
Improving Knowledge-Based System Performance by Reordering Rule

Sequences

Neli P. Zlatareva

Department of Computer Science
Central Connecticut State University

1615 Stanley Street
New Britain, CT 06050

E-mail: zlatareva@ccsu.edu

Abstract

In this paper, we argue that KBS validation should not be
limited to testing functional properties of the system, such
as its input - output behavior, but must also address its
dynamic properties, such as its run-time performance. We
describe an automated procedure, which under certain
limitations can recognize relations between rules, typically
expressed as "meta-rules" or "control heuristics" and hard-
wired in the KBS’s control strategy. The presented
procedure takes as an input the operational version of the
knowledge base theory generated by a CTMS-based
verification tool, and returns a reordered set of rules which
when applied to a specific problem generates possible
solutions of that problem in order according to a specified
criterion, for example the length of the path leading to the
solution. We show an example to illustrate the proposed
procedure.

Introduction

Knowledge-Based System (KBS) validation aims
to evaluate and improve system performance.
The two most important performance measures
are predictive accuracy and run-time efficiency.
Predictive accuracy is typically defined by
running test cases with known solutions once the
system is proved to be structurally correct. A
KBS is considered valid if it correctly solves all
test cases, and there is evidence that it will

Copyright © 2001, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

correctly solve any other case presented to the
system. Being valid is a required property of a
KBS; however, it is rarely a sufficient one
(except in small toy domains). In most cases,
KBSs encounter intractable computational tasks
where a run-time efficiency is essential for
system acceptability. In such applications,
another dimension must be added to the V&V
process, namely assuring the maximum
efficiency of the computation process. This
aspect of KBS validation has not been
sufficiently studied yet,. in part because it was
believed that a run-time efficiency is a property
of the control strategy that utilizes domain-
dependent knowledge to guide the reasoning
process [Fenzel & Straatman, 1998]. Examples
of such knowledge include the order in which
observations are obtained during the diagnostic
process, the order in which components are
configured during the design process, etc.
Acquiring control knowledge from domain
experts, however, is the most difficult component
of the knowledge acquisition process. It is
unrealistic to expect that experts can generalize
case-dependent heuristics or define the certainty
value of a single rule in isolation. This is why it
is essential to equip the validation tool with an
automated procedure, which can recognize
problem-dependent relations between rules and
reorder rule sequences according to these
relations so that to guarantee the maximum
efficiency of the computation process.

VERIFICATION, VALIDATION655

From: FLAIRS-01 Proceedings. Copyright © 2001, AAAI (www.aaai.org). All rights reserved. 



In this paper, we present a method for rule
reordering, which can be easily performed as part
of the validation process. Similar idea is
discussed in [Terano & Kobayashi, 1995], where
a method based on a genetic algorithm is
proposed to improve system performance by
changing certainty values associated with the
rules. These changes require test cases, which are
used as "oracles" in the refinement process. Our
method does not require test cases, although it
assumes that the system has undergone structural
and functional testing, and all detected anomalies
have been removed from the knowledge base.

We first discuss the motivation for this research
and related work, and then outline the basic
algorithm for computing and reordering rule
sequences. An example is included to illustrate
the proposed method. We conclude with some
preliminary results and discuss our plans for
future work.

Problem definition, motivation and practical
justification

As stated in [Groot, ten Teije & van Harmelen,
1999], there are two separate although related
tasks in KBS validation:

1. Validation of functional properties, which
is concerned with the input - output
behavior of the system.

2. Validation of dynamic properties, which
is concerned with the computation
process itself.

Functional validation deals with "how" the
solution is computed, while dynamic validation
deals with "what" counts as a solution. The
authors suggest that dynamic validation is a
refinement of functional validation, because two
systems with the same dynamic properties have
necessarily the same input - output behavior,
whereas two implementations with the same

input - output behavior may have different
computational models.

To illustrate the difference between functional
and dynamic properties of a KBS, consider a
medical application where the goal of the KBS is
to find the best way to prove a certain diagnosis
relative to a specific environment. Because the
environment can be different, the system is
expected to containalternative computational
models and apply them selectively. The
extended example presented below can be
interpreted as a representation of a relation
between an observation, S, intermediate tests A
through I, some of which are mutually exclusive,
and the final diagnosis, F. There are four possible
ways to compute F. The shortest solution, which
in many cases may be the preferred one, utilizes
R8, R 11, and R 12. In some cases, however, some
tests (I, for example) may not be available 
possible, which is why the KBS must identify R1
--) R7 --) R9 --) R10 as an alternative path to 
goal. Functional validation is intended to show
that the system satisfies the input - output
specification (i.e. given S, F can be proved),
while dynamic validation evaluates the
computation process itself and recognizes R8 --)
R11 --) R12 as the shortest solution of the stated
problem.

