From: FLAIRS-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

CBRONto: A Task/Method Ontology For CBR

Belén Diaz-Agudo and Pedro A. Gonzalez-Calero
Dep. Sistemas Informaticos y Programacion
Universidad Complutense de Madrid
{belend, pedro}@sip.ucm.es

Abstract

Our approach to Case-Based Reasoning (CBR) is to build in-
tegrated systems that combine case specific knowledge with
models of general domain knowledge. In this paper we de-
scribe CBROnNto, the CBR ontology we have developed, as
a task/method ontology. CBROnNto specifies a modelling
framework to describe reusable CBR Problem Solving Meth-
ods based on the CBR tasks they solve and the knowledge
requirements needed to apply them.

Introduction

Even though any Case-Based Reasoning (CBR) system re-
lies on a set of previous specific experiences, its reasoning
power can be improved through the use of general knowl-
edge about the domain. Our approach to CBR is to build
integrated knowledge based systems (KBS) that combine
case specific knowledge with models of general domain
knowledge. Our ongoing work is the development of COL-
IBRI (Cases and Ontology Libraries Integration for Building
Reasoning Infrastructures), an environment to assist during
the design of knowledge intensive CBR (KI-CBR) systems
(Diaz & Gonzalez 2000; 2001).

In knowledge engineering approaches such as Role Limit-
ing Methods (McDermott 1988), CommonKADS (Schreiber
et al. 1994) or Components of Expertise (Steels 1990),
a KBS is viewed as consisting of separate but intercon-
nected collaborating components. Typically, components
of a KBS include domain knowledge and Problem Solv-
ing Methods (PSMs), that represent commonly occurring,
domain-independent problem-solving strategies.

In (Diaz & Gonzélez 2000) we defended the acquisition
of domain knowledge for KI-CBR systems by reusing do-
main ontologies. In this paper, we consider problem solv-
ing knowledge. The core of the COLIBRI architecture is
CBRONto, an ontology incorporating common CBR termi-
nology and problem solving knowledge. CBROnNto serves
as a domain-independent framework to design KI-CBR sys-
tems. It is both an ontology including general terminology
related to CBR systems, and an ontology of CBR tasks and
methods. In this paper we focus on the task/method view of
CBRONto. We describe CBROnto method description lan-
guage, and how CBROnNto solves two problems that are typ-
ically found when applying PSMs. The first problem is due

Copyright © 2002, American Association for Atrtificial Intelli-

gence (www.aaai.org). All rights reserved.

to the fact that PSMs may use different terminology than the
one used in the domain. CBRONto bridges the gap between
domain knowledge and PSMs using a mapping mechanism
that is based on Description Logics (DLs) concept classifica-
tion. The second problem refers to PSM knowledge require-
ments. Again, DLs classification is the mechanism we use
to check if the method knowledge requirements are satisfied
by the application context — made of the domain knowledge
and the case base. This paper begins by introducing DLs,
the COLIBRI system and CBROnNto. The rest of the paper
describes CBRONto’s ontology of tasks and methods and its
method description capabilities, emphasizing knowledge re-
quirements representation.

Description Logics

DLs based languages are commonly used to implement on-
tologies, and it is the technology we use to formalize as-
pects of representation and reasoning. DLs, rooted in the
KL-ONE family (Brachman & Schmolze 1985) and the
frame systems, are characterized by their expressiveness and
clearly defined semantics. We use Loom (Mac Gregor &
Bates 1987), a particular DLs implementation, as the sup-
porting system on top of which COLIBRI is built.

DLs capture the meaning of the data by concentrating
on entities (grouped into concepts) related by relationships.
More important than the DLs representational characteris-
tics are its reasoning mechanisms. The most important is
the checking of incoherencies and the organization of terms
(concepts and relations) into taxonomies that the system au-
tomatically builds from the term definitions. DLs reason-
ing mechanisms are based on subsumption, to determine
whether a description is more general than another, and in-
stance recognition, to determine the concepts that an indi-
vidual satisfies and the relations that a tuple of individuals
satisfies. Contradiction detection, both for descriptions and
assertions about individuals, completes the basic set of rea-
soning mechanisms provided by DLs systems.

