
Far and A WAY: Context Sensitive Service Delivery through Mobile

Lightweight PDA hosted Agents.

P.T. O’Hare G.M.P. O’Hare T.D. Lowen

Department of Computer Science
University College Dublin

Republic of Ireland
 Peter.OHare@ucd.ie, Gregory.OHare@ucd.ie, Terry.Lowen@ucd.ie

Abstract
This paper introduces the Where Are You (WAY) system, a
simple, yet effective application for assisting mobile users in
the performance of a variety of routine tasks. The WAY
system supports the mobile citizen in the location, tracking
and rendezvousing with a variety of moving entities. The
WAY system seeks to provide such support by deploying a
rich collection of appropriate technologies including mobile
agent based technologies, Geographic Information Systems
and context aware mobile computing. System functionality
is delivered through a collection of mobile lightweight
intentional agents, which take cognizance of the memory and
processing restriction of Personal Digital Assistants.

1. Introduction

This paper introduces the Where Are You (WAY) system, a
simple, yet effective application for assisting mobile users in the
performance of a variety of routine tasks. The WAY system
supports the mobile citizen in the location, tracking and
rendezvousing with a variety of moving entities. In particular one
of the most common and costly usage of mobile devices is the
synchronisation and rendezvous of people resulting in abundant
inane narrative.
 The WAY system seeks to provide an alternate solution to the
problem by deploying a rich collection of technologies including
mobile agent based technologies, Geographic Information Systems
(GIS) and context aware mobile computing. Sections 2 and 3
review context aware service provision and mobile agent systems
respectively. Subsequently we describe the design and realisation
of the WAY system and consider our results before offering some
conclusions.

2. Context Aware Mobile Computing

The concept of context-aware computing is concerned with
systems which can detect elements of the user’s environment.
Contextual elements the system may detect include spatial,

Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

environmental, social, temporal and even social information. As a
result of this newly acquired information the system is expected
to react, providing information or services now applicable to the
current context. The challenge for such systems lies in the
complexity of capturing, representing and processing contextual
data. Invariably user contexts are unique to the individual user and
consequently this necessitates complex and dedicated tracking and
profiling capabilities in order to derive the necessary leverage from
such systems.
 Pioneering context-sensitive systems in the early 1990’s include
ParcTab and Olivetti’s ActiveBadge. The Cyberguide and HIPS
project saw context sensitive applications used in the arena of
tourists guides. Cyberguide (Abowd et al. 1997) provided a
guided tour of Atalanta coupled with the ability to supply
information on amenities in the users location. The HIPS tour-
guide (O’Grady, O’Rafferty, O’Hare 1999) dynamically delivers
multi-media presentations based on the user’s location and
profiles.
 Several recent systems have deployed Multi-Agent Systems
such as Impulse, ComMotion and Ad-Me. The Impulse (Youll et
al. 2000) project provides personalized location-based information
through the use of agent communication. A User Agent residing
on a hand-held device creates a user profile and builds queries for
the Wherehoo server and Provider Agents. The results of the
queries are displayed to the user by the User Agents in the form
of URLs. ComMotion (Marmasse 2000) uses a location-learning
agent to observe the locations frequently visited by the user via a
GPS receiver. It uses both a speech and graphical user interface,
which assist in providing location, based information, displaying
maps and controlling administrative functions. The Ad-me project
(Hristova, O’Hare 2001) is a mobile tourist guide that proactively
delivers advertisements to users based upon perceived individual
user needs together with their location. It adopts a Multi-Agent
System (MAS) design philosophy and strives for maximum
content diffusion across HTML,WML, HDML and iMode
formats.

