
Detection of Inconsistencies in Complex Product Configuration Data
Using Extended Propositional SAT-Checking

Carsten Sinz and Andreas Kaiser and Wolfgang Kiichlin
Symbolic Computation Group, WSI for Computer Science, University of Tiibingen and

Steinbeis Technology Transfer Center OIT, Sand 13, 72076 Tiibingen, Germany,
HTTP:/IwwW-SR.INFORMATIK.UNI-TUEBINGEN.DE

Abstract

We present our consistency support tool BIS, an extension
to the electronic product data management system (EPDMS)
used at DaimlerChrysler AG to configure the Mercedes lines
of passenger cars and commercial vehicles. BIS allows ver-
ification of certain integrity aspects of the product data as a
whole. The underlying EPDMS maintains a data base of sales
options and parts together with a set of logical constraints
expressing valid configurations and their transformation into
manufacturable products. Due to the complexity of the prod-
ucts and the induced complexity of the constraints, mainte-
nance of the data base is a nontrivial task and error-prone. By
formalizing DaimlerChrysler’s order processing method and
converting global consistency assertions about the product
data base into formulae of an extended propositional logic,
we are able to employ a satisfiability checker integrated into
BIS to detect inconsistencies, and thus increase the quality of
the product data.

Introduction
Today’s automotive industry manages to supply customers
with highly individualized products by personalizing each
vehicle using a very large set of configuration options. E.g.,
the Mercedes C-class of passenger cars allows far more than
a thousand options, and on the average more than 30,000
cars will be manufactured before an order is repeated iden-
tically. The space of possible variations is so great that
the validity of each order needs to be checked electroni-
cally against a product data base which encodes the con-
straints governing legal combinations of options (Freuder
1998). But the maintenance of a data base with thousands
of logical rules is error-prone in itself, especially since it
is under constant change due to the phasing in and out of
models. Every fault in the data base may lead to a valid
order rejected, or an invalid (non-constructible) order ac-
cepted which may ultimately result in the assembly line to
be stopped. DaimlerChrysler AG, for their Mercedes lines
of cars and commercial trucks, employ a mainframe-based
EPDMS which does the validity checking of each individual
order. The data base contains a large number of constraints
formulated in Boolean logic. Some of the constraints repre-
sent general rules about valid combinations of sales options,

Copyright (~) 2001, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

other formulae express the condition under which a part is
included into the order’s parts list. It turned out that it is very
hard to keep such a large and constantly changing data base
of logical rules defect-free without help from an additional
automated reasoning system for the documentation logic.

Therefore our system BIS was created as an extension to
the current EPDMS to help the product documentation staff
in proving consistency assertions about the product data.
BIS offers a set of pre-formulated integrity conditions, and
allows verification of these conditions for the current con-
straint rule system of a model line. These integrity con-
ditions encompass--among others----easily comprehensible
properties of valid orders requiring no special engineering
expert knowledge as well as consistency aspects which are
hardly observable without an integrated look on the data
base as a whole. The main goal of BIS is to reduce the num-
ber of errors in the documentation rules and thus increase
the documentation quality.

BIS: A SAT-Based Consistency Checker for

Product Documentation

Before turning to the description of the BIS system, we will
need to give a rough picture of the underlying EPDM Sys-
tem which it complements. Then we present some consis-
tency criteria that can be examined using the BIS system,
and show how they translate into SAT instances. Thereafter
we will outline the architecture of our system.

DaimlerChrysler’s EPDM System DIALOG

In the following we will describe the EPDM system DI-
ALOG, that is used for DaimlerChrysler’s Mercedes lines,
more thoroughly.

A customer’s order consists of a basic model class selec-
tion together with a set of further equipment codes describ-
ing additional features. Each equipment code is represented
by a Boolean variable, and choosing some piece of equip-
ment is reflected by setting the corresponding variable to
true. As model classes can be decoded into a set of spe-
cial equipment codes, all rules in the product documentation
are formulated on the basis of codes.

Slightly simplified, each order is processed in three major
steps, as depicted in Figure l:

VERIFICATION, VALIDATION 64S

From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved. 



1. Order completion: Supplement the customer’s order by
additional (implied) codes.

2. Constructibility check: Are all constraints on con-
structible models fulfilled by this order?

3. Parts list generation: Transform the (possibly supple-
mented) order into a list of parts.

All of these steps are controlled by logical rules of the
EPDMS. The rules are formulated in pure propositional
logic using AND, OR and NOT as connectives, with additional
restrictions placed on the rules depending on the processing
step, as will be shown below.

