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Abstract

Biological organisms use a combination of attention and
arousal to control the amount of sensory data being sent to
their central nervous system’s higher order processing. We
propose using what neuroscience has learned about these
natural mechanisms to construct a biologically inspired
model of how sensor input can be filtered and fused in a
large-scale DAI system. We then show how this model can
be implemented using our Goal Mind agent environment
and discuss how such an implementation can be tested.

Introduction

Biological organisms rely on a large number of simple
sensors to provide constant input about the changing world
around them. To timely process these sensor rich
environments, the central nervous system of these
organisms must use both an attention and arousal
mechanism to both filter and fuse the resulting data into a
workable set of critical input. A number of large-scale DAI
applications, such as smart home projects and battle
management systems for the 21% century battlefield,
already exhibit sensor collections that could gain from a
biologically inspired model that improves sensor fusion
and input filtering. In this paper, we will discuss the
neuroscience background for such a model, a resulting
theoretical model drawn from this neuroscience research
and how such a model can be implemented using our Goal
Mind environment (formally called AMEBA) [2].

In this discussion, we will limit the type of sensors being
used in a DAIT application to those similar in complexity to
a biological system. While this, at first, might seem to limit
the resulting mechanisms’ general application, in reality, it
does not. Almost all complex sensors are made up of a
collection of simple sensors ganged together for the ease of
use in their primary domain of operation. For example, a
digital camera internally relies on a grid of simple light
sensors which work together to produce the resulting
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captured image. This is not unlike the human eye which
internally consists of a set of bar, edge and hue detectors
that decompose the image being projected on the back of
the eye into a collection of simple sensor inputs. What we
perceive as the image being generated by our eyes is
actually constructed in the visual cortex of our brain from
not only the output of these detectors but also what our
brain expects the image to look like. Most vision systems
being used in robotics and other Al related fields end up
processing camera input using the same type of detectors
that biological systems use, so the proposed mechanisms
can be used with even these types of complex sensors, as
long as, access to the internal processing of the sensor can
be gained.

The Attention and Arousal Mechanism

In biological systems, the attention mechanism is primarily
used to block low-value sensory input so that the Higher
Order Processing (HOP) resources are not overwhelmed
by sensory data. The arousal mechanism provides a way
for attention to be switched from one set of inputs to
another. A breakdown in either the attention or arousal
mechanism can have serious consequences, causing such
conditions as Attention Deficit Disorder and even Autism.
However, there is some debate as to the neurological
processes behind attention and arousal, and whether these
processes differ based on the modality of the sensory
input. A detailed discussion of both the psychological and
neurological basis for attention and arousal theories can be
found in [1, 4, 5, 7]. Here, we will only provide a brief
overview which is based primarily on these sources.
Psychologically-based theories for both mechanisms
tend to put more emphasis on the effect of modality than
do neurologically-based theories. This is not really
surprising since an experimental psychologist must use
some modality to conduct her research and this testing
method will somewhat color the results. On the other hand,
cognitive neuroscientists tend to propose the same
underlying mechanism (such as lateral inhibition for
attention or the gated dipole for arousal) regardless of
modality. Since our intention is only to use these theories
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as an analogy for a DAI system, it would seem safe to
assume that we can ignore the effect of modality and
propose a unified model.

Early work on attention (by Broadbent in the late
1950’s) focused on the idea that sensory input was filtered
before being analyzed. This view has become know as the
early selection theory. In 1963, Deutsch and Deutsch
suggested that the filtering occurs after analysis but before
response processing. This view is now known as the late
selection theory. However, both of these theories have
conceptual problems. The early selection theory does not
provide a suitable mechanism for attention switching while
the late selection theory implies that we can simultaneously
use cues from all sensory inputs in our internal processing
of the attended input and this simply is not true.

In 1969, Treisman suggested that unattended sensory
input is not completely blocked, but simple attenuated.
This theory has been shown to both fit experimental data
and connectionist explanatory mechanisms. It provides
room for the arousal mechanism by providing a low level
of off-target sensor data that can eventually force attention
switching.

