From: FLAIRS-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Homogeneous Sets of ATP Problems

Matthias Fuchs
Automated Reasoning Group, RSISE
Australian National University
Canberra, ACT 0200, Australia
Email: fuchs@arp.anu.edu.au

Abstract

This paper describes how the homogeneity of sets of ATP
problems can be measured with respect to the performance
of ATP systems. Measuring homogeneity is important as a
basis for empirical evaluation of ATP systems and problems.
A machine learning approach has been used to differentiate
between types of problems in situations where heterogeneity
is apparent.

Introduction

In order to build more powerful automated theorem prov-
ing (ATP) systems, it is important to know which systems,
and hence which techniques (understanding that a system is
a collection and combination of techniques), work well for
what types of problems. For classical first order ATP, the
evaluation of ATP systems is necessarily empirical. Inextri-
cably intertwined with the evaluation of ATP systems is the
evaluation of ATP problem difficulty.

Methodologies for the empirical evaluation of ATP sys-
tems and problems are presented in (Sutcliffe & Suttner
2001). Due to the specialization of ATP systems and tech-
niques to problems with certain characteristics, e.g., special
techniques are deserved for problems with equality, evalu-
ation of ATP systems must be done in the context of sets
of ATP problems that are reasonably homogeneous with re-
spect to the systems. These sets of problems are called Spe-
cialist Problem Classes (SPCs). SPCs are based on logi-
cal, language, and syntactic characteristics of the problems.
The characteristics that have so far been identified as rele-
vant are: theoremhood - theorems vs non-theorems, order
- effectively propositional vs real 1st order, equality - no
equality vs some equality vs pure equality, form - clause nor-
mal form vs first order form, Hornness - Horn vs non-Horn,
and unit equality - unit equality vs non-unit pure equality.
(The split between theorems and non-theorems is necessary
for system evaluation. In application, where theoremhood
is not known in advance, the user can then choose the best
prover or disprover, according to the outcome they hope to
achieve.) Based on these characteristics 14 SPCs have been
defined, as indicated by the leaves of the tree in Figure 1.

Copyright © 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Geoff Sutcliffe
Department of Computer Science
University of Miami
P.O. Box 248154, Coral Gables, FL. 33124, USA
Email: geoff@cs.miami.edu

The SPCs are named using mnemonic acronyms, abbreviat-
ing theorem to THM, non-theorem to SAT, real 1st order to
RFO, essentially propositional to EPR, pure equality to PEQ,
some equality to SEQ, no equality to NEQ, unit equality to
UEQ, non-unit pure equality to NUE, clause normal form to
CNF, first order form to FOF, Horn to HRN, and non-Horn to
NHN.

Figure 1: Specialist Problem Classes

,/\
Theorem Non-theorem
—_— T

Effectively Real/ls{)rder Effectively
propositional FOF CNF propositional
. — —
equality FOF CNF FOF CNF
T

CNF FOF CNF FOF CNF

= =

> g
Unit Non- Horn Non- Horn Non-
unit Horn Horn

Real 1st order

Pure Some No

equality equality
T —

This paper describes a method for checking the homo-
geneity of a set of ATP problems, e.g., a SPC, with respect to
performance data on those problems. The method can also
be used to identify homogeneous subsets of a heterogeneous
set of problems. The paper also shows how a machine learn-
ing technique can be used to identify problem characteristics
that differentiate between different types of problems. These
methods and techniques have been used to check the homo-
geneity of the SPCs shown in Figure 1, and hence to affirm
the basis for the system and problem evaluations done using
the TPTP problem library (Sutcliffe & Suttner 1998).

Cliques of Problems

Given a SPC, if there are some problems that are solved by
system A; but not by A,, and there are some problems that
are solved by As but not by A;, then the performances of
Ay and A are contradictory, and the SPC is not homoge-
neous with respect to A; and A». In contrast, if there is
no such contradictory performance then the SPC is homoge-
neous with respect to A; and A». If a SPC is homogeneous
with respect to n ATP systems Aj,...,A,, then the systems
can be totally ordered according to the sets of problems they
solve, thus providing a meaningful evaluation of the rela-
tive abilities of the systems. Note that homogeneity does not
prevent there being a substantial variation in the number of

FLAIRS 2002 57

problems solved by the systems. To measure the homogene-
ity of a SPC, the performance data of ATP systems can be
examined for contradictory behavior as follows.

