian learning from data. This learned model
could, m turn. be compared to elicited models to judge the
effectiveness of the clicitation process. We describe a general
pn~ccdurc by which it is possible to capture the data corre-
,,ptmding to the expert’s beliefs, and we present a simple ex-
periment in which we utilize this technique to compare three
methods t~r eliciting discrete prt~babilities: (I) direct numer-
teal assc,,smcnt. (2) the probability wheel, and (3) the scaled
iwohahihty bar. We show that t’or our domain, the scaled
prub:lhlht} bar i~, the retest eflcctive tool for probability clici-
tdtlOn

Introduction

As more and more decision-analysis models are being de-
veloped to solvc real problems in complex domains, extract-
mg knowledge from experts is arising :ts a nlajor obstacle in
model building (Druzdzel & van der Gaag 2000). Quite 
few mcthods have been proposed to elicit subjective prob-
abilities from domain experts. These techniques are con-
corned with balancing quality of elicitation with the time re-
quircd to elicit the enormous number of parameters associ-
ated with many practical models. Systematic evaluation and
comparison of different nlodel elicitation methods are thus
becoming of growing concern.

In Bayesian probabilistic models, encoded probabilities
reflect the degree of personal beliefs of the experts. The
sole purpose of probability elicitation is to extract an accu-
rate description of the expert’s personal beliefs. In order
to judge whether the elicitation procedure has produced an
accurate model, therefore, the elicitor must know intimate
details about the expert’s knowledge. Unfortunately, these
details that the elicitor is seeking from the start are hidden
from explicit expressions; so it has not been possible to eval-
uate elicitation schemes directly. Less direct methods are the
only possibility.

In this paper we present an objective approach for eval-
uation of elicitation methods that avoids the assumptions
and pitfalls of existing approaches. Our technique is much
closer to the ideal "direct" comparison between the elicited
network and the expert’s beliefs. The main idea is to sim-
ulate the training/learning process of an expert by allowing.
the trainee to interact with a virtt, al domain. Underlying the
domain is a Bayesian network that is used to stochastically
update the state of the world in response to the subject’s in-
teraction. Then by recording every state of the world that
is experienced by the trainee, we can effectively gain di-
rect access to the trainee’s knowledge. It is quite an estab-
lished fact that people are able to learn observed frequencies
with an amazing precision if exposed to them lbr a sufli-
cient length of time tEstes 1976). Therefore, alter training,
the trainee obtains some level of knowledge of the virtual
world and, consequently, becomes an expert at a certain pro-
liciency level. This knowledge, in the form of a database of

records, D~:~-I.._2, , can be converted to an "expected" model of
the expert, AIe.v,, by applying Bayesian learning algorithms
to Dexp ̄ Finally, this expected expert model can be directly
compared to the model elicited from the expert to judge the
accuracy of elicitation.

Our approach captures a subject’s state of knowledge of
the probabilistic events in the toy world. The subject’s ex-
perience with the toy world, rather than the actual model
underlying the world, forms the basis of his or her knowl-
edge. For this reason the learned model should be the stan-
dard used to evaluate the elicitation schemes, rather than the
original toy model. This technique allows us to avoid the
expensive process of training subjects to fully-proficient ex-
pertise. For example, our expert’s experience may have led
him to explore some states of the world very infrequently.
In this case, even if our elicitation procedure is perfect, the
elicited probabilities of these states may be significantly dif-
ferent from the underlying model. Using the expert’s experi-
ence rather than the original model gets around this problem
completely because we know precisely how many times our
expert has visited any given state of the world.

We use these techniques along with a toy cat-mouse game
to evaluate the accuracy of three methods for eliciting dis-
crete probabilities from a fixed structure: (I) direct numer-
ical elicitation, (2) the probability wheel (Spetzler & StaEl
von Hostein 1975), and (3) the scaled probability bar (Wang
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& Druzdzel 2000). We use mean squared errors between the
learned and the elicited probabilities to evaluate the accuracy
of the different methods. We show that for our domain, us-
ing the scaled probability bar is the most effective and least
time-consuming procedure for probability elicitation.