COLIBRI/CBRONto

COLIBRI helps to design KI-CBR systems that combine
specific cases with various knowledge types and reasoning
methods. The major problem associated with the knowledge
intensive approach to CBR is the so called knowledge ac-
quisition bottleneck. Our approach to knowledge acquisi-
tion (Diaz & Gonzélez 2000) is based on reusing knowledge

FLAIRS 2002 101

from an ontology library to create complex, multirelational
knowledge structures to support the CBR processes.

As the next step, the KI-CBR system should be able to
take advantage of the acquired domain knowledge. COL-
IBRI views KI-CBR systems as consisting of collaborating
knowledge components, and distinguishes different types of
knowledge (Van Heijst, Schreiber, & Wielinga 1997). On-
tologiesdescribe the structure and vocabulary of the Domain
Knowledge that refers to the actual collection of statements
about the domain. Tasks correspond to the goals that must
be achieved. PSMs capture the problem-solving behavior
required to perform the goals of a task. And Inferences de-
scribe the primitive reasoning steps in the problem solving
process.

COLIBRI uses CBROnNto as a unifying framework that
structures and organizes different types of knowledge in K-
CBR systems according to the role that each one plays.
CBROnto captures CBR semantically important terms, in-
cludes CBR dependent but domain-independent terms, and
aims to unify case specific and general domain knowledge
representational needs.

Mappings through DLs Classification

As PSMs are used to accomplish tasks by applying domain
knowledge, the external context of a PSM is formed by the
task to be solved and the domain knowledge to be applied.
When we want to use PSMs to build a KBS, we have to con-
nect the PSMs with both the tasks and the domain knowl-
edge (Gbmez & Benjamins 1999). Since PSMs are generic
and reusable components, they may not always perfectly fit
in a context, or in other words, there may be gaps.

In our model, it is not necessary to consider task-method
gaps because tasks and PSMs are defined using CBROnNto as
unifying terminology. Instead, we take care of gaps between
methods and domain knowledge. They exist mainly for two
reasons.

The PSMs may use different terminology than that of the
domain knowledge in which case a “renaming” process can
bridge the gap. When designing a KI-CBR system using
COLIBRI, after domain knowledge acquisition, the system
designer performs an integration phase based on classifying
the domain terms (concepts and relations) with respect to
CBROnto terms. Due to the inheritance mechanism only
the top level terms in the hierarchies should be classified.
This mechanism allows CBROnNto’s methods to capture the
problem-solving behavior in a domain-independent manner,
referring only to CBRONto terms that are correspondingly
linked to the domain knowledge terms by classification.

McDermott (McDermott 1988) coined the term knowl-
edge roles to refer to the way in which problem solving
knowledge requires domain knowledge of certain types.
PSMs represent different strategies to solve a task, and these
strategies determine the roles that domain-dependent knowl-
edge plays. Our approach relies on the use of CBROnto
terminology and DLs classification to “type” knowledge el-
ements according to their role in the CBR methods. The
roles that domain knowledge terms play in the CBR methods
depend on how they are classified below CBROnNto terms,
i.e., classification integrates the acquired domain knowledge

102 FLAIRS 2002

Main Task fo Resolve Problem Solving and
? Learning from Experience

CBR as a decomposition method
fo resolve the main task

The four CBR fasks agreed
by the CBR community
[Aamodt&Plaza94]

Alternative methods fo
resolve each one of the
main subtasks

Retrieve
Subtasks derived from

RO S

resouonmiorosset 1 O OO OO 3 £

solve the tasks.

Figure 1: CBR Task Method Structure (Chandrasekaran
1990)

with the task/method knowledge of CBROnNto and it defines
the role that domain knowledge plays in the PSMs.

The second reason for the domain-method gap is due to
the fact that knowledge required by a PSM may not be fully
given by the available domain knowledge, in which case ad-
ditional knowledge needs to be acquired. We describe in
this paper how CBROnNto method applicability in a certain
context can be checked thanks to the described integration
phase together with a declarative description of contexts of
application and the knowledge requirements of PSMs.