Basic Compatibility and Homogeneity Measures

For each problem in a SPC, an ATP system either solves it
or fails to solve it, within realistic resource limits ((Sutcliffe
& Suttner 2001) shows that there exist such resource lim-
its, and a linear increase in resource allocation beyond these
limits does not result in the solution of significantly more
problems). These two cases are represented by S and F.
Each problem P in a SPC is associated with a performance
vector v € {s,F}", where v{" indicates the performance
of ATP A; on P. Two performance vectors are compatible to
the extent that the systems’ performances do not contradict
each other. Two performance vectors « and v are compatible
if there are no two vector positions ¢ and j such that u; = S
and u; = F but v; = F and v; = S. For example, forn = 3,
the performance vectors SSS, SSF, SFF, and FFF are pair-
wise compatible, whereas SSF and FSS are each compati-
ble with SSS but are not compatible with each other. (Finer
grained levels of compatibility are considered below.)

The compatibility graph for an SPC has a node for each
performance vector that occurs for the SPC. Each node holds
its performance vector and the group of problems with that
performance vector. An edge connects two nodes in a com-
patibility graph if the respective performance vectors are
compatible. The cliques of the graph then identify homo-
geneous sets of problems. The homogeneity of a SPC is
expressed in terms of the maximal clique size in the graph.
Two homogeneity measures are defined, using two ways of
measuring clique size. The first measure is the ratio of the
number of problems in the maximal clique’s nodes and the
number of problems in the SPC, i.e., measuring the homo-
geneity of the actual problems in the SPC. The second mea-
sure is the ratio of the number of nodes in the maximal clique
and the number of nodes in the graph. This measure ac-
knowledges that the number of problems may be biased by
the source of the problems, and thus puts the problems in a
node into an equivalence class, i.e., measuring homogeneity
of the problem types.

If one clique covers most of a SPC, then the SPC can
be considered homogeneous. Conversely, there is a strong
argument for splitting a SPC if it generates two or more
rather large cliques. Figure 2 shows a compatibility graph,
in which each node is shown with its performance vector
and the number of problems. The maximal clique is {SSS,
SSF, SFF, FFF}, containing 15 of the 18 problems and 4 of
the 5 nodes. The problem set is thus 83% homogeneous by
problem count and 80% homogeneous by node count.

Refinements of the Measures

The notion of compatibility introduced above is strictly
Boolean: two nodes are either compatible or not, depend-
ing on which systems solve and which systems fail to solve
the associated problems. Although decent ATP systems have
reasonably stable performance characteristics, it is a feature
of ATP that small changes in problems can sometimes lead

58 FLAIRS 2002

Figure 2: Simple Compatibility and Clique Example

SSS
3 problems
SSF FSS
5 problems 3 problems
e ‘

5 problems

2 problems

to strange changes in system performance. Such aberrant be-
havior may cause the performance vectors of two problems
to be incompatible, when for the underlying purpose of sys-
tem evaluation the problems really do fall into the same ho-
mogeneous SPC. To make the homogeneity measures robust
to such noise, a degree of compatibility between two perfor-
mance vectors is defined. The connectivity of the compat-
ibility graph is then determined with respect to a degree of
compatibility, with a subsequent effect on the homogeneity
measure.

The degree of compatibility between two performance
vectors « and v is defined as the minimal fraction of ATP
systems that have to exchange S for F, or vice versa, to
make » and v fully compatible. For example, if u = SSFS
and v = FFSS (i.e., there are four systems), by changing
the third position of » (v) to S (F), the two vectors become
fully compatible. The degree of compatibility therefore is
1/4 = 0.25. The degree of compatibility can range from O
to 0.5 (less than 0.5 if there is an odd number of ATP sys-
tems). The value 0 indicates full compatibility (no change
required), as is the case for the performance vectors SSFF
and SFFF. The value 0.5 indicates complete incompatibil-
ity, as is the case for SSFF and FFSS.