In the following sections, we first give a brief review of
the existing evaluation schemes of probability elieitation.
Then we present the assumptions and relevant equations that
allow us to capture a subject’s beliefs in the form of learned
network parameters. Next. we describe the cat-mouse game
that we used to train our subjects and collect data for learn-
ing. Finally, we present our experimental design and results
followed by a discussion of our tindings.

Evaluation Schemes of Probability Elicitation

Methods

Eliciting probability of a proposition from an expert
amounts to obtaining the expert’s subjective degree of be-
lief in that proposition. There is a vast amount of behavioral
decision theory literature covering this topic. Dt, e to space
limitations, we will not discuss these methods in this section.
For a detailed review, see for example (Merkhofer 1987:
Morgan & Henrion 1990).

The difficulty in evaluating elicitation methods is that the
true model is needed in order to be compared to the elicited
model. Obviously, since the former is encapsulated in the
expert’s mind, it is not readily available for comparison. Pre-
vious comparisons of elicitation schemes followed essen-
tially three lines of reasoning: (I) expert’s preference. (2)
benchmark unodel, and (3) performance measure.

The first approach, expert’s preference, is based on the
assumption that when an elicitation method is preferred by
the expert, it will yield better quality estimates. While this
assumption is plausible, to our knowledge it has not been
tested in practice. There are a variety of factors that can in-
Iluence the preference for a method, such as its simplicity.
intuitiveness, or familiarity and these factors are not neces-
sarily correlated with accuracy.

The second approach, benchmark model, compares the re-
~,ults of elicitation using variotns methods against an existing

bcnchmark (gold standard) model 31 of a domain (or a 
rect answer-that is assumed to be widely known). Accu-
racy is measured in terms of deviation of the elicited model

from 31. For example, in Lichtenstein et al.’s (1978) study
of people’s perception of frequencies of lethal events, there
was a readily available collection of actuarial data on those
events. Similarly, In Price’s (1998) study on effects of 
relative-frequency elicitation question on likelihood judg-
ment accuracy, general knowledge was used. An important
assumption underlying the benchmark model method is that
the model :~1 is shared by all experts. While in some do-
mains this assumption sounds plausible, human experts no-
toriously disagree with each other (Morgan & Henrion 1990;
Cooke 1991), and an experimenter is never sure whether
the model elicited is derived from a gold standard model or
some other model in the expert’s mind. A debiasing train-
ing of experts with an established knowledge base may help
to establish a benchmark model among them. For example,

Hora et al.(1992) trained their subjects in a formal proba-
bility elicitation process directed toward assessing the risks
from nuclear power generating stations and compared two
elicitation methods for continuous probability distributions.
Their subjects were scientists and engineers who quite likely
possessed extensive background knowledge about the risks.
Effectively,, it is hard in this approach to make an argument
that the elicited model is close to the experts" actual knowl-
edge, as the latter is simply unknown.

The third approach, performance measure, takes a prag-
matic stand and compares the predictive performance of
models derived using various methods. This reflects, in
practice, how well calibrated the expert’s knowledge is
(Lichtenstein, Fischhoff, & Philips 1982). An example 
this approach is the study performed by van der Gaag et
a/.(1999), who used prediction accuracy to evaluate their
probability elicitation method in the construction of a com-
plex influence diagram for cancer treatment. While it is
plausible that the quality of the resulting model is correlated
with the accuracy of the elicitation method, this approach
does not disambiguate the quality of the expert’s knowledge
from the quality of the elicitation scheme. A model that per-
forms well can do so because it was based on superior expert
knowledge, even if the elicitation scheme was poor. Con-
versely, a model that performs poorly can do so because the
expert’s knowledge is inferior, even it" the elicitation scheme
is perfect.

The next section introdtuces an evaluation method that we
believe does not stuffer from the problems identilicd with the
existing evaluation schemes.