3. Existing Mobile Agent Systems

(Gray et al. 2000) define a mobile agent as “an executing
program that can migrate, at times of its own choosing,

FLAIRS 2002 13

From: FLAIRS-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

from machine to machine in a heterogeneous network”.
Numerous competing mobile agent systems exist, exemplars are
those of Telescript Agents, D’Agents, Ara, Tacoma and
Grasshopper. We will consider each briefly.
Telescript (White 1994) developed at General Magic, Inc.,
constitutes the first commercial system specifically designed to
support the development of mobile agents. Telescript agents
travel between places with the go instruction, which captures the
agent’s code, data and thread state. On its new platform, the agent
resumes execution from the statement immediately after the go
instruction. The Ara (Peine and Stolpmann 1997) platform
similarly offers support for portable and secure execution of
mobile agents written in various interpreted languages on top of a
common run-time core. Ara agents may migrate to another host at
any point during their execution while preserving their internal
state. D’Agents represents a more recent offering that supports
agents written in Tcl, Java and Scheme. The ultimate goal of
D’Agents is the support of applications that require the retrieval,
organization and presentation of distributed information in
arbitrary networks. The TACOMA (Trodheim And COrnell
Mobile Agents system) unlike D’Agents and Ara does not
provide automatic state capture facilities for migrating agents.
When a Tacoma agent wants to migrate to another host, it packs
up its code and any desired information into a folder. This folder
is then sent to the new host, which then starts up the execution
environment and calls a known entry-point in the agent’s code to
resume the execution of the agent. Grasshopper (Baumer et al.
1999) is the first mobile agent system compliant to the OMG
MASIF (Mobile Agent System Interoperability Facility)
interoperability standard.

4. The Way System

The WAY system is designed to be hosted on mobile Personal
Digital Assistants (PDAS). Users would firstly subscribe to the
WAY system by contacting a server in a wireless mode.
Thereafter the subscriber would receive a default WAY agent
mental state that would migrate to the PDA. In addition an
address book is supplied which maps users to network locations
(IPs). Step three then involves the issuing or acceptance of WAY
requests from fellow users. Acceptance would enable the other
user to know and track your whereabouts. To attain the same
functionality, with regard to tracking them, then they need to
accept your WAY request. Upon disconnection the agent mental
state migrates to the server to be stored persistently.
 The WAY system has been implemented with a combination of
Smalltalk-80 and Java. Java ensures portability, and easy
accessibility to Application Programming Interfaces such as
Swing, Advanced Windowing Toolkit (AWT), the Java
Foundation Classes (JFC), and JDBC (Java Data Base
Connectivity).
 Figure 1 presents the WAY schematic architecture.

Figure 1. The WAY Schematic Architecture

4.1 The WAY Graphical User Interface
The WAY graphical user interface was delivered using the AWT
(Advanced Windowing Toolkit). We embraced the less is more
ethos. We sought to deliver several key interface functionalities.
Firstly the ability to represent in a clear concise and visible
manner the users location and orientation. As indicated in Figure 2
the former is acquired through a PCMCIA GPS card while the
latter is obtained from a special custom built electronic compass
accessible via a serial port. To achieve this we adopted a map
based interface whereby users location and orientation would be
depicted by way of a unique icon with an arrow indicating their
orientation (see figure 2) As there may be a number of WAY users
connected at a given instance and due to the limited screen real
estate the enough to be recognizable but small enough so as not to
obscure adjacent map related content. Another key element of the
interface was that of zooming. We needed to have the capability of
zooming in on and out of the map. Zooming in to see in detail
where a single icon was but also zooming out in order to identify
were others were in relation to ones self. Zooming was achieved
by the use of an adjustable red square, the square is moveable so
can be placed over any area of the map. The adjustable red square
covers a segment of the map, this segment is magnified in direct
proportion to the size of the square i.e. the smaller the square the
larger the magnification and vice versa. The zoom function is
activated when the user double-clicks the user interface. Figure 2
displays a WAY zoom square and the receipt of a WAY
connection request from user FRED respectively.

WAY Interface

Message
 Queue

Address Book

Electronic Compass

GPS

request WAY
connection

inform position

acc ept/refuse WAY connection

in form pos ition

PDA

WAY Agent

14 FLAIRS 2002

Figure 2. The WAY User Interface

4.2 Realising WAY Agents
In delivering the WAY agents we utilised the Agent Factory (AF)
system. The AF System is an environment developed in part by
one of the authors which supports the fabrication of agent-based
applications. AF provides an integrated environment for the
development of agent based systems providing a methodological
framework together with an accompanying set of software tools
that support the various stages in the design, specification,
implementation, debugging and visualisation of agent behaviour.
Detailed descriptions of AF are provided elsewhere in the
literature (O’Hare et al. 1999).
 In actuality it was necessary for us to reengineer the central
control apparatus of AF and recast this in a lightweight Java
implementation. This incarnation of AF we refer to as Agent
Factory Light. This was necessary because of the limited
computational power and memory restrictions of current PDAs
and because no Smalltalk implementations exist for the EPOC
operating system.