When constructing a compatibility graph G, a compati-
bility threshold d € [0;0.5] is specified, which allows two
nodes to be connected if their degree of compatibility is less
than or equal to d. In this way absolute compatibility need
not be expected, but excessive contradictory behavior can be
avoided in order to support a reasonable evaluation of (rela-
tive) system performances. Note that for d = 0 we have the
original case that requires full compatibility. Figure 3 shows
a compatibility graph, in which the edges are annotated with
the degree of compatibility between the nodes. With a com-
patibility threshold of 0.00 the maximal clique is {SSFS,
SSFF, SFFF} containing 10 of the 18 problems and 3 of
the 5 nodes. With an increased compatibility threshold of
0.25 the maximal clique is {SSFS, SFFF, SFFS, FFSS}
containing 13 of the 18 problems and 4 of the 5 nodes.

The development so far assumes that every system has
attempted every problem in the SPC being considered. In
reality this may not be the case, for two reasons. Firstly, if a
problem is added to the TPTP after a certain ATP system was
tested, there is no performance data available for that system

Figure 3: Degree of Compatibility Example

SSES
3 problems

SSFF
5 problems

0.00

on that problem. In the performance vectors such cases are
denoted by ?. When computing the compatibility of two
performance vectors, positions where either vector has a ?
entry are ignored. For example, the degree of compatibility
of SSF? and F?SS is 1/2 = 0.5. Secondly, certain ATP
systems are incapable of attempting certain types of prob-
lems, e.g., systems based on unfailing completion can deal
with only unitequality problems, and are therefore not tested
on some problems. In the performance vectors such cases
are denoted by X. If two problems P and () have perfor-
mance vectors v© and v¥ respectively, and there is an ATP
system A; (position 7) so that v’ = X and vZ»Q € {s, F}, this
indicates that P and () should be considered to be inherently
different in nature. Consequently these two problems should
not be in the same SPC and hence should not be connected
in the compatibility graph (G. This is achieved by assign-
ing a degree of compatibility 1.0 to v* and v if the above
situation occurs. 1.0 can be viewed as “infinity”, given that
the degree of compatibility is bounded by 0.5 under normal
circumstances. Figure 4 shows the degrees of compatibility
between the five nodes, some of which have ? and X entries.

Figure 4: Missing Data Example

SSFF
5 problems

1.00

Finding Maximal Cliques

Maximal clique detection is known to be NP complete
(Mehlhorn 1984). Hence, except for small graphs, it is nec-
essary to resort to efficient approximation algorithms. A fair
amount of research has gone into approximation algorithms

of this kind, most recently in the field of evolutionary com-
putation (Haynes 1998). The algorithm used to find the max-
imal cliques in the compatibility graphs is best characterized
as a greedy or steepest ascent hill-climbing algorithm. Start-
ing with the graph GG = G, the node of minimal degree
is removed from G, resulting in G;41. If there is more
than one such node, the one containing the smallest num-
ber of problems is removed, thus creating a bias towards
cliques containing more problems. The process is stopped
as soon as (7; is a clique. After a clique is identified, this
procedure is applied to the graph consisting of the remain-
ing nodes, until the original graph (G has been partitioned
into £ > 1 cliques C1,...,C%. ;41 may contain more
problems than C since the number of problems is only a
secondary criterion. C; 1 may also have more nodes than C);
because the algorithm is an approximation algorithm and is
therefore not guaranteed to find the clique with the maxi-
mal number of nodes. The test results demonstrate that this
simple algorithm performs satisfactorily well for the com-
patibility graphs.