Datamining Expert Beliefs
To evaluate the accuracy of an elicitation method is to make
a judgment about how good the elicited model reflects the
expert’s real degree of personal belief. The closer the
elicited model reflects the expert’s real beliefs, the more ac-
curate we say the method of elicitation is. But how can we
measure an expert’s real degree of personal belief? What
can be used as a standard to evaluate the accuracy of a sub-
jective probability? What we need is a method to capture the
knowledge/beliefs that are held by our expert, then we need
a method to construct a model entailed by that knowledge¯

On the other hand. if we have a set of records in the l’ornl
of a database, there are many machine-learning algorithms
that are available to learn various types of models from that
database. In this section we will present the theory needed to
learn probabilistic network models from data. However. the
method that we describe in this paper is general enough to be
used on any types of models for which there exist statistical
methods for learning.

Capturing the Expert’s Knowledge

Complicating this effort is the fact that a person becomes an
expert from a novice in a process of acquiring knowledge
from a wide array of sources. Sources of knowledge range
from reading books, talking to other experts, and most im-
portantly for us, to observing a series of instances in the real
world. In the method that we are proposing, we create an
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expert in a particular toy domain. In the process, we confine
the source of knowledge available to that expert to be strictly
of the latter type; namely, a series of observations of the real
world. Being assured that our expert accumulates only this
knowledge allows a particularly simple analysis of what our
expert’s beliefs about the domain should be. Throughout the
paper we will refer to this type of knowledge as observa-
tional knowledge.

If we assume that we have an expert whose entire knowl-
edge of a domain is observational, then the expert’s knowl-
edge can be viewed as originating entirely from a database,
Dexp, of records filled with instances of the domain our ex-
pert has committed to memory. If we further assume that
we have recorded all relevant instances of the domain that
our expert has actually observed into a database D, then our
database D will be identical to Dexp under the assumption
that the subject has paid attention to the occurrence of each
event during his or her observation process. Thus, in any
experiment designed to measure Dexp, it will be important
to incentivate the subject in some way to pay attention to all
events in the world.

Learning Parameters From Data

Assuming that we can assess De.~p correctly, we must now
construct a probabilistic model that is most consistent with
that data. Much work has been done on this problem in re-
cent years. We will present just the key results of some of
this work here. A good review of the literature can be found
in (Heckcrman 1998).

Bayesian methods (Cooper & Herskovits 1992) Ibr learn-
ing a probabilistic model over a set of variables X =
{.¥~..¥’2 ..... X,, }, assume that the learner begins with a
set of prior beliefs governing the domain. In the case of
an unrestricted multinomial distribution, each variable X,
is discrete, having ri possible values .~’~ ...... ri". where
i = 1 ..... ~t. In this case, it is assumed for convenience
that the priors take the form of a Dirichlet distribution, hav-
ing parameters :~jk. One common sense interpretation of
~,j~ in a Bayesian network capturing this domain is that
it is the number of times an expert has observed variable
X, = .r~ when the parents of X, achieved the .jth configu-
ration: 1’,, =/m~. As a bit of notation, we deline 0,j~. to be
the true probability that X, = .r~ given that Pa, = Im~. In
other words, it is the conditional probability parameter cor-
responding to the c~L/~.. We use 0i.i = {0ii~-II <= k <=
r, } to denote the conditional probability distribution of X,
under the jth parent configuration. We assume parameter
independence, which states that Oi.~ is independent of Oii,
for all .j ~ j’.

Given a network structure S, a complete data set D
without any missing data, a set of Dirichlet prior parame-
ters o,./j,., and the assumption of parameter independence,
it can be shown that the expected value of the parame-
ters of the network with respect to the posterior distribution
P(OiilD, S, cqi) can be expressed as:

where Niik are the number of times in D that the variable
Xi took on value :r~ when the parents of X, took on config-

rluration pa~, ai.~ = ~":~’--1 r’i.~k, and Nij = ~k=l N,j,.
For a domain where the expert-to-be has little or no previ-

ous experience, we assume that all a~./k are equal and small.
Under this assumption, when no data are present for a par-
ticular (i, j) configuration of the world (i.e., Nij = 0), 
the N~ik terms drop out of Equation I and the small equal
priors produce a uniform distribution. However, even if a
small amount of data is involved, then the priors have little
influence on the parameters learned.

