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Abstract 
For a case-based application with a sizable case library, a 
common practice is to retrieve a set of cases and then reduce 
the set with a domain-specific similarity metric. This 
research investigates an alternative technique that constructs 
a number of two-dimensional (or multi-dimensional) indices 
using the principle of elaboration and specialization. By 
storing cases with these indices, we reduce the size of the 
retrieved candidate set and, in many instances, fetch a single 
case. This paper describes a case-based reasoner called 
SMIRKS. We investigate the retrieval performance by 
comparing linear search, 1-dimensional indexing, and 2-
dimensional indexing. The improvement in performance 
with dimensional indexing is found to be significant, 
especially in terms of the size of the retrieved candidate set. 
This paper describes the implementation of SMIRKS, 
presents the results of evaluation, and discusses some ideas 
on future applications that can utilize this technique.  

Introduction 
Cased Based Reasoning (CBR) solves problems by re-
using and adapting solutions from past experiences. It has 
been applied to a wide range of applications such as 
planning, classification, and speech/image understanding 
(Kolodner, 1993). A major challenge for CBR is the 
selection of an appropriate index and the implementation 
of storage/retrieval schemes so that adaptable cases can be 
retrieved efficiently and accurately. We address this 
problem by describing an efficient indexing and retrieval 
technique that can reduce the size of the retrieved set.  
 A typical approach to solving the storage/retrieval 
problem in CBR is to select a set of salient features of the 
cases as  indices (Schank, 1982; Waltz, et al., 1989). 
Unlike the classical database definition, the indices in CBR 
are defined as one or more discriminating features that act 
as a cue to retrieve cases. Essentially, an index groups 
similar cases into a collection thereby facilitating efficient 
retrieval. For example, consider a script (Schank & 
Abelson, 1977) that describes a scenario in which a police 
officer arrests a criminal for illegal drug possession. There 
are several differentiating characteristics such as: the 
criminal is a teenage male; the illegal drug is marijuana; 
and the police perform an arrest. These features can be 
used as indices to store the case. Later, when a new 
scenario that describes the drug arrest occurs, we can use 
the features as probes to locate the previous cases.  
 
Copyright 2002, American Association for Artificial Intelligence. 

 
 Indices are usually established when the case is initially 
stored, although sometimes indices are dynamically 
established at retrieval time. Effective index selection can 
affect whether the system can later successfully retrieve a 
case. If an index is too general, it will retrieve irrelevant 
cases. If the indices are too restrictive, the most relevant 
cases may never be retrieved (Cox, 1994). As more cases 
are stored, numerous cases may be grouped and retrieved 
using the same index. A common practice is to select the 
most appropriate case by a similarity function such as the 
nearest-neighbor metric based on probability (Short & 
Fukunago, 1981) and a combined Euclidean-overlap metric 
(Wilson & Martinez, 1997). This paper describes an 
alternative technique to narrow the set of candidate cases. 
This technique is implemented in the Smart Indexed 
Retrieval for Knowledge Systems (SMIRKS) case-based 
reasoner. 
 SMIRKS is implemented by extending the indexing 
scheme found in Meta-AQUA (Cox & Ram, 1999). Meta-
AQUA is a case-based interpreter that can explain and 
learn from anomalous and interesting events with the goal 
to understand natural language stories. In general, Meta-
AQUA formulates a relationship between a case and its 
ACTOR attribute. This relationship is used as a top-level 
index to group together cases that belong to the same 
category. Other secondary relations are also formed with 
features that are more specific to differentiate specific 
cases from the norm (Kolodner, 1984). The indexing 
system eventually forms a tree with the more general 
indices close to the root and specialized indices near the 
leaf nodes. As more cases are acquired, numerous cases are 
accumulated at the leaf nodes.  
 To pinpoint the relevant case in the leaf-node, SMIRKS 
applies the case type (an implicit characteristic that is 
present in every case) as a separate feature that is 
orthogonal to the indexing tree. That is, every case is 
defined as a subtype of another case.1 These type/sub-type 
relationships form a hierarchical tree that has a common 
generic type (i.e., entity) as the root type and is orthogonal 
to the set of features described before. By superimposing 
this tree with the index tree on the original feature sets, we 
have added another dimension to the indexing structures 
that can be used to narrow the set of candidate cases. Any 
feature that exists in every case and forms a hierarchical 