Issues involved in reusing PSMs from a library include
finding a suitable method and checking whether it is ap-
plicable in the current context. In the CBRONto library of
methods, selection is simple because methods are organized
around the tasks they resolve. That is why in this paper
we are looking primarily at method applicability checking.
Next section describes CBROnNto task/method ontology and
its method description language. We especially focus on the
representation of the knowledge requirements for the PSMs.

CBRONto as a Task and Method Ontology

A useful way to describe problem solving behavior is in
terms of the tasks to be solved, the goals to be achieved,
the methods that will accomplish those tasks, and the do-
main knowledge that those methods need. A description
along these lines is referred to as a knowledge level de-
scription. Although various authors have applied knowledge
level analysis to CBR systems, the most relevant work is the
CBR task structure developed in (Aamodt & Plaza 1994)
influenced by the Components of Expertise Methodology
(Steels 1990). At the highest level of generality, they de-
scribe the general CBR cycle in terms of four tasks: Retrieve
the most similar case/s, Reuse its/their knowledge to solve
the problem, Revise the proposed solution and Retain the ex-
perience. Each one of the four CBR tasks involves a number
of more specific sub-tasks. There are methods to solve tasks
either by decomposing a task in subtasks or by solving it
directly. In our approach, we do not identify a common sub-
task structure associated to all the methods. Instead we use
the notion of a task structure proposed in (Chandrasekaran
1990). As shown in Figure 1, the task structure identifies a
number of alternative methods for a task, and each one of
the methods sets up different subtasks in its turn. This kind
of task-method-subtask analysis is carried on to a level of
detail where the tasks are primitive with respect to the avail-
able knowledge.

PSMs capture and describe problem-solving behavior
in an implementation and domain-independent manner.
CBROnto includes a library of PSMs associated to the main
CBR tasks. CBROnNto describes CBR PSMs by relating
them to terms and relations within its ontology of tasks,
methods and domain characteristics. The method ontology
includes terms of the method description language that are
used to formalize PSMs. It defines concepts and relation-
ships that are used by the methods. CBROnNto also includes a
simple task ontology influenced by Aamodt and Plaza’s task
structure that defines the terminology related to the CBR
tasks from a domain and method independent point of view.
Methods in our library are organized around the tasks they
resolve.

Our approach relates to other systems like HICAP
(Mufioz-Avila, Aha, & Breslow 1999) that solves problems
with HTNs (Hierarchical Task Networks) retrieving meth-
ods for decomposing tasks into subtasks. The main differ-
ence is that HICAP considers methods to solve problem-
specific tasks, and cases in the case base are methods
themselves that are retrieved in a case based sense. Our
task/method structure only refers to CBR tasks and methods
(and not problem-specific tasks and methods).

We represent the task-method structure of Figure 1 by us-
ing two related concept hierarchies. The task hierarchy is
rooted by the CBR_TASK concept that has only one direct in-
stance, iCBR task, representing the generic task of “solve
a problem and learn from the experience”. The method
used to solve this task is CBR itself, that is represented by
iCBR_method, a direct instance of CBR_METHOD that is the
root concept in the method hierarchy . There are four sub-
concepts of the CBR_TASK concept regarding the four basic
CBR tasks: RETRIEVE_TASK, REUSE_TASK, REVISE_TASK
and RETAIN_TASK. Each one of these concepts represents a
subtask that results from the application of the decomposi-
tion method iCBR _method to solve iCBR task.

Depending on the method applied to solve a task, it results
on a different set of subtasks to be solved themselves. In the
task taxonomy, below the concepts corresponding to the four
basic CBR tasks, there are concepts for all the subtasks re-
sulting from the different methods. For example, below RE-
TRIEVE_TASK we find concepts for all the subtasks resulting
from all the retrieval methods. Each one of the methods rep-
resents the information about the subtasks applied for it.

As a corresponding taxonomy, below the CBR _METHOD
concept there is a subconcept hierarchy classifying differ-
ent types of methods regarding the task they solve. The
two hierarchies allow the representation of certain ontolog-
ical assumptions in CBROnto. For example, instances of
RETRIEVAL_METHODS (either direct or not) relate with in-
stances of RETRIEVE_TASK. As COLIBRI helps designing
KI-CBR systems, we have studied and included in CBROnto
those methods that intensively take into account the avail-
able general domain knowledge. By now, CBROnto library
of methods includes several approaches successfully applied
and described in the CBR literature. In (Diaz & Gonzalez
2001) we have described the CBROnNto declarative frame-
work that successfully integrates various retrieval methods.