Evaluating Elicitation Schemes with a Toy
Virtual World

We designed a game in which a subject can move a cat to
capture a mouse. We recorded the state changes of the cat-
mouse game during the game playing process. What each
subject experiences is unique and depends on the subject’s
actions. The recorded data allows for the learning of the
probabilistic model of the toy world as seen by the subject.
This learned model in turn gives us a standard by which to
measure the accuracy of the model elicited from the subject¯

The Cat and Mouse Game: A Toy Virtual World

Our toy world includes three characters: a cat and two mice.
The objective of the game is for the cat to capture a mouse.
There are twelve possible positions indicated by the grid
cells in a horizontal line (see Figure I). The cat can move
one cell at a time between the current cell and either adja-
cent cell. One and only one mouse is present at any given
time, and it can only bounce back-and-forth between two po-
sitions on each side of the screen. The two special positions
for the mice are called lefi-pos and right-pos respectively.
When the cat enters the cell/position where the mouse is lo-
cated, it catches the mouse and the game is over.

Figure i : A screen snapshot of the cat-mouse game

The two mice are characterized by a color: yellow or grey.
The cat can be in one of the four states: normal, angr3"fr, s.
trated, and alert. Four figures are used to represent the states
of the cat. Table I and 2 illustrate the figures we used in the
game)

hour experimental subjects only saw the figures as the represen-
tation of the cat’s states and mouse color. The verbal expressions

UNCERTAINTY 609



Table I: Yellow mouse and grey mouse

i yeUo , I J

Table 2: Four states of the cat

[ ,,ormal l angr)’ l frustratedI alert [

Two buttons, labeled move and go respectively, are pro-
vided tbr the subject to manipulate the position of the cat.
After the subject clicks a button, the cat moves to either the
left or the right. Its moving direction is uncertain and de-
pends on the cturrent state of the world (i.e., which mouse is
present, the position of the mouse, the state of the cat, and
which button the subject has clicked). There is a short delay
(half a second in our experiment) between button clicks dur-
ing which the buttons are disabled. This prevents the subject
from clicking the buttons too frequently and paying little at-
tcntion to probabilistic relationships among the variables. It
allows the subject to have enough time to observe how the
moving direction of the cat is influenced by the stale of the
world and the subject’s own actions.2

After this delay, the toy world is updated to a new state.
One mouse may disappear and another may show up instead.
The mouse may appear in a different position. The cat may
change its state. The two buttons Ibr the subject’s action
become enabled.

In the beginning, the yellow mouse is put in the left-pos
position. The cat is put in the farthest position away from
the mouse. After the cat has caught a mouse, the game ends
and a new round of the game begins. A new game always
begins with the same initial positions for both the mouse and
the cat. But the states of the rest of the world are uncertain.

Scoring rules are adopted to encourage the subject’s in-
volvement in the game. Whenever the cat captures a mouse.
the subject’s score increases as an incentive. Also. the game
emits a celebratory sound as a reward for the subject.

are used to encode the cat’s slates and mouse color in the Bayesian
net~.ork lot the cat-mouse world due to the restraint of the mtx.lel-
ing environment. These labels, "normal". "’angry". etc.. were not
provided to the subjects during game play but were used. together
with the pictures, to identify the states of the cat during the elicita-
tion process.

’The delay length of the disabled state of the buttons was se-
lected based on our experiments with pilot subjects. We first tried
I second and 2 seconds as the delay, but our pilot subjects soon
complained the delay was too long and made the game boring. So
we selected the maximum delay (half a second) with which the
subjects still felt comfortable.