4.2.1 The Agent Factory System
AF is developed using the VisualWorks Smalltalk-80 environment.
The system itself is implemented as two distinct environments
namely: the run-time environment and the development
environment.
 The run-time environment is responsible for the delivery of
agent-based applications. It is structured into two fundamental
components: The Agent Virtual Machine (AVM). This delivers
the support for agent realisation and operation. The AF Registry
System (AFRS). This delivers support for agent interoperability.
 The operation of agents is modeled as an interpreted agent
programming language that is executed upon an agent interpreter
embedded within the AVM. The AF System framework identifies
four modules that collectively deliver the agent deductive
machinery:

A mental state architecture: This encapsulates the agent’s
current model of itself and its environment.
An agent interpreter: which manages rule activation, mental
state update and behaviour realisation
 An actuator model: A template that is used to build actuators.
A perceptor model: by which world changes or perceived.
 The AF Registry System (AFRS) is a global registry of agents,
resources and agent platforms. The main responsibilities of this
registry are to support agent name resolution, and to deliver a
security model. Secondary responsibilities include ability and
resource advertisement.
 For all intents and purposes the Agent Factory Light system
is merely a stripped down version of AF replicating much of the
run time environment namely the Agent Virtual Machine and none
of the development environment nor the AFRS. Thus agent mental
states that are able to be handled within AF are similarly able to be
handled by AF Light. By implication all agent development would
need to be undertaken at the server side.

4.2.2 Agent Structure and the Agent Interpreter
The agent structure consists of a mental state, commitment
rules, perceptors and actuators. In this sense the WAY agents
constitute strong agents adhering to the broad Belief Desire
Intention (BDI) class of agents. The mental state contains the
agent’s current model of itself and its environment. This
knowledge is stored as Beliefs. Two types of belief are permitted:
current and temporal. Current beliefs refer to beliefs about the
current (time point) state of the environment. Temporal beliefs
refer to beliefs that have some temporal quality (e.g. persistence).
Commitment Rules represent the behaviour of an agent. They
define the situations in which the agent should adopt a given
commitment. Commitments represent the actions that an agent
has chosen to realise as a result of the interpretation of its beliefs
with its commitment rules. They are the results of the agent’s
decision-making process. Perceptors are the functional units that
an agent uses to build a model of its environment. This is achieved
through the implementation of a perception algorithm that, when
executed, generates the appropriate perceptions and inserts them
into the agent’s beliefs. Actuators are the functional units that an
agent uses to effect its environment. To achieve this, each
actuator implements some algorithm that causes the desired effect.
They are triggered by the actions in commitments that the agent
has adopted. Figure 3 illustrates the update of the mental state of
a WAY agent. Figure 3 (i) shows the agent’s beliefs at time point
78. It has a temporal belief that it always believes its name to be
‘bill’. It has current beliefs about the current time and its GPS
coordinates WAY connections with other users are represented by
the belief BELIEF(wayCon(USER)). In this case the agent has
connections with ‘fred’ and ‘sally’
(variables start with uppercase letters, constants with lowercase).

BELIEF(requested(position,X)) & BELIEF(wayCon(X)) =>
COMMIT(Self,Now,inform(X,currPosition(GPS_coord)))

BELIEF(way(X)) & BELIEF(wayCon(X)) =>
COMMIT(Self,Now,request(X,position))

FLAIRS 2002 15

The first rule states: if the agent believes its position was
requested by another agent and it believes that it has a WAY
connection with that agent then it commits itself, now, to inform
that agent of its position. Figure 3 (ii) illustrates that the agent has
used this commitment rule and has now committed itself to
informing Fred of its position. The second rule states: if the agent
believes it wants the position of another agent and it believes it
has a WAY connection with this agent then it commits itself, now,
to requesting the agent for its position. Again figure 3 (ii)
illustrates that the agent has used the commitment rule and has
now committed itself to requesting Sally for her position. Figure 3
(iii) displays the beliefs at the next time step and the last belief
shows that Sally has informed the agent of her position. We thus
see that the mental state of the agents are dynamic with beliefs and
commitments being subject to change. The commitment rules
however remain fixed and have admissibility functions that are
expressed in terms of mental state and message conditions.