Testing the SPCs for Homogeneity

The homogeneities of the 14 SPCs shown in Figure 1 have
been measured, using data from systems tested on the TPTP
since the release of v2.0.0 on 5 June 1997, up to 14 Septem-
ber 2000. Data from 16 systems was used. For each SPC
the homogeneity measures by problem count and node count
were computed for compatibility thresholds 0.000, 0.0625,
0.1250, 0.2500, and 0.500. Table 1 shows sample results for
two SPCs. The first column gives the compatibility thresh-
old, the second column gives the number of nodes in the
maximal clique, the third column expresses that as a percent-
age of the number of nodes in the graph, the fourth column
gives the number of problems in the maximal clique, and the
last column expresses that as a percentage of the number of
problems in the SPC.

THM_RFO_SEQ_CNF_HRN
C.T. 67 nodes 381 problems
0.0000 20 (29%) 246 (64%)
0.0625 38 (56%) 325 (85%)
0.1250 55 (82%) 349 (91%)
02500 66 (98%) 380 (99%)

0.5000 67 (100%) 381 (100%)
SAT_RFO_CNF
C.T. 38 nodes 88 problems

0.0000 14 (B6%) 41 (46%)
00625 14 (B6%) 41 (46%)
0.1250 25 (65%) 56 (63%)
02500 30 (718%) 68 (77%)
0.5000 30 (718%) 68 (77%)

Table 1: Homogeneity statistics for the SPCs

For all but one of the SPCs, a homogeneity measure in
excess of 80% by problem count is reached with a compati-
bility threshold of 0.125 (and in many cases with a compati-
bility threshold of 0.0625). The exception is SAT_RFO_CNF,

FLAIRS 2002 59

as shown in Table 1. Here the homogeneity measure remains
below 100% even with a compatibility threshold of 0.5000,
indicating that some nodes are incompatible due to X en-
tries in performance vectors. Closer examination shows that
some systems had (quite reasonably) been tested on only the
unit equality problems in that SPC. Excluding those systems
from consideration produces a homogeneity measure of 86%
by both node count and problem count with a compatibility
threshold of 0.1250. This suggests a possible split for the
SPC, based on equality characteristics.

For all but four of the SPCs (excluding SAT_RFO_CNF
discussed above), a homogeneity measure in excess of 80%
by node count is reached with a compatibility threshold
of 0.125. The exceptions are THM_RFO_NEQ_CNF_HRN,
THM_RFO_NEQ_CNF_NHN, THM_RFO_SEQ_CNF_NHN, and
THM_RFO_PEQ_CNF_UEQ. For THM_RFO_NEQ_CNF_NHN
and THM RFO_SEQ_CNF_NHN, homogeneity measures of
78% and 81% by node count are reached respec-
tively with a compatibility threshold of 0.14. For
THM_RFO_NEQ_CNF_HRN, 12 of the 15 nodes in the sec-
ond clique have only one problem. Interestingly, there is
one node with 24 problems, all but one of which are blocks
world problems from the TPTP’s PLA domain. The node is
excluded from the first clique due to different performance
from two tableau based (i.e., strongly goal oriented) sys-
tems, which are particularly well suited to the formulation
of the blocks world problems. At present there seems to be
no simple way to capture such subtle problem characteristics
for use in defining SPCs. For THM_RFO_PEQ_CNF_UEQ, the
second and subsequent cliques found have reasonably large
numbers of nodes, but all nodes have only very few (typi-
cally one or two) problems. This low homogeneity by node
count is somewhat surprising, given the specialized nature
of unit equality problem solving. One possible cause is sys-
tems’ different selections of term orderings.

Generating Homogeneous Problem Sets

The technique of finding maximal cliques in a compatibility
graph has also been used to divide up the TPTP into subsets
that are reasonably homogeneous with respect to the perfor-
mance data. The subsets are formed from the problems in
the nodes of the cliques found in the compatibility graph for
the performance data over the whole TPTP. Using a compat-
ibility threshold of 0.125, the 4229 problems in the TPTP
are divided into 35 homogeneous subsets, with 3972 prob-
lems falling into the first seven subsets. All of the remaining
28 subsets contain 25 or less problems, and are ignored as
insignificant.