                                                           
1 Such relationships can be considered analogous to the class and subclass 
of an object in the Object Oriented (OO) methodology.   
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relationship among all cases, can be used as the second 
dimension. 
 A simple analogy can clarify the above description. For 
example, in the one-dimensional indexing scheme, we 
have stored a number of cases that describe the police-
arrest scenes using the CONTROL feature as index. Such 
cases include drug possession, burglary, mugging and 
assault. To retrieve them using the CONTROL as starting 
relation with "POLICE" and "CRIMINAL-AGENT" as the 
primary and secondary indices, we will retrieve 4 similar 
cases as the result. If we implement the two-dimensional 
scheme in SMIRKS, the 4 cases will initially be classified 
and stored into subtypes "DRUG-CASE", "BURGLARY", 
"MUGGING" and "ASSAULT" that are all descendants of 
a common case type of "CRIMINAL-CASE". On storage, 
cases of similar types are also grouped together and then 
indexed using the CONTROL feature. On retrieval, instead 
of getting all the criminal cases (as in one-dimensional 
scheme), we only get the cases that are of the same type as 
the target case. That is, with the new scheme, a search for a 
drug possession case results in the retrieval of one case 
instead of all four cases. 
 In the SMIRKS implementation, we select the case type 
as such a property because all cases are related to one 
another with respect to a hierarchy of types. Another 
reason for our choice  is that case elaboration often 
requires specialization (Kolodner, 1984). We can use this 
property as a guide for elaboration, generalization and 
association among related types at various levels to find 
other relationships.  
 Generalization and specialization have been applied to 
many classical CBR systems such as CHEF (Hammond, 
1989) and CYRUS (Kolodner, 1984). CHEF creates 
primary indices on features that represent a set of 
abstraction descriptors. Then a secondary set of descriptors 
is used to determine the applicable range of the first set. 
CYRUS creates a discrimination network of the event 
types. It then elaborates on the event type to differentiate 
among the cases. It also applies associations to relate one 
case with the others. However, there is a subtle difference 
between SMIRKS and the traditional systems. In SMIRKS, 
the second dimension (descriptor) used to narrow the 
search is present in all the cases but it is separate and 
independent of the features in the primary dimension. This 
is different from CHEF and CYRUS where the descriptors 
used to narrow the selection are derived or associated with 
the primary descriptor. SMIRKS is more analogous to a 
context-guided retrieval as applied to Hierarchical Case 
Representation (Watson & Perera, 1997).  Watson and 
Perera restrict case retrieval to children of cases found in 
earlier steps. In SMIRKS, retrieval using the second 
dimensional indexes is used to narrow the candidate cases. 
However, since the higher dimensional indexes are 
separate and independent, retrieval can also be conducted 
in other branches that are not the direct descendant of the 
candidate set. 
  Conceptually, SMIRKS defines an orthogonal feature 
(e.g., the case-type) that is inherent and common to all the 

cases. This feature is merged with the original indexing 
scheme to form a new index structure.  

Implementation 
We implemented the above scheme using Meta-AQUA as 
a framework. Meta-AQUA is a story understanding system 
that understands and explains anomalies within stories  
automatically generated by Tale-Spin (Meehan, 1981; see 
also Cox & Ram, 1999b). It performs the understanding 
task with various AI algorithms, one of which is a CBR 
system. The CBR component of Meta-AQUA uses a flat 
case-library for storage and linear search for retrieval. The 
one-dimensional indexing scheme described above is used 
by Meta-AQUA’s explanation component to store and 
retrieve explanations. In order to have a platform to 
evaluate the performances, we modified the case-based 
component of Meta-AQUA so that it could use 
dimensional indexing for retrieval as well as linear search. 
 The case-based skimming component in Meta-AQUA 
scans story segments to interpret uninteresting events. It 
uses a linear match algorithm to find similar scripts from a 
case base that is initially populated with predefined, hard-
coded cases. If there is a match, it skips to the next 
sentence. If it cannot locate a match, it proceeds to 
understand the sentence by calling an interpretator (the 
discussion of which is outside the scope of this paper). 
SMIRKS replaces the hard-coded predefined cases in the 
case base with various combination of stories generated by 
Tale-Spin. 