4.3 Agent Mobility
Agent mobility is of paramount importance within the WAY
system enabling agent migration and discovery of system
resources and potential load balancing. Mobile agents move by
transmitting their code from one computer platform to another in
an action often termed as migration. To ensure that migration can
occur, four main criteria must be dealt with:
 1. There must exist an appropriate environment at the

destination to receive the agent;
 2. The agent must be able to transmit itself correctly;
 3. This environment must be able to reconstruct the received

agent;
 4. The environment must be able to resume execution of the

agent.
AF supports migration from one AF system to another through
cloning (Collier et al. 2000). When an agent wants to migrate it

informs the destination that it wishes to do so. The destination
creates an agent of the appropriate agent design. The mental state
of the agent is only then copied and transmitted to the required
destination. Upon receipt it is incorporated into the new agent.
The old agent is then disposed of and the new agent begins
execution. In the WAY system it is assumed that each user has an
agent interpreter pre-installed on their device which manages the
execution of WAY agents. When a user subscribes for the first
time a default agent class is instantiated and uniquely named on
the AF Server. A copy of the mental state of this agent is then
sent to the users device along with a list of other users. The AF
Light system on the device then uses this mental state to create
and execute the WAY agent. Periodically AF Light sends back
updates of its mental state to the clone on the server. This is a
safeguard in case anything causes the agent on the device to
terminate prematurely. Upon resumption a roll back recovery
enables the clone on the server to migrate back to the destination
PDA device.
 Mobile agent systems provide two classes of migration:
Strong Migration where the agent’s object state, code and
control state is captured. Upon migration this allows the agent to
resume execution on the new machine from the exact point that it
left off.
Weak Migration where only the agent’s object state and code is
captured. Upon migration the system calls a known entry-point
in the code to restart the agent on the new machine.
 For the end user, a mobile agent system that uses strong
migration can be seen to be more advantageous in that the agent
can migrate at any time point. Using weak migration the agent can
only migrate at set points in its interpreter’s cycle. However
weak migration has an advantage in that there is less to be
transported when an agent is on the move it travels lightly as it
were.

(i) Belief Set at Time 78 (ii) Commitments at Time 78 (iii) Belief Set at Time 79

 Figure 3. WAY Agent Mental State

COM MITMENTS

------------BELIEFS-----------------------
TIME:78

ALWAYS(BELIEF(name(bill)))
BELIEF(currTi me(4:11pm))
BELIEF(currPosition(GPS_coord))
BELIEF(wayCon(fred))
BELIEF(wayCon(sally))
BELIEF(requested(positi on,f red))
BELIEF(way(sally))

BEL IEFS

------------BELIEFS-----------------------
TIME:79

ALWAYS(BELIEF(name(bill)))
BELIEF(currTime(4:11pm))
BELIEF(currPosition(GPS_coord))
BELIEF(wayCon(fred))
BELIEF(wayCon(sally))
BELIEF(informed(position,sally))

BELIEFS

--------COMMITMENTS-------------------
TIME:78

COMMIT(Self ,Now, inform(fred,
currPosit ion(GPS_coord)))
COMMIT(Self ,Now, request(sally,
positi on))

16 FLAIRS 2002

 The Java Virtual Machine (JVM) as it stands does not support
the capture of thread states. Therefore, most commercial Java
based systems use weak migration. Java Virtual Machines have
been modified in order to provide thread state capture (Bouchenak
1999), but in general the market dictates that mobile agent systems
run on unmodified Java Virtual Machines. Recent work has been
conducted on trying to capture thread states without modifying
the JVM (Truyen et al 2000).
 Agent Factory supports weak migration (like TACOMA and
Grasshopper, unlike Telescript, D’Agent and Ara which offer
strong migration) in that only the mental state of the agent
migrates. This makes the task of migrating an agent from a
Smalltalk environment (AF) to a Java environment (AF Light) and
vice versa, a much easier lightweight task. The same mental state
can run on both the AF and the AF Light interpreters without
modification. While AF Light is not currently compliant with the
FIPA and OMG MASIF standards for agent mobility, its modular
structure allows for the incorporation of such standards in the
future.

