
A Comparison of Different Techniques for Grounding
Near-Propositional CNF Formulae

Stephan Schulz
Fakulẗat für Informatik, Technische Universität München, Germany

schulz@informatik.tu-muenchen.de

Abstract

A near-propositional CNF formula is a first-order formula (in
clause normal form) with a finite Herbrand universe. For this
class of problems, the validity problem can be decided by a
combination of grounding and propositional reasoning. How-
ever, naive approaches to grounding can generate extremely
large ground formulae. We investigate various means to re-
duce the number of ground instances generated and show that
we can increase the number of problems that can be handled
with reasonable resources.

Introduction
Automated deduction systems are computer programs that
try to prove or, less often, refute, the validity of a logical
hypothesis. The most mature theory and implementations of
such systems exist for the cases of propositional logic and
first order logic. After many years of development, deduc-
tion systems for these logics are now increasingly being ap-
plied in practice. Theorem provers for first-order logic are
e.g. being used for the verification of communication proto-
cols (Weidenbach 1999; G̈urdens & Peralta 2000), hard- and
software, and the retrieval of mathematical theorems (Dahn
& Wernhard 1997) or software components from libraries.
Propositional systems are widely applied in circuit verifica-
tion.

In this paper, we are interested in the first-order fragment
of near-propositionalCNF formulae. A first order formula
(in clause normal form) is called near-propositional, if it has
a finite Herbrand universe, i.e. if its signature does not con-
tain any non-constant function symbols. This fragment is
decidable, the satisfiability problem is equivalent to the sat-
isfiability problem for the Bernays-Schönfinkel class, and is
NEXPTIME-complete (Dreben & Goldfarb 1979). It is in-
teresting for a number of reasons:

• Propositional multi-modal logic can be translated into
near-propositional clausal logic (Hustadt & Schmidt
1997). This logic is the base for various knowledge rep-
resentation formalisms.

• Near-propositional logic is a superclass of Datalog, which
is used as the basis for query languages for relational and
deductive data base systems.

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

• Model finders like MACE (McCune 2000) transform first
order formulae into near-propositional form to find mod-
els. This application is particularly interesting for verifi-
cation tasks, where a proof certifies that a certain require-
ment is met, but a counter-model corresponds to the less
desirable, but more frequent case of a bug.

• Finally, many applications naturally generate near-
propositional formulae. Release 2.4.1 of the TPTP prob-
lem library for theorem provers (Sutcliffe & Suttner 1998)
contains 533 near-propositional formulae, i.e. approxi-
mately 10% of the library is from this class. Of partic-
ular interest are approximately 100 problems from group
theory, and about 30 problems generated by DORIS (Bos
2001), a tool for natural language understanding.

Near-propositional proof problems can be attacked using
two different approaches. First, we can use standard first-
order techniques. Some current first order calculi provide a
decision procedure for the class of near-propositional proof
problems. On the down side, the overhead of first order
calculi is significant, and practical performance often is not
very good. Moreover, for any given calculus, it is not neces-
sarily obvious if it decides this class.

As an alternative, we can combine a grounding procedure
and a propositional prover. Since the Herbrand universe for
near-propositional formulae is finite, we can enumerate all
ground instances of the formula. The resulting ground prob-
lem can be solved by a propositional prover, e.g. a DPLL-
procedure (Davis, Logemann, & Loveland 1962) as imple-
mented in SATO (Zhang & Stickel 2000).

Herbrand’s theorem ensures that this approach is suffi-
cient to show the decidability of the near-propositional frag-
ment. However, in practice, the number of ground instances
can be to large to make this feasible. In this paper we inves-
tigate different ways of generating smaller ground formulae
without changing the satisfiability of the problem. The re-
sulting grounding procedure was used in the deduction sys-
tems E-SETHEO (Stenz & Wolf 2000) and PizEAndSATO,
which won the first two places in the near-propositional
category of the 2001 CASC-JC theorem proving competi-
tion (Sutcliffe 2001; Sutcliffe, Suttner, & Pelletier 2002).

72 FLAIRS 2002

From: FLAIRS-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Preliminaries
Assume a finite setP of predicate symbolswith associated
arities. We writep/n if p has arityn. Assume further a fi-
nite, non-empty setC of constantsand an enumerable set
V of variables. A (near-propositional) atoma is a word
p(t1, . . . , tn), wherep/n ∈ P and allti ∈ C ∪ V . We write
a|i to denote the subtermti in a. A (near-propositional) lit-
eral is either an atoma (apositive literal) or a negated atom
¬a (a negative literal). We call a and¬a complementary
literals. If l is a literal, we denote bys(l) the sign ofl, +
for positive literals, and− for negative literals. We define
¬+ = − and vice versa.