Customer’s Order Supplemented Checked and Supplemented Order’s Parts List
Customer’s Order Customer’s Order

Figure 1: Processing a customer’s order.

Order completion. The order completion (or supplement-
ing) process adds implied codes to an order. The process
is guided by special formulae associated with each code,
which are of the following form:

C onds > c,
where c is a code (i.e. a propositional variable) and Conds

an arbitrary formula. The semantics of such a rule is that
when condition Conds evaluates to true under an order,
then code c is added to that order. Thus, each rule appli-
cation extends the order by exactly one code, and the whole
completion process is iterated until no further changes result.
Ideally, the relationship between original and augmented or-
der should be functional. However, the result of the order
completion process may depend critically on the ordering of
rule application. We have shown elsewhere how to identify
potential instances of this problem (Ktichlin & Sinz 2000).

Constructibility check. In general, constructibility of a
customer’s order is checked according to the following
scheme: For each code, there may be several rules indicat-
ing restrictions under which this code may be used. A code
is called constructible (or valid) within a given order if all
constraining rules associated with this code are fulfilled, i.e.
all of these rules evaluate to true. For an order to be con-
structible (or valid), each code of the order must be valid.
The constructibility check consists of two different parts:
The first one is independent of the car model class consid-
ered, while the second one takes into account additional fea-
tures of each car model class. Although the latter incorpo-
rates an additional hierarchical organization of rules, we will
not elaborate on this. For our purpose the constructibility
rules may be considered in a unified, simpler form:

c ~ Condc,

where c is a code and Condc an arbitrary formula. Such
a rule expresses the fact that whenever code c occurs in a
customer’s order, the order must fulfill condition Condc,

i.e. Condc must evaluate to true for this order.

646 FLAIRS-2001

Parts list generation. The parts list is subdivided into
modules, positions and variants, with decreasing generality
from modules to variants. Parts are grouped in modules de-
pending on functional and geometrical aspects. Each posi-
tion contains all those parts which may be used alternatively
in one place. The mutually exclusive parts of a position are
specified using variants. Each variant is assigned a formula
called a code rule and a part number. A parts list entry is
selected for an order if its code rule evaluates to true. Thus,
to construct the parts list for a completed and checked cus-
tomer’s order, one scans through all modules, positions, and
variants, and selects those parts which possess a matching
code rule.

Consistency of Product Documentation
Due to the complexity of automotive product documenta-
tion, some erroneous rules in the data base are almost un-
avoidable and usually quite hard to find. Moreover, the rule
base changes frequently, and rules often introduce interde-
pendencies between codes which at a first sight seem not to
be related at all.

As the rule base not only reflects the knowledge of engi-
neers, but also world wide legal, national and commercial
restrictions, the complexity seems to be inherent to automo-
tive product configuration, and is therefore hard to circum-
vent.

A priori, i.e. without explicit knowledge of intended con-
straints on constructible models, the following data base
consistency criteria may be checked:

Necessary codes: Are there codes which must invariably
appear in each constructible order?

Inadmissible codes: Are there any codes which cannot
possibly appear in any constructible order?

Consistency of the order completion process: Are there
any constructible orders which are invalidated by the sup-
plementing process? Does the outcome of the supple-
menting process depend on the (probably accidental) or-
dering in which codes are added?

Superfluous parts: Are there any parts which cannot occur
in any constructible order?

Ambiguities in the parts list: Are there any orders for
which mutually exclusive parts are simultaneously se-
lected?

Note that the aforementioned criteria are not checked on
the basis of existing (or virtual) orders, but constitute intrin-
sic properties of the product documentation itself.

By incorporating additional knowledge on which car
models can be manufactured and which cannot, further
checks may be performed. Besides requiring additional
knowledge, these tests often do not possess the structural
regularity of the abovementioned criteria and thus cannot be
handled as systematically as the other tests.

SAT Encoding of Consistency Assertions
We will now show how to encode the consistency criteria
developed in the last section as propositional satisfiability
(SAT) problems.



Transformation of the consistency criteria into SAT prob-
lems seems to be a natural choice for two reasons: first, the
rules of the underlying EPDM system are already presented
in Boolean logic; and second, SAT solvers are applied in
other areas of artificial intelligence with increasing success
(Biere et al. 1999; Kautz & Selman 1992). SAT can be seen
as a specialization of constraint satisfaction (Wallace 1996),
and many ideas are shared between these two research areas.

