
Dimensional indexing for targeted case-base retrieval: The SMIRKS system

Philomena Y. Lee and Michael T. Cox

Department of Computer Science and Engineering
Wright State University
Dayton, OH 45435-0001

{plee;mcox}@cs.wright.edu

Abstract
For a case-based application with a sizable case library, a
common practice is to retrieve a set of cases and then reduce
the set with a domain-specific similarity metric. This
research investigates an alternative technique that constructs
a number of two-dimensional (or multi-dimensional) indices
using the principle of elaboration and specialization. By
storing cases with these indices, we reduce the size of the
retrieved candidate set and, in many instances, fetch a single
case. This paper describes a case-based reasoner called
SMIRKS. We investigate the retrieval performance by
comparing linear search, 1-dimensional indexing, and 2-
dimensional indexing. The improvement in performance
with dimensional indexing is found to be significant,
especially in terms of the size of the retrieved candidate set.
This paper describes the implementation of SMIRKS,
presents the results of evaluation, and discusses some ideas
on future applications that can utilize this technique.

Introduction
Cased Based Reasoning (CBR) solves problems by re-
using and adapting solutions from past experiences. It has
been applied to a wide range of applications such as
planning, classification, and speech/image understanding
(Kolodner, 1993). A major challenge for CBR is the
selection of an appropriate index and the implementation
of storage/retrieval schemes so that adaptable cases can be
retrieved efficiently and accurately. We address this
problem by describing an efficient indexing and retrieval
technique that can reduce the size of the retrieved set.
 A typical approach to solving the storage/retrieval
problem in CBR is to select a set of salient features of the
cases as indices (Schank, 1982; Waltz, et al., 1989).
Unlike the classical database definition, the indices in CBR
are defined as one or more discriminating features that act
as a cue to retrieve cases. Essentially, an index groups
similar cases into a collection thereby facilitating efficient
retrieval. For example, consider a script (Schank &
Abelson, 1977) that describes a scenario in which a police
officer arrests a criminal for illegal drug possession. There
are several differentiating characteristics such as: the
criminal is a teenage male; the illegal drug is marijuana;
and the police perform an arrest. These features can be
used as indices to store the case. Later, when a new
scenario that describes the drug arrest occurs, we can use
the features as probes to locate the previous cases.

Copyright 2002, American Association for Artificial Intelligence.

 Indices are usually established when the case is initially
stored, although sometimes indices are dynamically
established at retrieval time. Effective index selection can
affect whether the system can later successfully retrieve a
case. If an index is too general, it will retrieve irrelevant
cases. If the indices are too restrictive, the most relevant
cases may never be retrieved (Cox, 1994). As more cases
are stored, numerous cases may be grouped and retrieved
using the same index. A common practice is to select the
most appropriate case by a similarity function such as the
nearest-neighbor metric based on probability (Short &
Fukunago, 1981) and a combined Euclidean-overlap metric
(Wilson & Martinez, 1997). This paper describes an
alternative technique to narrow the set of candidate cases.
This technique is implemented in the Smart Indexed
Retrieval for Knowledge Systems (SMIRKS) case-based
reasoner.
 SMIRKS is implemented by extending the indexing
scheme found in Meta-AQUA (Cox & Ram, 1999). Meta-
AQUA is a case-based interpreter that can explain and
learn from anomalous and interesting events with the goal
to understand natural language stories. In general, Meta-
AQUA formulates a relationship between a case and its
ACTOR attribute. This relationship is used as a top-level
index to group together cases that belong to the same
category. Other secondary relations are also formed with
features that are more specific to differentiate specific
cases from the norm (Kolodner, 1984). The indexing
system eventually forms a tree with the more general
indices close to the root and specialized indices near the
leaf nodes. As more cases are acquired, numerous cases are
accumulated at the leaf nodes.
 To pinpoint the relevant case in the leaf-node, SMIRKS
applies the case type (an implicit characteristic that is
present in every case) as a separate feature that is
orthogonal to the indexing tree. That is, every case is
defined as a subtype of another case.1 These type/sub-type
relationships form a hierarchical tree that has a common
generic type (i.e., entity) as the root type and is orthogonal
to the set of features described before. By superimposing
this tree with the index tree on the original feature sets, we
have added another dimension to the indexing structures
that can be used to narrow the set of candidate cases. Any
feature that exists in every case and forms a hierarchical

1 Such relationships can be considered analogous to the class and subclass
of an object in the Object Oriented (OO) methodology.