Recognizing the two sides of the validation
process is essential for developing tools intended
to improve the dynamic properties of a KBS.
Run-time efficiency is the most important
dynamic property, which depends on the order in
which rules fire in the problem-solving process.
This order, in turn, is dependent on many factors:
the chaining method, the conflict resolution
strategy, whether or not a non-monotonicity is
incorporated into the knowledge model, etc. (see
[Boswell & Craw, 1999] for discussion and
examples on how these factors influence the
problem-solving process and can be accounted
for in knowledge refinement). Under certain
limitations, however, forward and backward
chaining methods produce exactly the same
results. In such cases, the only difference in the

656 FLAIRS-2001



generated outcome comes from the way the goal
of a KBS is defined, i.e. whether the system is
expected to generate "the shortest", "the first", or
"all" solutions to the presented problem. In many
applications, the user is interested not only in
"the shortest" solution, but also in the time in
which this solution is reached and the resources
needed for its implementation. In both cases, the
system is expected to find the most efficient
solution (i.e. the solution with the minimum
number of the rules fired in the computation
process), and upon request offer alternative
solutions in decreasing order of their desirability.
We discuss next how the system’s dynamic
behavior can be evaluated and refined as part of
the validation process.

Computation and reordering of rule
sequences

One of the advantages of a production rules
model is that rules can be entered in the
knowledge base as they arrive, because their
order is irrelevant to the predictive accuracy of
the KBS. This may considerably ease the
knowledge acquisition process, but even for
small-scale applications may lead to an
intractable problem-solving process. If there exist
problem-dependent relations between rules
(control knowledge), instead of relying 
domain experts to formulate and formalize such
relations in a form of control rules (thus
complicating not only the knowledge acquisition
process, but also the control strategy), the
validation tool may automatically recognize such
relations and suggest changes in rule order to
improve the run-time performance of the KBS.
Because this process is viewed as part of the
validation framework, the system must have
undergone structural and functional testing
beforehand. For that purpose, we use a CTMS-
based tool, the VVR system [Zlatareva, 1994].
One advantage of the CTMS-based tool is that all
potential solutions are explicated during
structural verification, and can be used as an

input for the proposed dynamic validation
procedure. The desired output of that procedure
is a reordered set of rules, which generates the
solutions of a presented problem in the order of
their desirability (according to a specified
criterion, for example the length of a rule
sequence). This is exactly the opposite of what
the so-called "anytime algorithms" [Russell &
Zilberstain, 1991] aim to achieve. Any-time
algorithms gradually approach the perfect
solution; the more time the algorithm has, the
more are its chances to find it. Our intension is to
make it possible for a KBS to identify the best
with respect to the existing context solution early
in the computation process by recognizing and
implementing problem-dependent relations
between rules, which guide the computation
process towards it.

The proposed dynamic validation procedure
utilizes the following algorithm. The input is an
operational theory produced by a CTMS-based
verification tool, the initial rule set and a specific
problem for which the input - output
specification is provided, and the output is a
reordered rule set which embodies an implicit
control forcing the KBS’s inference engine to
generate problem solutions in order according to
their length. We assume that KBS inference
method is forward or backward chaining, and no
explicit control strategy forces rules to fire "out-
of-order" (i.e. rules that come first, fire first).

1. Using the operational theory produced by a
CTMS-based verification tool, identify all
potential solutions of a given problem. A
solution is a rule chain leading from initial
facts to a specified final hypothesis.

2. Sort rules into levels corresponding to the
steps of the operationalization process at
which a given rule was applied (see the
example below).

3. Identify alternative paths to intermediate
and final hypotheses and compute their
length counting the number of rules in each
path.

VERIFICATION, VALIDATION657



4. I: (C, Rll)For each alternative path starting with the
shortest one, move the end-rule after all
lower-level rules.

We illustrate this algorithm on an example
presented next.

Example

Consider the following set of rules. Let S be the
input, and F be the final hypothesis.

RI: S->A
R2: S-->B
R3: B--)H
R4: H--)E
R5: A--)E
R6: E->I
R7: A--)D
R8: S->C
R9: D-->J
R10: J ---) 
Rll: C--> I
R12: I --> F

Forward chaining and backward chaining, both,
generate the same solution: R1, R7, R9, R10, and
R10, R9, R7, R1, respectively. A shorter path to
the final hypothesis, F, however, is R8, Rll,
R12. To get this shorter solution, rules must be
reordered as described in the previous section.

1. Identification of alternative solutions.
Intermediate results of the operationalization
process produced by a CTMS-based verification
tool are given below. It is easy to see that there
are alternative paths to intermediate hypotheses E
and I, and to the final hypothesis, F, respectively.