The Bayesian Network for the Cat-mouse World

The cat-mouse world is based on a simple Bayesian network
(Figure 2) consisting of five variables, Action, Mouse Color,
Mouse Position, Cat State, and Cat Moving Direction.

Figure 2: The Bayesian network of the cat-mouse world

Variable Action with two outcomes, move and go, models
the observed subject’s action. Mouse Color which could be
yellow and grey, defines which of the two mice is present.
Mouse Position indicates the current position of the present
mouse: left-pos and right-pos. Cat State represents four pos-
sible states of the cat: normal, attgr).’, frustrated, and alert.
The last variable Cat Moving Direction reflects the moving
direction of the cat in the current step. Two directions are
defined, left, and right.

The five variables influence each other probabilistically.
The states of the variables change at each step according to
the probabilities encoded in the network. Their probability
distributions, either prior or conditional, were assigned ran-
domly when the network was built to avoid biases to a partic-
ular probability distribution. One exception is the probabil-
ity distribution of the Action node. The value of the Action
node is always instantiated to the state that corresponds to
the subject’s action, and hence, the prior probability distri-
bution becomes irrelevant. We chose the two nearly identical
action words, move and go, to avoid any semantic difference
which could have a potential influence on the subjects’ pref-
erence.

The State Change of the World by Sampling

After the subject has clicked a button to take an action, the
state of the world and the cat’s moving direction arc updated.
The new states are selected by generating a stochastic sam-
ple on the cat-mouse network following the partial parent or-
der of the graph. We use probabilistic logic sampling (Hen-
rion 1988) to generate node states on the basis of their prior
probabilities of occurrence. By choosing more likely states
more often, we simulate the state changes of the toy world.
The subjects are exposed to changes in the world that cor-
respond to the underlying joint probability distribution and
their actions.

Collecting Data for Expert’s Knowledge

Every time the state of the toy world changes, it is recorded
automatically. In our data set, a case consists of the out-
comes of all of the five variables encoded in the cat-mouse
Bayesian network. The database of a subject’s experience
is assumed to contain all states of the world that the subject
has seen. It is the subject’s observational knowledge about
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the toy virtual world. This knowledge comes completely
from the subject’s game-playing experience. Therefore, the
records constitute a perfect data set for learning the subject’s
knowledge about the cat-mouse domain.

Experimental Design
We demonstrated our method in an experimental study that
investigates the effectiveness of three elicitation methods:
asking for numerical parameters directly, translating graphi-
cal proportions by using the probability wheel, and using the
scaled probability bar. We used the graphical modeling sys-
tem GeNle (GeNie 1999) and build a module of cat-mouse
g.ame in GeNle as well.

S.bjects

The subjects were 28 graduate students enrolled in an in-
troductory decision analysis course at the University of Pitts-
burgh, who received partial course credit for their participa-
lion.

Desigll etltd pro~edltre

The subjects were first asked to read the instructions from
~ help window that introduced the game characters and the
game rules. Also, they were asked to pay attention to the
probabilistic influences from the state of the toy world and
their action choice to the direction of the cat’s movement.
The subjects were told that knowledge of these probabilis-
tic relationships would help to improve their performance.
To motivate the subjects to perform well. extra credit was
tfffered for higher scores in the cat-mouse game and lower
errors of estimates of the probabilities in elicitation.

Each trial included two stages. The subjects first played
the cat-mouse game for 30 minutes. The data about their
experienced states of the toy virtual world were automati-
cally recorded. The data sets in our experiment typically
contained between 400 and 800 records.

The second stage involved probability elicitation by each
of the three elicitation methods. The subjects were shown
the Bayesian network structure in Figure 2 and were asked
tc) estirnate the conditional probability table (CPT) for 
iiodc C,t Mm’itlg Direction by

I. typing the numerical parameters directly in conditional
plt)babilily tables, and

2. giving graphical proportions in the probability wheel, and

3. giving graphical proportions in the scaled probability bar.
We applied here a within-subject design in which each

subject used the three elicitation methods. To offset the
possible carry-over effects, we counterbalanced the order of
method usage across our subjects.