In the one-dimensional scheme, SMIRKS formulates the 
outcome of the story into a relation that establishes the top 
index. This in turn generates a second level index with the 
entity that activates or causes the outcome. Retrieval is 
performed by using the outcome of the new script to probe 
the index structure for a similar value that will lead to the 
relevant cases. Fig. 1 shows the 1-dimensional index 
structure for a script about an arrest event. The outcome 
(i.e., arrest) is chosen as the first level index and the entity 
(i.e., actor) is chosen as second level index that eventually 
leads to a set of cases.  

Figure 1
One-dimensional Index

Outcome Relation

Left-sided
attribute

Arrest

Actor

Right sided attribute

Cases Type Plan Type Question  TypeXP Type

Similar cases... Similar
questions...

Similar plans... Similar XPs...

 
 Selection of the alternate indices is important in the 2-
dimensional scheme. A suitable feature to be used as the 
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second dimensional index is one that is present in all the 
cases. There should also be a hierarchical relationship 
among the cases based on this feature. In SMIRKS, we 
take advantage of the “is-a” (or type) property that is 
possessed by every story. This feature can classify all the 
stories into a hierarchical tree. All stories follow the type 
hierarchy while using the "outcome" facet as index. For a 
story that does not fit into any type hierarchy, it is default 
to the generic 'case-type.0' that is the parent of all types. 
  After the knowledge base is initialized, SMIRKS 
generates a test story and uses it to retrieve similar cases 
from the knowledge base. The ‘main-result’ of the story is 
used as the cue to retrieve matching scripts from the 
knowledge base. If the knowledge base is established using 
the 1-dimensional scheme, the cases are retrieved using the 
same scheme; if the knowledge base is stored using 2-
dimensional scheme, then the type of the new script is 
derived as well as the "outcome" relation. Both the type 
and "outcome" are then used for retrieval. Fig. 2 shows the 
2-dimensional index structure for the same script. It shows 
a more elaborated type hierarchy after the relationship has 
been formulated.  

Figure 2.
Two-dimensional Index
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Evaluation  
SMIRKS compares the performance of linear match, 1-
dimensional, and 2-dimensional indexing methods on a 
Sun Ultr a-60 2-processor (360Mhz) machine with 2 GB 
DRAM and a 4MB L2 hardware cache running Solaris 8. It 
populates 7 case libraries with sizes varying from 12 
stories to 98 stories.2 Then it generates a set of test stories 
and retrieves similar ones using each of the three 
algorithms. The retrieval is performed on every case 
library in order to measure data for case bases of different 
sizes. To reduce the impact of other processes in the 
machine, SMIRKS measures the performance and 
computes the mean, standard deviation and mode over the 
size of the set (i.e., 12). We elected to use the means in the 
report. We collected the following four types of 
performance data.  
 
• The average CPU time used in user mode.  
                                                           
2 The libraries are independent. That is, a case library of size 36 does not 
contain the smaller library of size 12. 

• The average wall clock time  
• The average number of cons cells being used. 
• The average size of the retrieved result-set. 
 
 The contents of the case libraries are randomly 
generated. The identical set of test stories is used for the 
three algorithms.  We define four types of stories with their 
various subtypes. Table 1 lists the number of stories in 
each subtype in different case libraries.  
 

Table 1. Case Distribution in the Case Library 
 

Case Library Size 
Story Types  or Subtypes 12 36 48 60 72 84 96 

.illegal 1 5 8 10 10 13 16 
Jonesing .legal 2 6 8 10 12 14 16 

.25 1 3 4 5 6 7 8 

.42 1 3 4 5 6 7 8 

.29 1 3 4 5 6 7 8 
Thirsty .0 1 3 4 5 6 7 8 

.arrest 1 3 4 2 6 6 8 
Drug case .noarrest        
Spirited  4 10 12 15 20 22 24 
others     3  1  

 

Retrieval Time  
Fig. 3 compares the User-Mode CPU Usage (excluding 
garbage collection)  that is spent in retrieving  cases from 
the case libraries of different sizes. 
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Figure 3. Retrieval Time as a Function of Case Size 

 
 The data show that the CPU time used in the indexed 
retrieval is several times less than a linear match is. The 2-
dimensional index uses slightly less CPU time than the 1-
dimensional index specifically with our biggest case 
library.  
 Fig. 4 compares the wall-clock time for the 3 different 
schemes using the same set of case libraries. The plot 
shows similar trends as the CPU time. At larger case base, 
the elapsed time in the 2-dimensional scheme is half that of 
the 1-dimensional scheme.  
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Figure 4. Wall Clock Time as a Function of Case Size 