A (near-propositional) clauseis a finite set of literals.
Finally, a (near-propositional) formula(in clause normal
form) is a finite set of clauses. If an atom, literal, clause or
formulae does not contain any variables, we call itground
or, in this context,propositional. We use standard notation
in writing a clause as the disjunctionl1 ∨ l2 . . . ∨ ln of its
literals.

A substitutionis a mappingσ : X → C and is contin-
ued to atoms, literals, and clauses. Ifc is a clause, we call
σ(c) an instance ofc, if σ(c) is ground, we call it a ground
instance andσ a groundingsubstitution (forc). The Her-
brand universefor a near-propositional formula is identical
to the setC of constants1. TheHerbrand baseis the set of
all possible ground atoms, and aHerbrand interpretationI
is a subset of the Herbrand base. A ground atoma is called
true underI, I(a) = > if a ∈ I. We writeI(a) = ⊥ to de-
note thata is not true (orfalse) underI. A positive ground
literal is true iff it is true as an atom, a negative literal, iff its
atom is not true. A ground clause is true underI iff at least
one of its literals is true, a non-ground clause is true, iff all
of its ground instances are, and a formula is true, iff all of
its clauses are. A formulaF is calledsatisfiable, if there is
an interpretationI with I(F) = > (in this case we callI a
model ofF), otherwise it isunsatisfiable.

Refined Grounding Techniques
According to Herbrand’s theorem, a formulaF (in clause
normal form) is unsatisfiable exactly if there is a set of
ground instances of clauses fromF that is unsatisfiable. If
there is such a set, then the set ofall ground instances is cer-
tainly unsatisfiable. However, our aim is to find smaller sets
if this is possible.

Let us consider an example:P = {p/1, q/2}, V =
{x, y, z, . . .} and C = {a, b, c, d}. Then the following
clause set is unsatisfiable:

• c1 = ¬p(x) ∨ q(x, y)

• c2 = ¬q(x, a) ∨ ¬q(a, y)

• c3 = p(a), c4 = p(b), c5 = ¬p(c), c6 = ¬p(d)

An example set of ground instances to show the unsatisfia-
bility is ¬p(a)∨q(a, a), p(a),¬q(a, a) (where the last clause
results from the fact thatq(a, a)∨q(a, a) collapses). This set
has only three clauses. The Herbrand universe has a size of

1Remember that we require the existence of at least one con-
stant.

four, and the Herbrand base has a size of 20. Naive instanti-
ation of the clause set generates 36 clauses (16 each for the
two non-unit clausesc1 andc2, plus the 4 existing ground
units), some of which occur more than once.

In general, if the size of the Herbrand universe is|C|, and
a clausec hasn different variables, there aren|C| different
ground instances ofc, since each variable can be instantiated
to all constants. In order to reduce the number of generated
instances, we can either try to reduce the number of vari-
ables per clause, or we can constraint the possible instan-
tiations for each variable. We achieve the first by splitting
clauses with variable disjoint parts, and the second by using
structural constraints on the literals to induce constraints on
the variables.

Actual generation of the ground clauses dominates CPU
usage in grounding. Hence the removal or simplification of
clauses after generation is less useful then reducing the num-
ber of generated clauses in the first place. However, some
simplification techniques can be implemented very cheaply,
and since memory consumption usually is the limiting fac-
tor, any technique that reduces the final number of clauses is
worth investigating.

It is worth noting that all techniques presented here are
compatible with each other, and can be combined without
loss of completeness or correctness.

Clause Splitting

Some clauses contain independent parts, i.e. instantiations
in one part of the clause do not influence other parts. An
example of such a clause is clausec2 from above. Since
the two literals do not share any variables, we can split the
clause into clausesc2′ = ¬q(x, a)∨ t andc2′′ = ¬q(a, y)∨
¬t (wheret/0 is a new predicate symbol) without changing
the satisfiability of the clause set. However, instead of one
clause with 16 ground instances, we now have two clauses
with 4 instances each. Formally, we can state the (binary)
splitting rule as follows:

l1 ∨ . . . ∨ ln ∨ ln+1 ∨ . . . ∨ ln+m

l1 ∨ . . . ∨ ln ∨ t ln+1 ∨ . . . ∨ ln+m ∨ ¬t
if l1, . . . , ln andln+1, . . . , ln+m do not share any variables, at least
one literal from each of the two subsets is non-ground, and where
t/0 is a new predicate symbol that does not occur in the formula.