62 FLAIRS 2002

From: FLAIRS-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

relationship among all cases, can be used as the second
dimension.
 A simple analogy can clarify the above description. For
example, in the one-dimensional indexing scheme, we
have stored a number of cases that describe the police-
arrest scenes using the CONTROL feature as index. Such
cases include drug possession, burglary, mugging and
assault. To retrieve them using the CONTROL as starting
relation with "POLICE" and "CRIMINAL-AGENT" as the
primary and secondary indices, we will retrieve 4 similar
cases as the result. If we implement the two-dimensional
scheme in SMIRKS, the 4 cases will initially be classified
and stored into subtypes "DRUG-CASE", "BURGLARY",
"MUGGING" and "ASSAULT" that are all descendants of
a common case type of "CRIMINAL-CASE". On storage,
cases of similar types are also grouped together and then
indexed using the CONTROL feature. On retrieval, instead
of getting all the criminal cases (as in one-dimensional
scheme), we only get the cases that are of the same type as
the target case. That is, with the new scheme, a search for a
drug possession case results in the retrieval of one case
instead of all four cases.
 In the SMIRKS implementation, we select the case type
as such a property because all cases are related to one
another with respect to a hierarchy of types. Another
reason for our choice is that case elaboration often
requires specialization (Kolodner, 1984). We can use this
property as a guide for elaboration, generalization and
association among related types at various levels to find
other relationships.
 Generalization and specialization have been applied to
many classical CBR systems such as CHEF (Hammond,
1989) and CYRUS (Kolodner, 1984). CHEF creates
primary indices on features that represent a set of
abstraction descriptors. Then a secondary set of descriptors
is used to determine the applicable range of the first set.
CYRUS creates a discrimination network of the event
types. It then elaborates on the event type to differentiate
among the cases. It also applies associations to relate one
case with the others. However, there is a subtle difference
between SMIRKS and the traditional systems. In SMIRKS,
the second dimension (descriptor) used to narrow the
search is present in all the cases but it is separate and
independent of the features in the primary dimension. This
is different from CHEF and CYRUS where the descriptors
used to narrow the selection are derived or associated with
the primary descriptor. SMIRKS is more analogous to a
context-guided retrieval as applied to Hierarchical Case
Representation (Watson & Perera, 1997). Watson and
Perera restrict case retrieval to children of cases found in
earlier steps. In SMIRKS, retrieval using the second
dimensional indexes is used to narrow the candidate cases.
However, since the higher dimensional indexes are
separate and independent, retrieval can also be conducted
in other branches that are not the direct descendant of the
candidate set.
 Conceptually, SMIRKS defines an orthogonal feature
(e.g., the case-type) that is inherent and common to all the

cases. This feature is merged with the original indexing
scheme to form a new index structure.

Implementation
We implemented the above scheme using Meta-AQUA as
a framework. Meta-AQUA is a story understanding system
that understands and explains anomalies within stories
automatically generated by Tale-Spin (Meehan, 1981; see
also Cox & Ram, 1999b). It performs the understanding
task with various AI algorithms, one of which is a CBR
system. The CBR component of Meta-AQUA uses a flat
case-library for storage and linear search for retrieval. The
one-dimensional indexing scheme described above is used
by Meta-AQUA’s explanation component to store and
retrieve explanations. In order to have a platform to
evaluate the performances, we modified the case-based
component of Meta-AQUA so that it could use
dimensional indexing for retrieval as well as linear search.
 The case-based skimming component in Meta-AQUA
scans story segments to interpret uninteresting events. It
uses a linear match algorithm to find similar scripts from a
case base that is initially populated with predefined, hard-
coded cases. If there is a match, it skips to the next
sentence. If it cannot locate a match, it proceeds to
understand the sentence by calling an interpretator (the
discussion of which is outside the scope of this paper).
SMIRKS replaces the hard-coded predefined cases in the
case base with various combination of stories generated by
Tale-Spin.