Memory Usage 
To compare the memory usage, we measured the number 
of cons cells used. Fig. 5 shows a plot of the cons cells 
used by the 3 schemes as a function of the case library size. 
We found the number of cons cells used by indexed 
technique is less than that of linear match. The difference 
between 1-dimensional and 2-dimensional techniques is 
negligible. It is expected that as the case base grows, more 
cons cells will be used by the 2-dimensional than by the 1-
dimensional indexed technique.  
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Figure 5. Memory Usage as a Function of Case Size 

 
 To accentuate the differences in memory usage between 
the 2 schemes, we measured the cons cell usage for 1-
dimensional indices and 2-dimensional indices only in a 
series of separate runs independent of the linear search. 
The measurement is plotted in Fig. 6. It indicates that the 
2-dimensional index consistently uses more cons cells that 
1-dimensional usage. 
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Figure 6. Memory Usage Comparison Without Linear Match 

Result Set Size 
Another important aspect being considered is the extent to 
which the new scheme is capable to narrow the size of the 
retrieved set. So we measured the average size of the 
retrieved set of similar cases resulting from 1-dimensional 
and 2-dimenstioned schemes. Fig. 7 is a plot of the average 
retrieved set size for different case libraries.  
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Figure 7. Result Set Size as a Function of Case Size 
 
 The data shows that decrease in resultant set size is not 
significant only for very small case libraries (i.e., at size 
12). However, as case base increases, the 2-dimensional 
indexing scheme retrieves a smaller set than that of the 1-
dimensional scheme. These figures are statistically 
significant at P = 0.05 for both ANOVA and Scheffe tests 
of statistical inference. It is concluded that the 2-
dimensional indexing scheme is able to pinpoint similar 
cases more effectively for large case bases.  

Analysis Summary 
  As expected, the indexed schemes use less CPU time 
than linear match does. The difference in CPU usage 
between the 1 and 2-dimensional schemes is not 
significant. The response time improves for 2-dimensional 
index as the size of case library increases. This implies that 
better response time may be expected when we have a 
larger and more diverse case library. The indexed schemes 
use less memory than linear match does. The 2-
dimensional indices consistently use more memory than 1-
dimension. This might imply that the 2-dimensional 
scheme is scaleable. However with the limited size and 
uniformity of sample cases, more study is needed to 
determine the scalability.  
 The 2-dimensional indexed scheme is quite effective in 
limiting the size of the result set. The decrease in the 
number of cases retrieved is proportional to the size of case 
library. As the size of result set is domain specific, the raw 
number is not a perfect measure of retrieval precision. 
However, the relative differences in set size between the 
two schemes and the fact that these differences increase 
with size of the case base indicates that the new scheme is 
quite effective in pinpointing the relevant cases. Moreover, 
in some applications (e.g., recommender systems), it is 
desirable to retrieve a diverse set of cases rather than a 
narrow set. In such system, it is possible to fine-tune the 
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indices in the second dimension so as to balance the degree 
of diversity and similarity.  

Conclusion 
SMIRKS may be enhanced to make the indexing scheme 
practical for applications. The following list describes a 
few of the possible near-term enhancements. 
 

• Allow users to select a subtype for classifying the 
input script before a case retrieval. 

• On failure to locate a matched script, change the 
algorithm to search on subtypes at the same level 
(siblings) or search up the hierarchical tree. 

• Implement multiple inheritances, thereby allowing a 
case to be classified under more than one sub-type. 
This will enable the implementation of n-
dimensional indices. 

• Allow ways for users to customize the number of 
levels (sub-types) that can exist in the type 
hierarchy.  

 
 In summary, SMIRKS demonstrates that a 2-
dimensional index can improve performance significantly 
in the domain of story understanding. Whether such 
performance is sustainable in other domains is unknown. 
More study in a variety of applications is necessary to draw 
a general conclusion on the benefit of such a method.  
 Moreover, in certain applications (e.g., recommender 
systems), it is advantageous to have a larger candidate set 
with several degrees of diversity (Smyth & McClaire, 
2001). Without diversity, such systems may return 
duplicate choices that are less useful to the user than 
multiple, varying choices. During adaptation, it is also 
important to have diversity in the retrieved cases such that 
different combinations of the features can be considered to 
generate a creative solution. Although SMIRKS handles 
methods to pinpoint similar cases, this foundation can be 
extended to incorporate diversity into a multi-dimensional 
indexing scheme.  
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