Application of the rulereplacesthe clause in the pre-
condition with the clauses in the conclusion if the condi-
tion holds. It is easy to see that the conclusion implies the
precondition (using a single resolution inference). Hence,
unsatisfiability is preserved under application of the rule.
To prove that satisfiability is preserved, assume a modelI
of F ∪ {l1 ∨ . . . ∨ ln ∨ ln+1 ∨ . . . ∨ ln+m}. This model
necessary satisfiesl1 ∨ . . . ∨ ln or ln+1 ∨ . . . ∨ ln+m:
Assume that there exists grounding substitutionsσ and τ
with I(σ(l1 ∨ . . . ∨ ln ∨ ln+1)) = ⊥ and I(τ(l1 ∨ . . . ∨
ln ∨ ln+1)) = ⊥. Since both parts are variable disjoint,
σ(l1 ∨ . . .∨ ln ∨ ln+1)∨ τ(l1 ∨ . . .∨ ln ∨ ln+1)) is a ground
instance ofl1 ∨ . . . ∨ ln ∨ ln+1 ∨ . . . ∨ ln+m that evalu-
ates to false underI. This contradicts the assumption that
I is a model. Now assume (without loss of generality) that

FLAIRS 2002 73

I(ln+1 ∨ . . . ∨ ln+m) = >. ThenI ∪ {t} is a model of
F ∪ {l1 ∨ . . . ∨ ln ∨ t, ln+1 ∨ . . . ∨ ln+m ∨ ¬t}.

Note that we can repeatedly apply clause splitting if a
clause has more than two variable disjoint parts. This
is equivalent to a single application of thehyper-splitting
rule (Riazanov & Voronkov 2001). In practice, we prefer
hyper-splitting, because it can be implemented more effi-
ciently. The restriction to clauses that split into two non-
ground parts in the inference rules ensures termination of
the splitting process.

Experiences with clause splitting for the full first-order
case are mixed (op.cit.). As the results below show, for our
application of grounding, whenever it has any significant ef-
fect, it is a positive one.

Structural constraints

Clause splitting is a local approach and considers only one
clause at a time. Taking the whole formula into account, we
can often determine constraints on the possible instantiations
of variables. The underlying idea is to avoid the creation of
clauses withpureliterals (Davis & Putnam 1960). A literall
in a given clause is pure in a formula, if there exists no literal
l′ in another clause so thatσ(l) andσ(l′) are complementary
for some substitutionσ. In the propositional case, a literal is
pure if there is no complementary literal in another clause.
A clause is pure, if one of its literals is. Since we can freely
chose the interpretation of a pure literal, pure clauses do not
influence the satisfiability of a formula, and can be ignored
or deleted. We will now find sufficient conditions for the pu-
rity of literals, and use these as constraints on the grounding
substitutions.

Consider again our example formula. The predicate sym-
bol p occurs only in positive literals in the clausesc3 andc4.
Thus any instance ofc1 that does not instantiate the variable
x to eithera or b is pure. We call this restriction astructural
constrainton the instantiation ofp|1.

Formally, anelementary structural constraintis a formula
p|i ∈ D, wherep/n ∈ P , D ⊆ C, andi ∈ [1 . . . n]. Se-
mantically, an elementary structural constraintp|i ∈ D al-
lows the instantiation of a variable at positioni in literals
with predicate symbolp with constants fromD. An elemen-
tary variable constraintis a formulax ∈ D, wherex ∈ V
andD ⊆ C. A variable constraintis a conjunction of ele-
mentary variable constraints. Note that variable constraints
constrain variables independently of the positions they occur
in.

Now let F be a formula, letp/n be a predicate symbol
occurring inF , andL+(F, p) andL−(F, p) be the set of
all positive and negative literals with predicate symbolp
in F , respectively. For� ∈ {+,−}, we define the struc-
tural constraintS�(F, p, i) = p|i ∈ {l|i | l ∈ L¬�(F, p)} if
{l|i | l ∈ L¬�(F, p)} does not contain any variablex ∈ V ,
otherwiseS�(F, p, i) = p|i ∈ C.