In the one-dimensional scheme, SMIRKS formulates the
outcome of the story into a relation that establishes the top
index. This in turn generates a second level index with the
entity that activates or causes the outcome. Retrieval is
performed by using the outcome of the new script to probe
the index structure for a similar value that will lead to the
relevant cases. Fig. 1 shows the 1-dimensional index
structure for a script about an arrest event. The outcome
(i.e., arrest) is chosen as the first level index and the entity
(i.e., actor) is chosen as second level index that eventually
leads to a set of cases.

Figure 1
One-dimensional Index

Outcome Relation

Left-sided
attribute

Arrest

Actor

Right sided attribute

Cases Type Plan Type Question TypeXP Type

Similar cases... Similar
questions...

Similar plans... Similar XPs...

 Selection of the alternate indices is important in the 2-
dimensional scheme. A suitable feature to be used as the

FLAIRS 2002 63

second dimensional index is one that is present in all the
cases. There should also be a hierarchical relationship
among the cases based on this feature. In SMIRKS, we
take advantage of the “is-a” (or type) property that is
possessed by every story. This feature can classify all the
stories into a hierarchical tree. All stories follow the type
hierarchy while using the "outcome" facet as index. For a
story that does not fit into any type hierarchy, it is default
to the generic 'case-type.0' that is the parent of all types.
 After the knowledge base is initialized, SMIRKS
generates a test story and uses it to retrieve similar cases
from the knowledge base. The ‘main-result’ of the story is
used as the cue to retrieve matching scripts from the
knowledge base. If the knowledge base is established using
the 1-dimensional scheme, the cases are retrieved using the
same scheme; if the knowledge base is stored using 2-
dimensional scheme, then the type of the new script is
derived as well as the "outcome" relation. Both the type
and "outcome" are then used for retrieval. Fig. 2 shows the
2-dimensional index structure for the same script. It shows
a more elaborated type hierarchy after the relationship has
been formulated.

Figure 2.
Two-dimensional Index

Cases Type Plan Type Question TypeXP Type

Similar
questions...

Similar plans... Similar XPs...

… … .

Subtype A Subtype B Subtype C

Similar cases.. Similar cases.. Similar cases..

Evaluation
SMIRKS compares the performance of linear match, 1-
dimensional, and 2-dimensional indexing methods on a
Sun Ultr a-60 2-processor (360Mhz) machine with 2 GB
DRAM and a 4MB L2 hardware cache running Solaris 8. It
populates 7 case libraries with sizes varying from 12
stories to 98 stories.2 Then it generates a set of test stories
and retrieves similar ones using each of the three
algorithms. The retrieval is performed on every case
library in order to measure data for case bases of different
sizes. To reduce the impact of other processes in the
machine, SMIRKS measures the performance and
computes the mean, standard deviation and mode over the
size of the set (i.e., 12). We elected to use the means in the
report. We collected the following four types of
performance data.

• The average CPU time used in user mode.

2 The libraries are independent. That is, a case library of size 36 does not
contain the smaller library of size 12.

• The average wall clock time
• The average number of cons cells being used.
• The average size of the retrieved result-set.

 The contents of the case libraries are randomly
generated. The identical set of test stories is used for the
three algorithms. We define four types of stories with their
various subtypes. Table 1 lists the number of stories in
each subtype in different case libraries.

Table 1. Case Distribution in the Case Library

Case Library Size
Story Types or Subtypes 12 36 48 60 72 84 96

.illegal 1 5 8 10 10 13 16
Jonesing .legal 2 6 8 10 12 14 16

.25 1 3 4 5 6 7 8

.42 1 3 4 5 6 7 8

.29 1 3 4 5 6 7 8
Thirsty .0 1 3 4 5 6 7 8

.arrest 1 3 4 2 6 6 8
Drug case .noarrest
Spirited 4 10 12 15 20 22 24
others 3 1

Retrieval Time
Fig. 3 compares the User-Mode CPU Usage (excluding
garbage collection) that is spent in retrieving cases from
the case libraries of different sizes.

10
20
30
40
50
60
70
80

12 36 48 60 72 84 96

Size of Case Libraries

2-dimensioned index Linear Search 1-dimensioned index

Figure 3. Retrieval Time as a Function of Case Size

 The data show that the CPU time used in the indexed
retrieval is several times less than a linear match is. The 2-
dimensional index uses slightly less CPU time than the 1-
dimensional index specifically with our biggest case
library.
 Fig. 4 compares the wall-clock time for the 3 different
schemes using the same set of case libraries. The plot
shows similar trends as the CPU time. At larger case base,
the elapsed time in the 2-dimensional scheme is half that of
the 1-dimensional scheme.