Method Description Language

Most approaches consider that a PSM consists of three re-
lated parts. The competence is a declarative description of
what can be achieved. The operational specification de-
scribes the reasoning process, i.e how the method delivers
the specified competence if the required knowledge is pro-
vided. And the requirementsdescribe the knowledge needed
by the PSM to achieve its competence (Gomez & Benjamins
1999).

Some approaches like CommonKADS (Schreiber et al.
1994) specify much of how the PSM achieves its goals,
i.e. the reasoning steps, the data flows between them, and
the control that guides their execution. As we focus on
PSM applicability assessment we consider what the method
does, i.e. the task it solves, and its knowledge requirements,
and leave control-flow issues to informal documentation and
method implementation code. This allow us to use a black
box type of method reuse.

Our approach to the specification of PSMs competence
and requirements makes use of ontologies and provides two
main advantages. First, it allows formal specifications that
add a precise meaning and enables reasoning support. Sec-
ond, it provides us with important benefits regarding reuse
because task and method ontologies can be shared by dif-
ferent systems. Each method in the library is represented as
a CBR_METHOD instance (either direct or not) that relates
with:

e The method name.
e The method informal description.

e The instance of CBR_TASK (either direct or not) represent-
ing the method competence.

e The instance of REQUIREMENTS representing the method
knowledge requirements.

e The instance of INPUT _REQUIREMENTS representing the
input requirements that must be satisfied to apply the
method.

e The instance of REASONING _TYPE recording successful
uses of the method in certain kind of CBR systems.

e The instance of METHOD_FUNCTION representing the
Lisp function that implements the method.

DLs reasoning mechanisms allow us to reason with the
PSMs formalized in this way. Method internal reasoning
processes are not formalized as part of the descriptions used
to reason with. Instead, PSM descriptions relate to Lisp
functions that implement them. Input to a PSM is a list of
instances, representing either values or structured individu-
als, whose defining concepts reside in the CBROnto method
ontology.

As an example, we use one retrieval methods that is
particularly well-suited when we have taxonomical domain
knowledge available. It uses a representational approach
that assigns similarity meaning to the path joining two in-
dividuals in the case organization structure. Retrieval is then
accomplished by traversing the subsumption links starting
from the query, whose position at the hierarchy has been
recognized by the DLs mechanisms. This retrieval method
is represented in CBROnNto method description language as:

FLAIRS 2002 103

(tell (:about iRetrieve_instance classification_method
Instance_Classification_Method Decomposition_Method
(method_name "instance classification")
(method_informal_description "This method retrieve

instances according to the distance in the representational structure ")
(method_competence iRetrieveTask)

(method_requirements iInstanceRequirements)
(method_io iInstancel0)
(functional_specification ilnstanceFunction)
(subtask iClassifyInstance)

(subtask iRetrieveSiblings))

Method Requirements Representation

PSMs are defined in a domain independent way although
they include certain knowledge requirements determining
their applicability in a particular context. We propose a
declarative approach to describe method knowledge require-
ments, that allows to check the applicability of a method in
a certain context.

Below the CBRONto REQUIREMENTS concept there is a
taxonomy representing the knowledge requirements for each
type of method. These requirements represent situations in
which this type of methods are applicable. Each method in-
dividual is related with an instance of one of the REQUIRE-
MENTS subconcepts of the hierarchy according to the corre-
sponding ontological assumptions.