The generated homogeneous subsets have been compared
to the existing SPCs. If any generated subset is a strict su-
perset of a SPC, then the SPC may be considered to be 100%
homogeneous. If multiple SPCs fall within a single homo-
geneous subset, then the union of those SPCs is homoge-
neous with respect to the systems’ performances, and merg-
ing them may be appropriate. In contrast, if a SPC is split
across multiple subsets, then the SPC is apparently hetero-
geneous and may need to be split. In order to make such
judgements, for each homogeneous subset and each SPC,
the ratio of the size of their intersection and the size of the

60 FLAIRS 2002

SPC has been computed. The results are shown in Table 2
(the last eight rows are for the THM_RFO SPCs).

SPC Homogeneous Subset Probs
1 2 3 4 5 6 17
SAT_EPR.CNF 0.000.000.000.000.000.860.00 139
SAT_EPR._FOF 0.000.000.000.000.990.000.00 83
SAT_RFO_CNF 0.030.000.000.000.000.570.00 88
SAT_RFO_FOF 0.000.000.000.00 1.00 0.00 0.00 9
THM_EPR._CNF 0.810.000.000.000.000.000.15 401
THM_EPR_FOF 0.000.000.000.001.000.000.00 235
_EQU_FOF 0.000.00 0.000.000.96 0.000.00 323
NEQ_FOF 0.000.000.000.001.000.000.00 21
NEQ_CNF_HRN 0.810.080.000.030.000.010.01 379
NEQ_CNF_NHN 0.770.08 0.00 0.06 0.000.000.01 430
_SEQ_CNF_HRN 0.78 0.000.000.13 0.000.000.03 381
_SEQ_CNF_NHN 0.880.050.000.020.000.000.02 1194
_PEQ_CNF_NUE 0.800.030.000.040.000.000.05 122
_PEQ_CNF_UEQ 0.000.000.850.000.000.000.00 424
Problems 2418 128 359 119 656 174 118 4229

Table 2: Correlation between Problem Cliques and SPCs

The first subset encompasses 2418 of the 3558
CNF problems in the TPTP, including most of those
in the THM_EPR_CNF, THM_RFO_NEQ_CNF_HRN,
THM_RFO_NEQ_CNF_NHN, THM_RFO_SEQ_CNF_HRN,
THM_RFO_SEQ_CNF_NHN, and THM RFO_PEQ_CNF_NUE
SPCs. This shows that there are techniques (and hence
systems) that are effective for all these problem types. The
relative homogeneity of these problems types has also been
noted in the context of the CADE ATP System Competition
(Sutcliffe 2001), in which all these problem types are used
together in the MIX division of the competition. The third
subset identifies the unit equality SPC. The fifth subset
covers all the FOF SPCs. Evidently the techniques suitable
for one type of FOF problem are adequate for most types.
The sixth subset identifies the CNF non-theorems, both the
effectively propositional problems and the real first order
ones. The only SPC that does not have a large fraction
contained within only one problem clique is SAT_RFO_CNF.
This heterogeneity is the same as discussed earlier, in the
context of SPC homogeneity.

Using Machine Learning to Differentiate SPCs

The preceding sections show that the SPCs in Figure 1,
formed using the problem characteristics listed in the in-
troduction, are mostly homogeneous. In situations where
some heterogeneity is apparent, it is useful to have a method
of identifying problem characteristics that differentiate be-
tween the types of problems. The clique approach to mea-
suring homogeneity assigns graph nodes, and hence perfor-
mance vectors and problems, to cliques. This process can
be considered to be a problem classification process, with
cliques representing classes. Taking this viewpoint, machine
learning (ML) techniques can be used to obtain a classifier
based on problem characteristics. The classifier then pro-
vides the information needed to differentiate between types

of problems. This information may also be further used
for the selection of a suitable ATP system or search guid-
ing heuristic, as done in (Fuchs 1997). There are many ML
techniques dealing with supervised classification, but not all
of them are suitable for this purpose. When determining the
SPCs for ATP system and problem evaluation, it is impor-
tant that the classifier be in a comprehensible form, so that
it is intuitive to ATP researchers and users. Conventional
decision-tree algorithms appear to be the best choice, since
the way they perform classification is easily presentable to
and understandable by a human reader. C4.5 (Quinlan
1993) is one of the most popular classification systems based
on decision trees, and has been used here.