Another aspect of attention is the number of sensory
input falling within the attention spotlight. Normal human
subjects can focus their attention on few or many sensory
input (increase or decrease the spotlight beam) depending
on the requirements of the task at hand and move the
attention spotlight through the sensor domain as required
to complete the task. While this phenomenon has been
primarily demonstrated through experiments with visual
input, the ability clearly crosses modality boundaries. Stein
and others have demonstrated that animals attend better to
coherent multisensory input than any single sensory input
[8]. Murphy presents an overview of how biologically-
based sensor fusion has been defined and used in Al
systems [6].

A Model of Attention and Arousal

Based on the psychological and neurological research into
the attention and arousal mechanism, we propose a
computational model that attempts to emulate how these
mechanisms work. Our model is based on a hierarchical
collection of three types of modules, each containing a
filter and fuser component. Each of these modules supports
a piece of the overall attention and arousal mechanism of
the resulting system.

As shown in Figure 1, the Time Filter/Fuser supports a
single sensor input. When no inhibiting signal (I;) has been
applied, the input is simply passed through the filter/fuser.
When an inhibiting signal has been applied, the input is
blocked and the arousal mechanism is activated. Based of
the threshold provided by T,, a differential greater than
plus or minus the threshold between the sensory input at
time t and time t+t will cause the signal A; to fire.

As shown in Figure 2, the Space Filter/Fuser supports
any number of sensory input of the same modality. In
addition to allowing a sensor input to pass through the
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Figure 1. The Time Filter/Fuser

filter/fuser, the attention mechanism generates a set of
combined sensory output such as the average sensor value
and the maximum and minimum sensory value. The
inhibiting of any of these output can be controlled using
the inhibiting signal (Iy). When inhibiting signals have
been applied, the arousal mechanism is activated. Based on
the threshold provided by T, a differential greater than the
plus or minus the threshold between any of the sensory
input will cause the signal A, to fire.

As shown in Figure 3, the Mixed Modality Filter/Fuser
supports any number of sensory input of any number of
modality. In addition to allowing a sensor input to pass
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Figure 2. The Space Filter/Fuser
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Figure 3. The Mixed Modality Filter/Fuser

through the filter/fuser, the attention mechanism generates
a summation sensory value which reflects how the
different input modalities are related. The inhibiting of any
output can be controlled using the inhibiting signal (I;). In
addition, Bower’s taxonomy is supported by allowing the
input to be recalibrated using the R signal [6]. When
inhibiting signals have been applied, the arousal
mechanism is activated. Based on the threshold provided
by T, a differential greater than plus or minus the
threshold between any of the sensory modalities will cause
the signal A, to fire.

These filter/fuser components are designed to be used as
modular components in an architecture like Goal Mind
which provides the maximum flexibility in the way they
are connected. To support a flexible implementation, any
sensory input should be allowed to run to any number of
different filter/fuser components and the filter/fuser
components should be allowed to be stacked on top of
each other. After a brief overview of the current Goal
Mind system, we will address both the Goal Mind
implementation and how it will be tested.

The Goal Mind Architecture

The Goal Mind system, part of our Gold Seekers toolset, is
the next generation of our Adaptive Modeling environment
for Explanatory Based Agents (AMEBA) architecture [2].
While attempting to productize AMEBA for academic use,
it became apparent that some early design decisions made
the support mechanism and GUI control of this system too
inflexible for general use. Based on AMEBA, the Gold
Seekers project is designed to produce a set of powerful
free tools for both general distributed application and
multi-agent intelligent system design and implementation.
The first of these tools is Alchemy [3]. Alchemy is a
general distributed processing environment which

supports: 1) the asynchronous processing model needed by
our cognitive-based approach, 2) a GUI-driven dynamic
generation, operation and testing environment, and 3) a
multi-level security facility for safe operation over the
Internet or other public networks. The second tool is Goal
Mind, a redesign of AMEBA to run on top of Alchemy.
While we now have a working copy of Alchemy and Gold
Mind, we are still a number of months away from being
able to release them for general use.