5 Conclusions

Within this paper we have introduced the WAY system which
supports the mobile citizen in the location, tracking and
rendezvous with a variety of moving entities. It accepts WAY
connections from a fellow users and in a bi-directional sense posts
location and orientation updates. These are subsequently depicted
on a map based interface. Additional functionality allows users to
rendezvous with other entities like taxis buses and so forth.
 The WAY system embraces an agent-oriented design
supporting weak migration of strong BDI agents across a wireless
network. Laboratory prototypes have been tested using an
Ericsson R380. In addition user trials have been conducted using a
Compaq Ipaq 3660 equipped with a dual PCMCIA sleeve which
is used to accommodate a PCMCIA GPS and a Nokia card phone
2.0. The former provides the localization data and the later the
wireless communication infrastructure. Development on this
device utilized the Jeode EVM. At present detailed field trials are
underway and the results thus far are favourable.

Acknowledgements

This work was funded in part through the UCD-Ericsson Mobile
Computing Initiative. We gratefully acknowledge this support.

References

Abowd, G.D et al. 1997. Cyberguide: A mobile context -aware
tour guide. Wireless Network 3, 421-433.

Baumer, C., Breugst, S., Choy, S., Magedanz, T. 1999.
Grasshopper – A Universal Agent Platform Based on OMG
MASIF and FIPA Standards. IKV++.
Bouchenak, S. 1999. Pickling thread states in the Java system, in
Proc. of the third European Research Seminar on Advances in
Distributed systems (ERSADS’99).
Collier, R.W., Rooney, C.F.B., O'Donoghue, R.P.S., O'Hare,
G.M.P. 2000. Mobile BDI Agents, 11th Irish Conf. on Artificial
Intelligence & Cognitive Science, University College Galway.
Gray, R., Kotz, D., Cybenko, G., Rus, D. 2000. Mobile agents:
Motivations and state-of-the-art systems, In Jeffrey M.
Bradshaw, editor, Handbook of Agent Technology, AAAI/MIT
Press.
Hristova, N., O’Hare, G.M.P. 2001. “Ad-me: A Context-
Sensitive Advertising System, in Proc of the 3rd Int’l Conf. on
Information Integration and Web-based Applications & Services.
(II-WAS), Pub. By Austrian Computer Society, Linz Austria.
Marmasse, N. September 25-27, 2000. Location-aware
information delivery with comMotion. Proc. of the 2nd Int’l
Symposium on Handheld and Ubiquitous Computing (HUC),
Bristol, UK.
O'Hare, G.M.P., Duffy, B.R., Collier, R.W, Rooney,C.F.B.,
O'Donoghue, R.P.S. 1999. Agent Factory: Towards Social Robots,
Proc. 1st Int’l Workshop of Central and Eastern Europe on Multi
-Agent Systems (CEEMAS'99), St.Petersburg, Russia.
O'Grady, M.J., O'Rafferty, R.P., O'Hare. G.M.P. December
1999. A Tourist-Centric Mechanism for Interacting with the
Environment. 1st International Workshop on Managing
Interactions in Smart Environments MANSE'99, Dublin.
Peine, H., and Stolpmann, T. 1997. The Architecture of the Ara
Platform for Mobile Agents, in Kurt Rothermel, Radu Popescu-
Zeletin (Eds.): Proc. of the Int’l Workshop on Mobile Agents
MA’97 (Berlin, Germany), April 7-8th. LNCI No. 1219, Springer
Verlag.
Truyen, E., Robben, B., Vanhaute, B., Coninx, T., Wouter, J.,
Verbaeten, P. 2000. Portable Support for Transport Thread
Migration in Java, submitted to AM2000.9.
White, J.E. 1994. Telescript Technology: The Foundation of the
Electronic Marketplace, General Magic Inc.
Youll, J., Morris, J., Krikorian, R., Maes, P. June 3 - June 7, 2000.
“Impulse: Location-based Agent Assistance" Software Demos,
Proc. of the Fourth Int’l Conf. on Autonomous Agents (Agents
2000),Barcelona,Spain.

FLAIRS 2002 17