The CPT elements 0,./k elicited were compared to 0ifl,~,
the CPT elements learned by applying Equation I to the sub-
jects’ acquired data. The mean-squared error (MSE) of the
parameters was calculated as:

N1.~ls,~" = ~: ~-~.(0,j~. - ~,jk)~
l=l

In order to evaluate the speed of the elicitation methods, we
also recorded the time taken for each elicitation procedure.

Results

Figure,.3 plots the mean squared errors of the three elici-
tation methods when compared to the learned probabilities.
The plot also shows the times spent on elicitation for each
of the three methods.

Comparison of the Three EIIcltatlon Methods

66 69

O 085 4.9

MSE time

Figure 3: MSE(¢~ = :3) and elicitation time for each of the
three methods tested

For each pair of elicitation methods, we conducted one-
tailed, paired sample t test for comparison of accuracy and
time. The t tests showed that scaled probability bar per-
formed significantly better than direct numerical elicitation
(p = I).03 for MSE and p = 0.007 for time). Probability
wheel was marginally better than direct numerical elicitation
(p = 0.07 for MSE) but did not improve the time compared
with direct numerical assessment (p = 0.37). However.
probability wheel was almost as accurate as scaled proba-
bility bar. Even though the latter had a slightly lower MSE.
the difference was not statistically significant (p = 0.19).

Discltssion

One objection that could be raised to our technique is that
in a thirty-minute training session the trainees used in our
experiment probably do not achieve truly proficient expert
status. This would be a key objection if we were compar-
ing the elicited models to the original model underlying the
toy-world; however, the main point in using the trainees"
actual acquired knowledge is to deflect this criticism: we
are comparing the elicited model precisely to the knowl-
edge that we know our trainee has observed. In principle
this technique should work regardless of the expertise of
the trainee. Nonetheless, we acknowledge that there may
be some transition during the process of achieving true ex-
pertise which alters the trainees’ elicitation behavior. We as-
sume that these effects will affect the elicitation techniques
in a uniform way, so that the relative assessment of elicita-
tion techniques is not affected.

It may be that the effectiveness of different elicitation
techniques varies from expert to expert. In that case, our
evaluation technique can provide a relatively quick and ef-
fective way to judge which elicitation procedure is most ef-
fective for a given expert. The expert can quickly be trained
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on a toy model, and then our experimental procedure can be
used to decide which elicitation technique is most effective
for that particular expert.

Conclusion and Future Research
We proposed a method that allows for objective evaluation
of methods for the elicitation of probability distributions
for probabilistic models. Our method is based on machine
learning the experl’s beliefs when data of the expert’s learn-
ing knowledge are available. We illustrated the evaluation
approach with a toy virtual world and evaluated three elici-
ration methods lot probabilities: direct numerical elicitation.
the probabifity wheel, and the scaled probability bar. Based
on the results of our experiment, we concluded that the prob-
;ibility wheel and the scaled probability bar both perfl)rmed
better than direct numerical elicitation, The scaled proba-
bility bar was the most efficient in terms of being most ac-
curate and taking lhe least time. Our conclusion supports
the proposition that graphical tools are useful in eliciting ex-
perts" beliefs.

One interesting fx)ssibility for future work is ~o apply ot=r
method to experts in real domains and form a baseline for
determining the capability of a p0rticular expert to gener-
ate a model using a particular elicitatiun method, In other
w~rds, we can use our technique to discover the most effec-
tive clicitation schemes for a given expea.

Though we only deal with comparison of probability eric-
ilalion methods in this paper, our evaluation scheme can
he equally useful ft)r comparing structure elicitation meth-
ods |’t’~r pr~babilistic t’m~dels. The elicited structure of the
Bayesian network can be compared to the structure learned
from the users" data using machine learning techniques for
Bayesian networks.
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