Step 1 A: (S, R1)
B: (S, R2)
C: (S, R8)

Step 2 H: (B, R3)
E: (A, R5)
D: (A, R7)

658 FLAIRS-20Ol

Step 3 E: (H, R4)
I: (E, R6)
J: (D, R9)
F: (I, R12)

Step4 F: (J, R10)

2. Sorting rules into levels according to the step
at which each rule was applied in the
operationalization process.

Level 1: R1, R2, R8
Level 2: R3, R5, R7, R11
Level 3: R4, R6, R9, R12
Level 4:R10

3 & 4. Identification of alternative paths. For
each alternative path starting with the shortest
one, move the end-rule after all lower level rules.

Alternative paths to E:

o PI: S-->RI@A--)’R5-->E
o P2: S"->R2"->B’->R3"--)H-’->R4"-->E

To find the shortest path to E, the inference
engine must fire R5 before R3. R5 however must
follow R2, because R2 is a lower-level rule.

Alternative paths to I:

o PI: S-->R1-->A"-)’R5-->E-->R6--)’I
o P2: S’-->R2"-->B-’->R3--->H’-->R4"--)

E -’-) R6 -> 
o P3: S’--)’R8-->C->R11@I

Because the length of the path, P3, is less then
the length of P1, R11 must be moved before R5
to ensure that P3 is generated first.

Alternative paths to F:

o PI: S-->R1-->A-->R5 -->E-->R6 --)
I --> R12 --> F



P2: S-9R2-gB-9R3-9H --9 R4-9
E -9 R6 -9 I -9 R12 -9 F

o P3:S-9 R8-9C-9 Rll-9I-9 R12
-9F

o P4:S-9R1-9A-9R7 -9D-9 R9-9
J -9 R10 -9 F

Here the length of P3 is less than the length of
P4. Therefore, R12 must fire before R9, but after
R7, because R7 is a lower-lever rule.

After introducing all changes, the reordered rule
sequence becomes: R1, R2, R8, R11, R5, R3, R7,
R 12, R4, R6, R9, R 10. Now the shortest solution,
R8 -9 R11 -9 R12, will be generated first in just
one pass through the rule set. If alternative
solutions are requested, R1 -9 R7 -9 R9 -9 R10
will be generated next also in just one pass. The
other two solutions, R1 -9 R5 -9 R6 -9 R12 and
R2 -9 R3 -9 R4 -9 R6 -9 R12, require two
passes through the rule set and will be generated
last.

Conclusion

We have argued in this paper that KBS validation
should not be limited to assuring functional
properties of the system, such as its input - output
behavior, but must also address its dynamic
properties, such as its run-time performance. We
have shown that under certain limitations, an
automated procedure can recognize relations
between rules, which are typically expressed as
"meta-rules" or "control heuristics" and hard-
wired in the KBS’s control strategy. One
advantage of having such a procedure in place is
that the knowledge acquisition process will be
simplified, because acquiring control knowledge
from domain experts is the most subjective and
difficult task.

At present, the proposed procedure was applied
to small examples, but we believe that it will be
of practical interest for real-world applications.
More work remains to be done to see to what
extend dynamic validation can substitute for

traditional methods for acquiring control
knowledge.

References

Craw, S.; Boswell, R. 1999. Representing
Problem Solving for Knowledge Refinement. In
Proceedings of the 16-th National Conference on
Artificial Intelligence (AAAI’99), AAAI Press.

Fenzel, D.; Straatman, R. 1998. The Essence of
Problem-Solving Methods: Making Assumptions
for Gaining Efficiency. International Journal of
Human-Computer Studies, 48(2), pages 181 
215.

Groot P.; ten Teije A.; van Harmelen, A. 1999.
Formally Verifying Dynamic Properties of
Knowledge Based Systems. In Proceedings of the
l l-th European Workshop on Knowledge
Acquisition, Modeling and Management
(EKAW’99). Lecture Notes in AI, Springer
Verlag.

Russell, S.; Zilberstain, S. 199I. Composing
Real-Time Systems. In Proceedings of the 12-th
International Joint Conferences on Artificial
Intelligence (IJCAI’9I), Boston, pages 212 
217.

Terano, T; Kobayashi. K. 1995. Changing the
Traces: Refining a Rule Base by Genetic
Algorithm. In Proceedings of the IJCAI’95
Workshop on Validation and Verification of
Knowledge-Based Systems. Montreal, Canada.

Zlatareva, N. 1994. A Framework for
Verification, Validation and Refinement of
Knowledge Bases: the VVR System.
International Journal of lntelligent Systems, 9(8),
pages 703 -738.

VERIFICATION, VALIDATION 659