The structural constraints induced by a formula can al-
ready be used to reduce the number of instantiations consid-
ered. However, we can transform local structural constraints
into variable constraints, and thus propagate them through a
clause. Letc = a1 ∨ . . . ∨ am be a clause, and letpi/ni be

the predicate symbol ofai. Then the structural variable con-
straint ofc is VC (F, c) = ∧j∈[1,m](∧{Ss(aj)(F, pj , i)|i ∈
[1 . . . ni], pi ∈ V }). Informally, VC (F, c) is the conjunc-
tion of of all structural constraints induced on all variables
anywhere in the clause.

It easy to see that we only need to consider instances ofc
that satisfyVC (F, c), because any instance that violates the
structural variable constraint violates at least one elementary
structural constraint, and hence would create a pure literal.
Note also that structural constraints efficiently approximate
the hyper-linkingcondition (Lee & Plaisted 1992). While
our constraints allow more instantiations than hyper-linking,
they can be computed in linear time based on the size of the
formula, and without any use of backtracking.

Structural constraints and clause splitting complement
each other: If variables occur in multiple literals, and hence
make splitting impossible, they are more likely to be con-
strained in at least one position.

Conventional contraction techniques
Clause splitting works on the first order-level, while struc-
tural constraints are applied during the grounding stage.
We will now describe techniques that can be applied after
grounding. Since most propositional provers already have
very efficient implementations of simplification, we have
used only techniques that can be implemented very cheaply
in our framework. The three techniques currently used are
tautology deletion, unit subsumptionandunit simplification.

Tautological clauses are clauses that contain two comple-
mentary literals. These clauses always evaluate to true, and
can hence be discarded without affecting the satisfiability of
a formula. For the propositional case with a finite number of
atoms, we can detect tautologies inO(n) operations, where
n is the number of literals. However, this requires either a
good hashing algorithm, or a constant overhead in the order
of O(|B|), whereB is the Herbrand base of the problem.
Since clauses are typically short, whileB is large, we use
a conventionalO(n2) algorithm which traverses the clauses
in a triangular fashion, comparing each pair of literals once.

Unit subsumption and unit resolution are two forms of
unit propagation already suggested in (Davis & Putnam
1960). Unit subsumption allows us to delete a clause
l ∨ l1∨, . . . ,∨ln, if we already have a unit clausel. The
reason is that any interpretation that makesl true also makes
the larger clause true. Unit resolution is the complementary
part to unit subsumption. It allows us to replace a clause
l ∨ l1 ∨ . . . ∨ ln with l1 ∨ . . . ∨ ln if we have a unit clause
with a literal that is complementary tol. If we only perform
forward subsumption and resolution, we can implement both
techniques inO(n) for each clause of lengthn, and still sim-
plify or delete most generated clauses. To achieve this, we
sort the original (non-ground) clause set by length. When we
start grounding with the shortest clauses, most propositional
unit clauses will be generated early. We assign a unique
positive integer to each generated ground atom2. Generated
unit clauses are then represented simply by an entry in an

2This is necessary anyway if we want to generate the DIMACS
format used by most propositional provers.

74 FLAIRS 2002

array, with1 at positionn representing a positive unit clause
with propositional literaln, 2 representing a negative unit,
and3 representing the presence of both positive and nega-
tive units3. This allows us to check in constant time for any
given literal if it or its complement appears as a unit clause.

Experimental Results
We have implemented all techniques described in this paper
in the programeground as a part of the distribution of our
equational theorem prover E (Schulz 2001), and evaluated
them on the set of all 533 near-propositional CNF formula
from the TPTP 2.4.1 library for theorem provers (Sutcliffe &
Suttner 1998). The experiments were conducted in compli-
ance with the guidelines for use of the TPTP. Input files were
unchanged except for expansion ofincludedirectives. The
program used and the full results are available fromhttp:
//wwwjessen.informatik.tu-muenchen.de/
˜schulz/WORK/grounding.html . We present only
selected results here.

We conducted two sets of experiments, one with a mem-
ory limit of 128 MB, and one with a larger limit of 512 MB.
The CPU time limit was 300 seconds for both sets of exper-
iments (the first conducted on a Sun Ultra 10/300 worksta-
tion, the second on a SunBlade 1000/750). This limit was
sufficient that no single experiment run out of time, all fail-
ures are caused by running out of memory.