Requirements descriptions include information about:

e The domain knowledge model. For example, depth and
width properties of the concept and relation taxonomies
are relevant to apply the retrieval methods using classifi-
cation. (Diaz & Gonzélez 2001)

e The case base size. For example, the number of cases is
relevant to assess the efficient use of the retrieval method
by similarity computation.

e The case types. For example, to apply an adaptation
method there must be cases with solution.

e The knowledge roles that “type” domain knowledge terms
according to their classification below CBROnNto terms.
For example, a term plays the “goal” role in the retrieval
method by goal matching (Diaz & Gonzalez 2001) if it is
classified below the GoaL CBROnNto concept.

e Other CBROnNto related knowledge, for example, in-
stances of the SIMILARITY MEASURE concept deter-
mine the applicability of the retrieval method by simi-
larity computation, instances of the RELEVANCECRITE-
RIA concept determine the applicability of the retrieval
method by relevance criteria (Diaz & Gonzalez 2001),
the adaptation cases (instances of the ADAPTATIONCASE
concept) determine the applicability of the case-based
adaptation method, etc.

CBR Systems Development with COLIBRI

Method competence is the task the method solves. In a par-
ticular KI-CBR system, several alternative methods can be
applied to solve each task. In our model, each task can
be linked with a preferred method instance. Task-method
relation links CBR_TASK instances with CBR_METHOD in-
stances maintaining CBRONto ontological assumptions. If a
CBR system designer fixes a preferred method to solve the
task, then a task_method link is asserted between the cor-
responding individuals. Figure 2 shows the retrieval task

104 FLAIRS 2002

CBR_Task CBR_Method Requirements

Retrieval_Method Retrieval

Retrieval_Task
-------------- Requirements
Classify Retrieve. /1 O T
Instance Siblings Classification_

Retrieval_Method

Classification_
Retrieval _
......... Requirements

Decomposition_ Instance

Method Classification_ Classification.
Method Requirements.
““"j Requirements

Task_method

Instance_

IRetrieve_instance_ Tinstance

i | IRetrieve_Task .
B - classification_method

Requirements |

Competence
: Instance Graph Method_requirements

Figure 2: task-method and requirements

(individual iRetrieve task) when the chosen method is iRe-
trieve_Instance_Classification Method. This representation
allows an automatic, general and recursive task resolution
mechanism.

The task solver checks if the task has a task_method
relation and if it does, the reached individual is used
as the method to solve the task. If it does not, the
solver searches for methods that solve the task using the
method_competence relation. To select among several ap-
plicable methods for a task we use the mechanism that is
described in next section. Decomposition methods divide
the task in subtasks and the resolution process is applied re-
cursively for each subtask. Resolution methods finalize re-
cursion and solve the task:

Resolve (iT)
1.Get the method individual to resolve the task: iM
2.Get the method functional specification iEF
4.1f iM is a decomposition_method,
Apply iEF to get the sequence of subtaks

to be solved: iST ,, iST,
ResolveSeq(iST, , ResolveSeq(iST, . Resolve(iST,)...)

Else % iM is a resolution method
Apply iEF to solve the task iT

IR

Selecting Applicable Methods for a Task

The system designer chooses the methods to solve the dif-
ferent tasks using an interactive process. When a task does
not have a preferred method, the task solver obtains all the
methods whose competence subsumes the task and checks
their applicability, i.e. if their knowledge requirements are
fulfilled by the current context. Afterwards, the system de-
signer chooses one between the applicable methods.

To assess method applicability, the current context is char-
acterized by a concept that is automatically constructed, and
that describes the available domain knowledge and the case
base. This description is classified in the subsumption tax-
onomy to test if the requirements concept, associated to the
method, subsumes it or not. The method is applicable when
the method requirements concept subsumes the context con-
cept. Besides, if a method is not applicable, this mechanism
makes possible to explain why the method does not fit the
situation and what additional knowledge would be needed
to apply the method.

Instance™
Classification_
equirements

Medi um-d@

in-concept-taxonomy-width

Medium-%igiE:)

=taxonomy-depth

Current +r=concept-taxonomy-depth ~——
ntext iy
Domajn-relation-taxonomy —

Figure 3: Checking method applicability

For example, the concept CURRENT _CONTEXT of Figure
3, represents a situation where there are a DEEP but NARROW
domain concept taxonomy, a relation taxonomy with only
ONE LEVEL and a case base of MEDIUM SIZE. We know
that the retrieval method by instance classification behaves
adequately when the domain concept taxonomy has enough
concepts, i.e the domain concept taxonomy depth and width
are at least of medium level.