The formulation of all these consistency assertions re-
quires an integrated view of the documentation as a whole
or, more precisely, a characterization of the set of orders
as they appear having passed the order completion process
and the constructibility check. So we first concentrate on a
Boolean formula describing all valid, extended orders that
may appear just before parts list generation.

Let the set of order completion (supplementing) rules 
SR = {Srl,..., 8rn} with sri = CondSi > ci. Then
the set of completely supplemented orders is described by
formula Z, where

z := A (
l</<n

Now, let CR = {crl,..., Crm} be the set of constructibility
rules with crj = cj ~ Condc. Then the set of con-
structible orders is described by formula C, where

c:= A (cj con4).
l<_j<_m

Moreover, the set of all orders that have passed the supple-
menting process and the constructibility check are described
by B, where

B := ZAC.

We now have reached our goal to generate a propositional
formula reflecting the state before parts list generation. The
mapping of the consistency criteria to SAT instances is now
straightforward. For example, code c is inadmissible, iff
B A c is unsatisfiable. The other criteria are converted ac-
cordingly, but some of them require a more sophisticated
translation, especially those tests concerning the order com-
pletion process. The complete set of transformations from
our consistency assertions to SAT instances can be found in
(Kiichlin & Sinz 2000).

Finally, it should be noted that the process described here
is simplified in comparison to the actual order processing
that takes place in the DIALOG system. The general ideas
should nevertheless be apparent.

Integration into Work-Flow
We will now briefly describe how our BIS system is inte-
grated into the existing product documentation process.

After having made a change to the documentation rule
base (or, alternatively, in regular temporal intervals) some 
all of the abovementioned consistency criteria are checked.
Each inconsistency indicated by BIS must then be analyzed
and interpreted by the product documentation experts: If the
product documentation does not correctly reflect reality (in
the sense that it does not properly classify what actually can
be manufactured), the error has to be corrected - either by

adapting the documentation rules or by modifying the prod-
uct itself. Otherwise the reported inconsistency most likely
is an intended exceptional case that does not need any fur-
ther processing.

Even if not all such inconsistencies are--or even can be--
handled, the quality of the product documentation is never-
theless improved. This is an important fact, considering that
SAT is an NP-complete problem. Thus, it cannot be guar-
anteed that the system will find all inconsistencies within a
reasonably short amount of time. We experienced, however,
that for our application worst-case behavior and unaccept-
ably long run-times are the rare exception; the run-time for
each proof is usually clearly below one second.

Architecture of the BIS System
The BIS system has been constructed employing object-
oriented client/server technology. It consists of a general
prover module programmed in C++ with a SAT-checker as
its core component; a C++ server which maintains prod-
uct data in raw and pre-processed form and handles re-
quests by building the appropriate formulae for the prover;
and a graphical user interface programmed in Java, through
which tests can be started and results can be displayed. The
three components communicate via CORBA interfaces (Obj
1995), thereby achieving a great flexibility, allowing e.g. to
place each component on a different, suitable computer or
to use multiple instances of a component (e.g. prover), if the
workload demands this. Figure 2 shows a schematic view of
the BIS system architecture.

User 1

User 2

User 3

Clients
(Java)

 ,rov.r
yetI I.ayer~ Instance 1
Data

:::;~COR~ Layer
Pm~rCORBA instance 2

ServerComponents
(C++)

~ Prover
instance 3

Figure 2: BIS system architecture.

Within the server, the UserLayer is responsible for au-
thentication and handles user requests by starting the appro-
priate consistency tests. Therefore it employs the Testkayer
which in turn is responsible for managing (i.e. scheduling,
starting) all consistency checks. The data layer is used as
a mediator between the Testkayer and the EPDM system,
and supports caching of pre-computed data.

Extensions Based on Experience
Since the first evaluation deployment of BIS 1.0 (and even
before), we have received a lot of feedback from DIALOG

VERIFICATION, VALIDATION 647



users at DaimlerChrysler. This helped us greatly in improv-
ing the system in various aspects. We will now describe rel-
evant user feedback as well as experience-induced changes
in greater detail. The following items appeared to be indis-
pensable for a broad everyday use:

¯ Push-button technology: The logical prover component
can be completely hidden from the user, and it needs no
assistance in finding a proof. Interaction with the prover
is done in terms familiar to the operating personnel.