Goal Mind, like AMEBA, attempts to capture the
explanatory force of a connectionist neural model while
allowing the use of the better-understood representation
and reasoning methods of symbolic Al. From a system
perspective, it attempts to provide processor transparency
within a parallel system and a flexible method of process
and knowledge management. The key element that
supports these requirements is the etheron process
framework that allows agent components to be built from
Alchemy processing nodes. An etheron provides a
container for an instance of any inference or routing
mechanism needed by the system. Once contained, the
etheron supports the mechanism with, 1) a standard way to
load and store knowledge, 2) interfaces to a set of
predefined management tools and 3) a generalized set of
communication channels for talking with other etherons.

Goal Mind models draw their explanatory depth from
the environment’s ability to support hierarchical cognitive
processing. Using adaptive distributed processing and
generalized inter-process communication, cognitive
functions can be modeled at different levels of abstractions
without changing the logical relationship between these
functions. Thus, a function like the conceptual reasoning
about the world and self can be simulated with a reasoning
and knowledge storage system which has far less capacity
than that of a real human. This allows us to preserve the
overall model’s explanatory depth, as long as we preserve
explanatory relationships between cognitive components.
To ensure that we preserve these relationships, our
modeling research is driven by both the evidence from
experimental psychology regarding the architecture of the
mind and the evidence from neuro-physiology regarding
the architecture of the brain.

The Goal Mind Implementation

Like AMEBA, Goal Mind supports a set of Representation
and Inference Mechanisms (RIMs), Coded Response
Mechanisms (CRMs) and InterFace Nodes (IFNs). The
sensor filtering and fusion approach being proposed here
represents a shift in our research from developing
applications where the biologically-inspired sensors are
simulated by the IFNs and used to study human cognition,
to applications where the IFNs serve as interfaces to real
sensors. While this shift represents a new effort to support
real-world missions for our tools, both the existing
AMEBA system and new Goal Mind system have always
been designed to support this role. Therefore, the use of
the new attention and arousal model to support large-scale
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sensor arrays does not radically change the design or
operation of a Goal Mind multi-agent model.

Figure 4 presents a high-level view of one agent in our
current test model. In this agent, the IFNs can either
emulate sensor input or condition real sensor input used by
the agent. The filter/fuser components are implemented as
CRMs. The Attention Control and Arousal Control
components are implemented as RIMs using our SKIPS
knowledge base engine to support rule-based control of
these systems. The Sensor Processing RIM is for the most
part any existing SKIPS components which has been used
in previous AMEBA test models.

At start-up, all threshold values are set by the Arousal
Control component by sending threshold messages to each
of the filter/fuser components. We currently do not adjust
the thresholds during testing, but adding this capability
would require only a simple modification to the Arousal
Control rule-base. For most purposes, the fact that any
filter/fuser can output any input generates a great deal of
redundant messages so we currently inhibit all individual
input and only turn on the ones from the Time Filter/Fuser
when a threshold is reached. While this approach seems to
work, we are still researching the best way of handling the
routing of input to the rest of the system.

Our research approach has been to incrementally
increase both the number of sensors and reasoning
complexity of our test model over time. In the existing test
model, the sensor input is still relatively basic. The model
divides sensor input into five rooms, with two temperature
and two light sensors per room. In the rule-bases, the
second sensor per modality per room is viewed as
redundant to the first and is used to provide a certain level
of fault tolerances regarding the sensor data coming from
each room. This model allows us to study the agent’s
ability to reason about the cause of temporal, spatial and
dual-modality temperature and light relationships from the
environment. The end result of this iterative modeling
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Figure 4. Implementation of the Current Test Model
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approach will be a model that greatly increases the
complexity of the sensor input, and thus, the level of
understanding the model has about its environment.

Discussion of Goal and Testing Criteria

The goal of this research is to show that our attention and
arousal model improves both the overall performance of an
agent or multi-agent system in a sensor-rich environment
and an agent’s ability to detect and respond to critical input
that is currently not in its attention spotlight. There is
clearly a limit to the amount of sensory input a centralized
reasoner can timely process. Further, the amount of useful
information you can gain by distributing the sensory input
across a decentralized set of reasoners is limited since it is
difficult to gain complete insight from multi-modal sensor
fusion unless a single processing point in your system can
actually see all of the raw input needed for the task at hand
and this ‘spotlight’ of needed input is dependent on the
state of the world and the agent.

