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Abstract
Conceptmapscaptureknowledgeabout the conceptsand
conceptrelationshipsin a domain,usinga two-dimensional
visually-basedrepresentation.Computertools for concept
mappingempower experts to directly construct,navigate,
share,andcriticize rich knowledgemodels.This paperde-
scribesongoingresearchon augmentingconceptmapping
tools with systemsto supportthe userby proactively sug-
gestingrelevantconceptsandassociatedresources(e.g.,im-
ages,video, and text pages)during conceptmapcreation.
Providing suchsupportrequiresefficientandeffectivealgo-
rithms for judging conceptsimilarity and the relevanceof
prior conceptsto new conceptmaps.We discusskey issues
for suchalgorithmsandpresentfour new approachesdevel-
opedfor assessingconceptualsimilarity for conceptsin con-
ceptmaps. Two useprecomputedsummariesof structural
andcorrelationalinformationto determinetherelevanceof
storedconceptsto selectedconceptsin a new conceptmap,
andtwo useinformationaboutthecontext in which these-
lectedconceptappears.We closeby discussingtheir trade-
offs andtheir relationshipsto researchin areassuchasin-
formationretrieval andanalogicalreasoning.

Intr oduction
Capturingexpert knowledgeis an essentialcomponentof
the knowledgemanagementprocess.Oncemodelsof ex-
perts’ domainknowledgeareavailable,they canprovide a
valuableresourcefor knowledgecomparison,refinement,
and reuse. However, a difficult questionis how to obtain
the requiredknowledgemodels. Hand-craftingis expen-
sive; machinelearningtechniquesmaynot beeffective. We
are investigatingan alternative approach:developingtools
to enableexperts themselves to constructmodelsof their
knowledge.Our approachbuilds on conceptmapping(No-
vak & Gowin 1984), in which subjectsconstructa two-
dimensional,visually-basedrepresentationof conceptsand
their relationships.Conceptmappingwasfirst proposedin
educationalsettings,to helpassessstudents’understanding
and to aid their knowledge-building, comparison,and re-�
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finement. In the conceptmappingview, expertswho build
conceptmapsarenotsimplyexternalizingpre-existinginter-
nal knowledge,but arealsodoingknowledgeconstruction.
Thus tools to provide relevant knowledgeto considerand
compareduring conceptmappingcould facilitatenot only
knowledgecapture,but knowledgegeneration.

The Institute for Human and Machine Cognition has
developed a set of publicly-available tools for concept
mapping,availableat http://cmap.coginst.uwf.edu/.These
widely-usedsystemssupportgeneratingandmodifyingcon-
ceptmapsin electronicform, aswell asannotatingconcept
mapswith additionalmaterialsuchasimages,diagrams,and
videoclips. They provide thecapabilityto storeandaccess
conceptmapson multiple servers, to supportknowledge
sharingacrossgeographically-distantsites.We have devel-
opedaninitial implementationof asuggestersystemthatau-
tomaticallyextractsinformationfrom a conceptmapunder
constructionandusesthatinformationto retrieveprior con-
ceptmaps,associatedresources,and relatedconceptsthat
the usercan compareand possiblyinclude in the concept
mapbeingconstructed.Figure1 shows a screenshotof the
conceptmappingtoolsbeingusedfor knowledgemodeling
aboutMars, with the suggesterproposingnew conceptsto
link to the “spaceexploration” node(to fill in the not-yet-
specifiedconceptnodedesignatedby “????”).

The effectivenessof a suggestersystemdependson ef-
ficient algorithmsfor judging similarity and relevanceof
storedconceptsto the conceptscurrentlyunderconsidera-
tion. This paperdescribesfour approachesthat we have
implementedand are now testing, two of which focus on
determiningthe relevanceof a prior conceptto a new con-
cept,basedon summariesof structuralandcorrelationalin-
formationpreviouslygeneratedfor theconceptmaplibrary,
andtwo of which directlycomparethecontext in which the
conceptappears—itsconceptmap—toconceptmapsin the
conceptmaplibrary. We comparethe complexity of these
approaches,discusspilot studiesof their effectiveness,and
therelationshipof thiswork to previousapproaches.

ConceptMaps for KnowledgeModeling
Conceptmappingwas designedboth to enablethe exam-
inationof humanconceptualizations,andto furtherhuman
knowledgeconstruction.As shown in thecenterof Figure1,
conceptmapsarea two-dimensionalvisual representations
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Figure1: A screenshotof thesuggesterproposingresourcesrelevantto a currentconcept,in thecontext of aconceptmap.

containingnodesfor concepts,connectedwith namedlinks
expressingconceptrelationships(e.g.,thatEarthis a neigh-
bor of Jupiter). Conceptmapsappearsimilar to semantic
netsbut havenofixedsemanticsandvocabulary—they sim-
ply make explicit any set of conceptsand relationshipsin
any vocabulary thattheexpertchooses.