In this situation the method is not applicable because,
the MEDIUM-WIDTH concept does not subsume NARROW,
and then the requirements concept does not subsume CUR-
RENT_CONTEXT. The declarative representation allows the
system to compare the two concepts and find the dissim-
ilarity between them to determine what additional knowl-
edge must be provided to make the knowledge usable by
the method, either by adding new knowledge (as in this ex-
ample) or classifying it below CBROnNto terms adequately.
CBROnto relies on the LooM classifier to reason about what
knowledge requirements subsume the current context repre-
sentation. After adding new concepts to increase the concept
taxonomy width, that becomes wiDE now, figure 3 shows
that the subsumption mechanism infers (dotted line) that the
method is applicable in the current context, because its re-
quirements concept subsumes the current context concept.

Case Base

Conclusions

In this paper we have described CBROnto as an ontol-
ogy that includes task and method knowledge about CBR.
CBROnto language to describe methods is used to formal-
ize the CBR PSMs, that are organized in a library around
the tasks they resolve. We have made an special point of the
representation of the method knowledge requirements, and
have described how DLs mechanisms allow reasoning with
PSM descriptions to check their applicability regarding an
external context formed by the domain knowledge and the
cases. Besides, DLs mechanisms make it possible to explain
why the method does not fit the situation and what additional
knowledge would be needed to apply the method.

Even though DLs mechanisms have proven to be use-
ful in CBR systems, they cannot do much without a good
model of the domain on which to set the mechanisms to
work. Our approach uses DLs mechanisms within domain

ontologies and CBRONto as a CBR task/method ontology.
To bridge the gap between domain knowledge and meth-
ods, we have described a mapping mechanism based on
DLs classification and inheritance that allows PSMs to be
described using method terminology from CBROnto in a
domain-independent manner, although they intensively take
into account the domain knowledge.

Although the process of developing COLIBRI and
CBROnto is not finished, we have included by now the main
design ideas behind its architecture. Next step is testing its
use in real CBR applications. Our current work is studying
the applicability of COLIBRI/CBRONto in a CBR system to
generate Spanish poetry.

References

Aamodt, A., and Plaza, E. 1994. Case-based reasoning:
Foundational issues, methodological variations, and sys-
tem approaches. Al Communications 7(i).

Brachman, R. J., and Schmolze, J. 1985. An overview of
the KL-ONE knowledge representation system. Cognitive
Science 9(2):171-216.

Chandrasekaran, B. 1990. Design problem solving: A task
analysis. Al Magazine 11:59-71.

Diaz, B., and Gonzélez, P. 2000. An architecture for
knowledge intensive CBR systems. In Advancesin Case-
Based Reasoning — (EWCBR 00). Springer-Verlag.

Diaz, B., and Gonzalez, P. 2001. A declarative similarity
framework for knowledge intensive CBR. In Procs. of the
International Conference on CBR (ICCBR' 01). Springer.

Gomez, A., and Benjamins, R. 1999. Overview of
knowledge sharing and reuse components: Ontologies and
problem-solving methods. In 1JCAI99 workshop on On-
tologies and Problem-Solving Methods, Swveden.

Mac Gregor, R., and Bates, R. 1987. The LOOM knowl-
edge representation language. ISI Reprint Series ISI/RS-
87-188, University of Southern California.

McDermott, J. 1988. Preliminary steps towards a taxon-
omy of problem-solving methods. In Marcus, S., ed., Au-
tomating Knowledge Acquisition for KBS, Kluwer.

Mufioz-Avila, H.; Aha, D. W.; and Breslow, L. 1999. HI-
CAP: An interactive case-based planning architecture and
its application to noncombatant evacuation operations. In
Orlando, FL: AAAI Press., 870-875.

Schreiber, T.; Wielinga, B. J.; Akkermans, J. M.; Van de
Velde, W.; and de Hoog, R. 1994, CommonKADS: A
comprehensive methodology for KBS development. 1EEE
Expert 9(6).

Steels, L. 1990. Components of expertise. Al Magazine
11(2):29-49.

Van Heijst, G.; Schreiber, A.; and Wielinga, B. 1997. Us-
ing explicit ontologies in knowledge based systems devel-

opment. International Journal of Human and Computer
Sudies 46(2/3).

FLAIRS 2002 105