In early tests with high rates of sensor updates with the
current model, this model demonstrates the level of
improvement we would expect from a trade-off in the
overall increase of the model’s communication and
processing latency (resulting from the addition of
filter/fuser and control components) being offset by the
decrease in the amount of processing needed by the sensor
processing HOP to process each sensor update cycle.
These results also logically follow from the model’s design
since it takes more work (measured in number of rule
firings) for the sensor processing HOP to process a useless
input than it takes for a filter/fuser to remove it from
consideration under the intelligent control of the much
slower cycling attention and arousal mechanism. Gold
Mind’s processor thread design of also helps the overall
performance of the model since components at rest (i.e.,
not processing data) tend to consume very little processing
bandwidth. However, it is still too early to completely
quantify this improvement in raw processing time since the
model is still quite small.

We have also run tests to determine the current models
speedup when the components were distributed across our
Beowulf-like cluster in different ways. So far we are
seeing speedup results that are characteristic of other
Alchemy (and AMEBA) models, such as those reported in
[2] and [3]. As with these other models, we see fairly
good speedup (on the order of 0.5n) up to about 8
processors, but beyond this point the speedup tends to fall
off rather quickly. Our analysis of these results indicate
that this fall-off is a result of the current model being too
small to computationally stress more than 8 processors.

While we have good reason to believe that in an even
larger model (with many more sensors and sensor types)
our attention and arousal model will do an even better job
of improving the overall processing time needed for the
larger number of input, the model’s time performance is
not the only expected improvement in a larger test model.
As we know from biologic examples, at some point a



centralized processor without a front-end filter/fuser
mechanism will simply lose the ability to provide any
useful evaluation of the input. We are currently designing
a larger test model to determine at what point this loss of
ability occurs within the Gold Mind framework. This
model will use the dynamic nature of the Gold Mind tool
to: 1) allow the filter/fuser mechanism to be turned off and
on, and 2) allow the sensor processing HOP’s workload to
be distributed across a number of cookie-cutter
components that each process only a part of the input.

Using this larger model, we should be able to provide
some further understanding regarding the point at which a
centralized reasoner using an attention and arousal
mechanism begins to significantly outperform either a
centralized approach without a front-end filter/fuser
mechanism or a decentralized approach that subdivides the
same set of sensor input between different processes.
Based on initial studies, this critical processing point is
expected to occur when the input rate reaches several
hundred sensor input per time slice, but the actual number
could vary greatly from this early estimation.

Future Work

Once we have completed testing with the our simulated
and tightly controlled real input test models, the next step
is to apply the attention and arousal model against a real-
world environment and see how well it performs. The
smart home environment is ideally suited for this real-
world test since agents with attention and arousal
mechanisms should be able to perform a number of tasks
better than agents without them. For example, one of the
tasks our test agents have been given is to detect possible
fire conditions without overreacting to abnormalities in
both the sensor input and the sensors themselves. As
anyone who has been exposed to fire alarm systems that
are prone to false alarms knows, humans will eventually
stop believing any reports of fire by these systems. A smart
home agent that demonstrates a human-like ability to
reason about possible fire conditions may be able to
respond quicker to real fires and better suppress false
alarms. The improvement in reasoning should be greatly
aided by the ability to better fuse and filter sensor input
since the agent is thus able to consider a larger set of input
evidence.

Conclusion

While still in the early stages of our research, we are
already seeing signs that the attention and arousal model
proposed in this paper will improve large-scale sensor
processing. It is also beginning to shed some light on the
actual cognitive processes on which it is based. This dual
use of Goal Mind has always been one of the most exciting
features of this research. With the addition of an
explanatory attention and arousal model, we believe that

the Gold Seekers project has taken yet another small step
toward a unified understanding of cognition.
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