Graphical user interface: The BIS system offers an elab-
orated graphical user interface, as can be seen from Fig-
ure 3. No cryptic command lines have to be typed by the
user.

Short response times of the system: As BIS 1.0 was used
more and more interactively, consistency checks had to
exhibit short and predictable run-times. We will describe
below in more detail how we could achieve this.

Customized special cheeks: Although we offered a gen-
eral-purpose interface to the proverI which could be used
to perform a lot of non-standard consistency checks on the
product documentation, acceptance of this tool was rather
poor. Thus, we implemented a set of further customized
special checks and extended the client accordingly.

¯ . :.

Figure 3: BIS system client.

Additional Functionality

We will now report on functional extensions that went into
BIS 2.0. As we already mentioned above, most of these ad-
ditional tests could in principle have been performed with
the general-purpose test facility of BIS 1.0, but required
some kind of~frequently almost trivial---logical problem
encoding by the user; an interpretation of the result reported
by the client; and often an annoying manual generation of a
series of tests.

JThis interface allowed queries about the existence of valid or-
ders with special properties, where the demanded property is an
arbitrary propositional formula.

648 FLAIRS-2001

Restricting the set of valid orders. The formalization
mentioned above allows the analysis of the set of all valid
orders. However, as it turned out, it is often necessary to re-
strict the set of orders to be considered to some subset of all
valid orders. This may be needed, for example, to check as-
sertions about all valid orders of a certain country, or about
all valid orders with a special motor variant. The formaliza-
tion of order restrictions could easily be realized by adding
a formula R describing the additional restriction to the con-
structibility formula B, and running the tests on/3 A R.

Valid additional equipment options. Not only for an in-
dividual order, but also for a whole class of orders, it may be
interesting to know what kind of additional equipment may
be selected. This can be used on the one hand to analyze
the product data, but may also serve a customer to find pos-
sible extensions of a partially specified order. This can be
achieved as follows: Using the restriction possibility of the
last paragraph, the partially specified order serves as a re-
striction/~ on the set of valid orders to be considered. Then
it is checked for all codes c whether the formula/3 A R A c is
satisfiable. If this is the case, then code c is a valid extension
of the partially specified order.

Combinations of codes. Upon creation and maintenance
of parts list entries, the following question frequently arises:
Given a fixed set of codes, which combinations of these
codes may possibly occur in a valid order? The answer to
this question decides over which parts list entries have to be
documented and which have not. Setting up these tests man-
ually for each combination is rather cumbersome, whereas
an automatic enumeration is trivial.

Groups of symmetrically related codes. Although not
reflected by the documentation structure, we found it char-
acteristic for automotive product data that certain codes are
symmetrically related. We call a set C of codes symmet-
rically related (with respect to a rule-based product docu-
mentation) if there is a non-empty subset/~ of those rules
containing at least one code of set C, such that R is invari-
ant under all permutations of the codes of set C. A typical
case for a set of symmetrically related codes is a set of mu-
tually exclusive codes, where one of the codes must appear
in each valid order, i.e. each order must contain exactly one
code of the set. For example, in the DIALOG documentation
system each order must contain exactly one code that de-
termines the country in which the customer has ordered the
car. Since these kinds of symmetric relations can not be ex-
plicitly stated in the EPDM system, but are implicitly given
by several rules, we added a possibility to check for a given
set of codes whether or not each valid order contains exactly
one of these codes. This is realized by checking the satisfia-
bility of formula/3 that describes all valid orders, extended
by the additional constraint that the order contains none or
at least two of the codes specified in the group.

Extending the Propositional Language
While sets of mutually exclusive codes represent the most
prominent example for a symmetrical relation, one can also
think of situations where other symmetrical relations are ap-



plicable. For example, a customer can choose exactly one of
a set of audio systems, or he can completely dispense with
audio systems. This means he can choose at most one of a
set of options. Another example is a valid order that needs
exactly k of a set of n colors specified. Obviously laying
down such restrictions in standard propositional logic leads
to excessive growth in formula size which is often unaccept-
able, and may even in simple cases exhaust the available
resources. The fact that the mutual exclusiveness of country
codes in DaimlerChrysler’s current product documentation
is not explicitly stated underlines this.