The strategies are as follows:Naiveuses no refinements
at all, Conventionaluses only contraction techniques,Con-
straints uses structural constraints,Splitting uses clause
splitting, andCombineduses all three approaches.

Table 1 gives the number of problems successfully
grounded by each strategy. We found that all generated
ground problems are very simple for SATO, and can usually
be solved within at most a few seconds.

Memory Limit 128 MB 512 MB
Naive 403 461
Conventional 407 461
Constraints 418 472
Splitting 479 496
Combined 491 504

Table 1: Successes on TPTP problems

All techniques increase the number of problems we han-
dle within reasonable resource bounds. Although splitting
is the most successful individual technique by far, the com-
bination of techniques is significantly stronger than the best
individual technique. We can also see that increasing the
memory limit is particularly useful for the weaker strategies.

Our experiments show that the success of a technique is
correlated with the type of the problem. TPTP domains are
loose collections of problems with a common theme. Most
groundable problems come from the domains GRP (group
theory), NLP (natural language processing), PUZ (logical

3Note that in this case we can terminate immediately and write
out the empty clause, since the overall formula is unsatisfiable.

puzzles) and SYN (problems not directly modeling any ap-
plication problem, most of these problems are translated
modal logic formulae). Table 2 shows the results for the
128 MB limit by domain.

Domain GRP NLP PUZ SYN Other
Size 101 30 27 360 15
Naive 101 10 20 260 12
Conventional 101 10 20 264 12
Constraints 101 20 21 264 12
Splitting 101 12 21 333 12
Combined 101 22 23 333 12

Table 2: Successes on TPTP domains (128 MB limit)

As we can see, the different techniques show different
performance depending on problem domain. First, all GRP
problems currently in TPTP are trivial foreground . Even
naive grounding can instantiate all of these problems. NLP
problems profit most from structural constraints, while SYN
problems nearly exclusively benefit from clause splitting. If
we use the larger memory limit, most of the differences van-
ish, as both splitting and constraints are sufficient to make
more problems solvable.

Table 3 shows the data of some experiments in detail.
From each of the four big TPTP domains we chose the
hardest example (by run time) still successfully grounded
by the naive strategy. We report CPU time (on the Sun-
Blade 1000/750) and size of the resulting formula by number
of clauses and literals. Times do not include writing of the
result to disk.

Problem Strategy Time Clauses Literals
GRP124-3. Naive 2.380 114394 570256
005 Conv. 1.950 38930 165077

Constr. 1.500 72703 355737
Split. 2.410 114394 570256
Comb. 1.150 17507 64987

NLP116-1 Naive 17.000 200034 3600066
Conv. 17.420 200034 3560066
Constr. 0.020 66 642
Split. 16.700 200036 3600070
Comb. 0.010 68 614

PUZ018-1 Naive 2.570 110199 624655
Conv. 2.440 93428 510846
Constr. 0.550 24275 133871
Split. 2.550 110199 624655
Comb. 0.510 19769 100306

SYN439-1 Naive 24.160 677768 6581022
Conv. 25.800 645862 6288515
Constr. 23.890 677768 6581022
Split. 0.100 4546 21929
Comb. 0.130 4546 21929

Table 3: Comparison on individual problems

These results further support the conclusions from ta-
ble 2. For GRP124-3.005, conventional contraction and con-
straints both decrease the size of the formula. However, the
combination of both reduces overall size (measured in lit-
erals) by nearly a full order of magnitude. In NLP116-1,

FLAIRS 2002 75

structural constraints are the absolute “killer” technique, re-
ducing the number of generated ground instances from more
than 200 000 to 66! The puzzle problem is quite similar to
GRP124-3.005, although the overall benefit of the refine-
ments is somewhat less. Finally, in SYN439-1 (a translated
propositional multi-modal K logic formula), splitting is the
only technique that gives a significant benefit. However, this
benefit is dramatic, reducing the literal count by a factor of
300.

It should be noted that our implementation of grounding is
far from optimal. Since we reuse the core libraries from our
equational theorem prover E, most data structures, in partic-
ularly literal and clause representations, are far more general
than necessary for this task. We estimate that a specialized
implementation could easily reduce the memory consumed
by 75%, and also lead to some speed-ups.

Conclusion
The recent CASC-JC competition has shown that re-
fined grounding techniques, combined with a propositional
prover, are a viable method for dealing with many near-
propositional problems. The program described in this paper
was used by the top two contenders in the EPR (near propo-
sitional) division of the competition, E-SETHEO (where it
was combined with both a propositional and various first-
order provers), and PizEAndSATO (where is was coupled
with SATO).