64 FLAIRS 2002

10
30
50
70
90

12 36 48 60 72 84 96

Size of Case Libraries

W
al

l C
lo

ck
 (

m
se

c.
)

2-dim ensioned index 1-dim ensioned index

Linear M atch

Figure 4. Wall Clock Time as a Function of Case Size

Memory Usage
To compare the memory usage, we measured the number
of cons cells used. Fig. 5 shows a plot of the cons cells
used by the 3 schemes as a function of the case library size.
We found the number of cons cells used by indexed
technique is less than that of linear match. The difference
between 1-dimensional and 2-dimensional techniques is
negligible. It is expected that as the case base grows, more
cons cells will be used by the 2-dimensional than by the 1-
dimensional indexed technique.

0
10

20
30

40
50

60

12 36 48 60 72 84 96

Size Of Case Libray

N
o.

 o
f C

on
s

C
el

ls
 X

 1
00

0

2-dimensioned index Linear Search 1-dimensioned index

Figure 5. Memory Usage as a Function of Case Size

 To accentuate the differences in memory usage between
the 2 schemes, we measured the cons cell usage for 1-
dimensional indices and 2-dimensional indices only in a
series of separate runs independent of the linear search.
The measurement is plotted in Fig. 6. It indicates that the
2-dimensional index consistently uses more cons cells that
1-dimensional usage.

1 2 . 8
1 3

1 3 . 2
1 3 . 4
1 3 . 6
1 3 . 8

1 4
1 4 . 2
1 4 . 4
1 4 . 6

3 6 4 8 6 0 7 2 8 4 9 6

S i z e o f C a se L i b r a r i e s

N
o.

 O
f C

on
s

C
el

ls
 x

 1
00

0

2 -d im e n s io n e d in d e x 1 -d im e n s io n e d in d e x

Figure 6. Memory Usage Comparison Without Linear Match

Result Set Size
Another important aspect being considered is the extent to
which the new scheme is capable to narrow the size of the
retrieved set. So we measured the average size of the
retrieved set of similar cases resulting from 1-dimensional
and 2-dimenstioned schemes. Fig. 7 is a plot of the average
retrieved set size for different case libraries.

0

5

1 0

1 5

2 0

1 2 3 6 4 8 6 0 7 2 8 4 9 6

S i z e o f C a se L i b r a r i e s

A
ve

ra
ge

 S
iz

e
of

 R
es

ul
t S

et

2 -d im e n s io n e d in d e x 1 -d im e n s io n e d in d e x

Figure 7. Result Set Size as a Function of Case Size

 The data shows that decrease in resultant set size is not
significant only for very small case libraries (i.e., at size
12). However, as case base increases, the 2-dimensional
indexing scheme retrieves a smaller set than that of the 1-
dimensional scheme. These figures are statistically
significant at P = 0.05 for both ANOVA and Scheffe tests
of statistical inference. It is concluded that the 2-
dimensional indexing scheme is able to pinpoint similar
cases more effectively for large case bases.

Analysis Summary
 As expected, the indexed schemes use less CPU time
than linear match does. The difference in CPU usage
between the 1 and 2-dimensional schemes is not
significant. The response time improves for 2-dimensional
index as the size of case library increases. This implies that
better response time may be expected when we have a
larger and more diverse case library. The indexed schemes
use less memory than linear match does. The 2-
dimensional indices consistently use more memory than 1-
dimension. This might imply that the 2-dimensional
scheme is scaleable. However with the limited size and
uniformity of sample cases, more study is needed to
determine the scalability.
 The 2-dimensional indexed scheme is quite effective in
limiting the size of the result set. The decrease in the
number of cases retrieved is proportional to the size of case
library. As the size of result set is domain specific, the raw
number is not a perfect measure of retrieval precision.
However, the relative differences in set size between the
two schemes and the fact that these differences increase
with size of the case base indicates that the new scheme is
quite effective in pinpointing the relevant cases. Moreover,
in some applications (e.g., recommender systems), it is
desirable to retrieve a diverse set of cases rather than a
narrow set. In such system, it is possible to fine-tune the

FLAIRS 2002 65

indices in the second dimension so as to balance the degree
of diversity and similarity.