To address this drawback we added--as is described in
detail in (Kaiser 2000)--the abovementioned expressions 
standard propositional language. This extends the language
by expressions of the form Rk : Xl,... , Xn, where R E
{=, 5, <-, <, >, >}, k is a positive number and X1,..., X,~
are arbitrary formulae of the extended language. The se-
mantics of such an expression is that exactly Rk of the n
formulae are true. Thus, the fact that at most one of three
possible audio systems A1, A2 and Aa should appear in an
order corresponds to the expression

< 1 : A1,A2,A3 ,

which is equivalent to writing

-~(A1/x A2) A ~(A1/x A3)/x -~(A~/~ 
in pure propositional logic.

A closer analysis even shows that any formula in stan-
dard propositional logic can be transformed to an equivalent
formula based solely on the additional connectives, which
differs in size from the original formula only by a constant
factor. Thus, these connectives provide us with a method to
represent formulae for automotive product data management
in a compact, structure-preserving and uniform way.

As a consequence of introducing additional connectives,
we refrain from conversion to clausal normal form (CNF)
for satisfiability checking - in contrast to most of the
commonly used Davis-Putnam-style propositional theorem
provers (Davis & Putnam 1960). Although this step in-
volves a more complex prover implementation using a tree
data structure (as opposed to integer arrays for CNF rep-
resentation), its benefit is beyond the mere compaction of
formula representation. On formulae generated from auto-
motive product data our prover showed in most cases sim-
ilar or better performance. Moreover, we avoided an ad-
ditional data structure to represent the CNF of the formula
and therefore could reduce the complexity of the overall sys-
tem as well as the space requirements and improve response
time, because CNF conversion of very large formulae is non-
trivial.

Even beyond consistency checking, we consider the in-
troduction of a logical connective that reflects symmetrical
relations to be essential to efficiently document product data
on the basis of Boolean constraints.

Conclusion and Future Work
We presented BIS, a system to complement DaimlerChrys-
ler’s automotive EPDM system DIALOG. BIS serves as a

tool to increase the quality of the product documentation by
allowing to verify certain global consistency conditions of
the documentation data base as a whole. In BIS 2.0, the
consistency assertions and the product documentation rules
are translated to formulae of an extended language of propo-
sitional logic, which additionally includes a connective for
symmetric relations.

Feedback from the documentation personnel showed us
which features--among others--should be preferably in-
cluded into a support tool for product documentation: ease
of use via a graphical user interface; good integration into
existing work-flow; push-button technology; and short re-
sponse times.

Although current satisfiability checkers are quite ad-
vanced and SAT is still--and increasingly--an area of ac-
tive research (Gent & Walsh 2000), we could learn from
the special applicational needs how to improve propositional
SAT tools and how to optimize prover techniques. Special
constructs occurring frequently in product documentation,
such as selection of one out of a set of n entities, are usually
not appropriately supported by generic Boolean SAT check-
ers. Therefore, we see here an area of adaptations and im-
provements on prover technology and possibly further speed
gains, brought forward by applicational needs.

For the future, we expect a system like BIS to be in-
dispensable for electronic sales over the World Wide Web.
Complex products need to be configured and checked elec-
tronically in large numbers, and thus the presence of a high
quality electronic product documentation--which is made
possible by our techniques--receives increased attention.

References
Biere, A.; Cimatti, A.; Clarke, E.; and Zhu, Y. 1999.
Symbolic model checking without BDDs. In Tools and
Algorithms ]or the Analysis and Construction of Systems
(TACAS’99), number 1579 in LNCS. Springer-Verlag.
Davis, M., and Putnam, H. 1960. A computing procedure
for quantification theory. In J. ACM, volume 7, 201-215.

Freuder, E. 1998. The role of configuration knowledge in
the business process. IEEE bltelligent Systems 13(4):29-
31.
Gent, I., and Walsh, T. 2000. Satisfiability in the year 2000.
J. Automated Reasoning 24(1-2): 1-3.

Kaiser, A. 2000. A sat-based propositional prover for con-
sistency checking of automotive product data. Unpublished
manuscript.

Kautz, H., and Selman, B. 1992. Planning as satisfiability.
In Proceedings of the lOth European Conference on Ar-
tificial Intelligence (ECAI’92), 359-363. John Wiley and
Sons.
Kfichlin, W., and Sinz, C. 2000. Proving consistency as-
sertions for automotive product data management. J. Auto-
mated Reasoning 24(1-2): 145-163.
Object Management Group. 1995. The Common Object
Request Broker: Architecture and Specification.
Wallace, M. 1996. Practical applications of constraint pro-
gramming. Constraints 1(1-2).

VERIFICATION, VALIDATION 649