Classification methods in general, and C4 . 5 in particular,
require that a feature vector be associated with each object to
be classified. Each feature captures a certain property of the
objects, and expresses that property with a numerical value.'
Given a set of features aq, ..., a,, each problem P is then
associated with its feature vector (a1 (P), ..., amn(P)). The
features used to differentiate between types of problems are
syntactic problem characteristics, which are supplied with
each TPTP problem.

The use of a classifier provides useful information when
examining apparently heterogeneous SPCs. For example,
Figure 5 shows the output of C4 .5 that suggests that the
SPC SAT_RFO_CNF can be split on equality characteristics
(the feature Lits==EqgL indicates if the number of liter-
als equals the number of equality literals, i.e., determining
if problems are pure equality problems). Another use is to
apply the classifier to the cliques generated from the TPTP,
shown in Table 2, in order to identify the characteristics that
differentiate the cliques.

Figure 5: Differentiating in SAT_RFO_CNF

Simplified Decision Tree:

Lits==EqL = 0: CLO1l (43.0)

Lits==EqL = 1:

| Dp <= 2 : CLO01 (9.0)
Dp > 2

|
| | Sz <=4 :CL02 (22.0/2.0)
| | sz >4 :CLOL (2.0)

Conclusion

This paper describes how the homogeneity of sets of ATP
problems can be measured with respect to the performance
of ATP systems. The method developed assigns problems to
nodes in a graph, and finding homogeneous sets of problems
is reduced to finding maximal cliques in the graph. An ap-
proximation algorithm for finding the maximal cliques has
proved satisfactory, thus overcoming the NP-completeness
of finding maximal cliques in general. Some extensions to

!Other types of values can also be used, but numerical (integer)
values are sufficient here.

the basic idea have made the measurement robust to the re-
alities of empirical data collection in ATP. In addition, a ma-
chine learning approach has been used to differentiate be-
tween types of problem in situations where heterogeneity is
apparent.

The techniques developed are important, as they can be
used to check the homogeneity of the Specialist Problem
Classes (SPCs) used as a basis for system and problem eval-
uation using the TPTP. The testing done shows that the SPCs
are apparently almost all highly homogeneous. In the excep-
tional case of the SPC SAT_RFO_CNF, where heterogeneity
is apparent, equality has been identified as the problem char-
acteristic that differentiates between the types of problems.
As a result the SPCs can now be refined to take this into
account.

References

Fuchs, M. 1997. Automatic Selection of Search-guiding
Heuristics. In D., D., ed., Proceedings of the 10th Florida
Artificial Intelligence Research Symposium, 1-5. Florida
Al Research Society.

Haynes, T. 1998. Perturbing the Representation, Decoding,
and Evaluation of Chromosomes. In Koza, J.; Banzhaf, W.;
Chellapilla, K.; Deb, K.; Dorigo, M.; Fogel, D.; Garzon,
M.; Goldberg, D.; Iba, H.; and Riolo, R., eds., Proceedings
of the 3rd Annual Conference on Genetic Programming,
122-127. Morgan Kaufmann.

Mehlhorn, K. 1984. Data Structures and Algorithms 2:
Graph Algorithms and NP-Completeness. Monographs on
Theoretical Computer Science. Springer-Verlag.

Quinlan, R. 1993. C4.5 Programs for Machine Learning.
Morgan Kaufmann.

Sutcliffe, G., and Suttner, C. 1998. The TPTP Problem

Library: CNF Release v1.2.1. Journal of Automated Rea-
soning 21(2):177-203.

Sutcliffe, G., and Suttner, C. 2001. Evaluating General
Purpose Automated Theorem Proving Systems. Artificial
Intelligence 131(1-2):39-54.

Sutcliffe, G. 2001. The CADE-17 ATP System Competi-
tion. Journal of Automated Reasoning 27(3):227-250.

FLAIRS 2002 61