Conclusion
SMIRKS may be enhanced to make the indexing scheme
practical for applications. The following list describes a
few of the possible near-term enhancements.

• Allow users to select a subtype for classifying the
input script before a case retrieval.

• On failure to locate a matched script, change the
algorithm to search on subtypes at the same level
(siblings) or search up the hierarchical tree.

• Implement multiple inheritances, thereby allowing a
case to be classified under more than one sub-type.
This will enable the implementation of n-
dimensional indices.

• Allow ways for users to customize the number of
levels (sub-types) that can exist in the type
hierarchy.

 In summary, SMIRKS demonstrates that a 2-
dimensional index can improve performance significantly
in the domain of story understanding. Whether such
performance is sustainable in other domains is unknown.
More study in a variety of applications is necessary to draw
a general conclusion on the benefit of such a method.
 Moreover, in certain applications (e.g., recommender
systems), it is advantageous to have a larger candidate set
with several degrees of diversity (Smyth & McClaire,
2001). Without diversity, such systems may return
duplicate choices that are less useful to the user than
multiple, varying choices. During adaptation, it is also
important to have diversity in the retrieved cases such that
different combinations of the features can be considered to
generate a creative solution. Although SMIRKS handles
methods to pinpoint similar cases, this foundation can be
extended to incorporate diversity into a multi-dimensional
indexing scheme.

Acknowledgments

The second author is supported by the Air Force Office of
Scientific Research (AFOSR) under grant number F49620-
99-1-0244 and by a grant from the Information Technology
Research Institute (ITRI) at Wright State University. The
authors would also like to acknowledge the anonymous
reviewers.

References

Cox, M. T. 1994. Machines that forget: Learning from
retrieval failure of mis-indexed explanations. In Proc. of
the 16th Annual Conference of the Cognitive Science
Society, 225-230. Hillsdale, NJ: LEA.

Cox, M. T., & Ram, A. 1999a. Introspective Multistrategy
Learning: On the construction of learning strategies.
Artificial Intelligence, 112, 1-55.

Cox, M. T., & Ram, A. 1999b. On the intersection of story
understanding and learning. In A. Ram & K. Moorman
(Eds.), Understanding language understanding:
Computational models of reading, 397-434. Cambridge,
MA: MIT Press.

Hammond, K. J. 1989. Case-based planning: Viewing
planning as a memory task. San Diego: Academic Press.

Kolodner, J. L. 1993. Case-based reasoning. San Mateo,
CA: Morgan Kaufmann Publishers.

Kolodner, J. L. 1984. Retrieval and organizational
strategies in conceptual memory: A computer model.
Hillsdale, NJ: Lawrence Erlbaum Associates

Meehan, J. 1981. Talespin. In R. C. Schank & C. Riesbeck
Eds.), Inside computer understanding: Five Programs plus
miniatures 197-258. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Schank, R. C. 1982. Dynamic memory. Cambridge, MA:
Cambridge University Press.

Schank, R. C., & Abelson, R. 1977. Scripts, plans, goals
and understanding. Hillsdale, NJ: LEA.

Short, R. D., & Fukunago., K. 1981. The optimal distance
measure for nearest neighbor classification. IEEE
Transactions on Information Theory, 27: 622-627.

Smythe, B., & McClaire, P. 2001. Similarity versus
diversity. In D. W. Aha, I. Watson, & Q. Yang (Eds.),
Case-Based Reasoning Research and Development:
Proceedings of the 4th. International Conference on Case-
Based Reasoning 347-361. Berlin: Springer.

Waltz, D., Martin, C., Pazzani, M., & Thagard, P. 1989.
Panel on indexing algorithms. In Proceedings of a
Workshop on Case-Based Reasoning 45-65. San Mateo,
CA: Morgan Kaufmann.

Wilson, D., & Martinez, T. 1997. Improved heterogeneous
distance functions. Journal of Artificial Intelligence
Research, 11: 1-34.

Watson, I., & Perera, S. 1997. The Evaluation of a
Hierarchical Case Representation Using Context Guided
Retrieval. In D. Leake, E. Plaza (Eds.), Case-Based
Reasoning Research and Development: Proceedings of the
2nd. International Conference on Case-Based Reasoning
255-266. Berlin: Springer.

66 FLAIRS 2002