In this paper, we have explained the different techniques
that contribute to this overall success. We can observe both
the case that a single technique is crucial for a given prob-
lem, but more frequently, that the different techniques com-
plement each other.

There still are significant possibilities to improve our re-
sults in the future. It is possible to split clauses which do
not have two variable disjoint parts by introducinglink lit-
erals which contain variables. Alternatively, we can inter-
leave instantiation and splitting. This is helpful if partial in-
stantiation of a clause results in two variable disjoint parts.
The pruning effect of structural constraints can also be im-
proved. First, we can consider only pairs of literals that unify
with each other to induce constraints. Secondly, we can also
interleave instantiation and constraint generation, and thus
propagate constraints between clauses. Finally, many tech-
niques from the field of propositional provers can be inte-
grated directly into the grounding procedure.

Acknowledgments: I would like to thank Geoff Sut-
cliffe for giving me the motivation to implement an efficient
grounding procedure and for building PizEAndSATO on top
of it.

References
Bos, J. 2001. The DORIS Project Web Site.http://
www.coli.uni-sb.de/˜bos/doris/ .

Dahn, B., and Wernhard, C. 1997. First Order Proof Prob-
lems Extracted from an Article in the MIZAR Mathemat-
ical Library. In Proceedings of the 1st FTP, Linz, 58–62.
RISC Linz, Austria.

Davis, M., and Putnam, H. 1960. A Computing Procedure
for Quantification Theory.Journal of the ACM7(1):215–
215.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A
Machine Program for Theorem Proving.Communications
of the ACM5:394–397.
Dreben, B., and Goldfarb, W. 1979.The Decision Problem:
Solvable Classes of Quantificational Formulas. Addison-
Wesley.
Gürdens, S., and Peralta, R. 2000. Validation of Cryp-
tographic Protocols by Efficient Automatic Testing. In
Etheredge, J., and Manaris, B., eds.,Proc. of the 13th
FLAIRS, Orlando, 7–12. AAAI Press.
Hustadt, U., and Schmidt, R. 1997. On Evaluating De-
cision Procedures for Modal Logics. In Pollack, M., ed.,
Proc. of the 15th International Joint Conference on Artifi-
cial Intelligence (IJCAI-97), volume 1, 202–207. Morgan
Kaufmann.
Lee, S.-J., and Plaisted, D. 1992. Eliminating Dupliction
with the Hyper-Linking Strategy.Journal of Automated
Reasoning9(1):25–42.
McCune, W. 2000. MACE 2.0 Reference Manual
and Guide. Argonne National Laboratory, Argonne,
USA. (available athttp://www-unix.mcs.anl.
gov/AR/mace/).
Riazanov, A., and Voronkov, A. 2001. Splitting without
Backtracking. In Nebel, B., ed.,Proc. of the 17th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
2001), Seattle, volume 1, 611–617. Morgan Kaufmann.
Schulz, S. 2001. System Abstract: E 0.61. In Goré, R.;
Leitsch, A.; and Nipkow, T., eds.,Proc. of the 1st IJCAR,
Siena, volume 2083 ofLNAI, 370–375. Springer.
Stenz, G., and Wolf, A. 2000. E-SETHEO: An Automated3

Theorem Prover – System Abstract. In Dyckhoff, R., ed.,
Proc. of the TABLEAUX’2000, volume 1847 ofLNAI, 436–
440. Springer.
Sutcliffe, G., and Suttner, C. 1998. The TPTP Problem
Library: CNF Release v1.2.1.Journal of Automated Rea-
soning21(2):177–203.
Sutcliffe, G.; Suttner, C.; and Pelletier, J. 2002. The IJCAR
ATP System Competition.Journal of Automated Reason-
ing.
Sutcliffe, G. 2001. The CASC-JC Web Site.http://
www.cs.miami.edu/˜tptp/CASC/JC/ .
Weidenbach, C. 1999. Toward an Automatic Analysis of
Security Protocols in First-Order Logic. In Ganzinger, H.,
ed.,Proc. of the 16th CADE, Trento, volume 1632 ofLNAI,
314–328. Springer.
Zhang, H., and Stickel, M. 2000. Implementing the
Davis-Putnam Method.Journal of Automated Reasoning
24(1/2):277–296.

76 FLAIRS 2002