In electronicconceptmaps,nodescanbeassociatedwith
resourcessuch as photographsand textual passages(as
shown in the backgroundof Figure 1), diagrams,or even
pointersto additionalconceptmapsto definea hierarchi-
cal conceptstructure.The resultis a rich andflexible con-
ceptrepresentationto helphumansunderstanddomainsand
revise their domainknowledge. Conceptmappinghasre-
ceived widespreaduse for knowledge modeling, sharing,
andrefinementby expertsandnovices(e.g.,in theQuorum
project,involving over a thousandschoolsin SouthAmer-
ica (Cãnaset al. 1995)).As increasingnumbersof concept
mapsarecapturedin electronicform, they provide a grow-
ing sourceof datafor studyinghumanconcepts,for enabling
knowledgesharing,andfor helpingto refinetoolsto support
humanconcept-mapping.

SomeCentral Issues
Developing methodsfor assessingconceptmap similarity
requiresaddressingissuesfor bothcognitivescienceandAI:� The rolesof contentand structur e in similarity assess-

ment: Modelsof conceptualsimilarity in conceptmaps
mustconsiderboth conceptlabels,andhow the labeled
conceptsarerelatedto otherconcepts.� Assessing similarity and relevance for non-
standardized representations: Labels on concept
map nodesprovide namesfor the conceptsthat they

represent,but not in the more formal, standardized
representationsassumedin muchAI research.Nodeand
link labelsmay be ambiguousor inconsistentwith the
namesusedin other conceptmaps. Thus determining
related conceptsrequires more than simple keyword
matching,andsimilarity assessmentmustbesufficiently
robustto dealwith representationaldifferences.� Efficient use of structural information: If link labels
cannotbematchedreliably, matchingconceptmapstruc-
turereducestographmatching.Becausethisis expensive,
methodsareneededto summarizestructuralinformation
andusethosesummariesto guidematching.� Exploiting contextual information: Context may be
crucialin determiningtherelevanceof conceptswith dif-
ferent labels,becausethe meaningof eachconceptin a
conceptmap is partially capturedby its connectionsto
otherconcepts.Context may be crucial even for deter-
mining relevanceof identicalconcepts:A rocket engine
designerwho entersa nodelabeled“hydrogenperoxide,”
linked to conceptsfor fuel andpropulsion,would not be
interestedin retrievingaconceptmaponfirst-aidthathap-
pensto includehydrogenperoxideaswell.� Facilitating representational standardization: The
usefulnessof conceptualinformation for reasoningsys-
tems increaseswith standardization.To increasestan-
dardizationwithout increasingtheburdenonusers,meth-
odsareneededto helpidentify to reuseexisting labels.

Methodsfor Computing
Relevance,Similarity , and Usefulness

We arestudyingtechniquesfor assessingthe relevanceof
a new conceptasa candidate“conceptextension”(related
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conceptto considerlinking to a selectedconceptin a con-
ceptmap),aswell asto suggestrelevant vocabulary items
for possiblereuse. This sectionintroducesand compares
four techniquesfor determiningtherelevanceof a new con-
ceptto aconceptunderconsideration.Thefirst two rely pri-
marilyonprecomputedglobalinformation,while thesecond
two usethecontext of theconceptmapin whichtheconcept
appears.We begin with definitionsthat will be useful for
understandingthefollowing algorithms.

Preliminary Definitions
Conceptshave different importancesin conceptmaps,and
the conceptmap layout often providesuseful information
for assigningconceptweights.For example,amainconcept
usuallyappearsat the top of eachconceptmap,specifying
themain topic. In (Cãnas,Leake, & Maguitman2001)we
proposedthatasmallsetof topologicaldimensionscanuse-
fully summarizeconceptroles:� Authorities: Conceptsto which otherconceptsconverge.

Thesehave the largestnumberof incoming links from
“hub nodes”(definedbelow).� Hubs(centersof activity): Conceptswith thelargestnum-
berof outgoinglinks endingatauthoritynodes.� UpperNodes:Conceptsthatappeartowardsthetopof the
mapin its graphicalrepresentation.� Lower Nodes:Conceptsthat appeartowardsthe bottom
of theconceptmapin its graphicalrepresentation.

Our algorithmsto computetheseweightsareadaptedfrom
researchon determininghubandauthoritiesnodesin a hy-
perlinked environment(Kleinberg 1999). We definefour
weights,a-weight, h-weight, u-weightandl-weight, in [0,1],
representingthe degreeto which a conceptbelongsto the
abovecategoriesin a particularconceptmap.Detaileddefi-
nitionsarepresentedin (Cãnas,Leake,& Maguitman2001).
For a givenconceptmap,theseweightscanbecomputedin���
	���

time, where
	

is the numberof conceptsin a map.
They needonly becomputedonce,whentheconceptmapis
indexed,andstoredwith eachconcept.

To describeindividualconcepts,ourmethodsextractkey-
wordsfrom theconceptlabels(“stopwords”aredeletedbe-
foreprocessing),andweightthekeywordsin termsof these
four typesof weights,usingtheweightsof the conceptsin
which they appear. Conceptmapsare then comparedac-
cordingto their weightedkeywords. (In the following for-
mulas,wesometimesrefertoapplyingsetoperationssuchas
intersectionanddifferenceto conceptmaps;this is a short-
handfor applyingthoseoperationsto the setsof keywords
extractedfrom theconceptmaps.)Givena keyword � and
conceptmap library � , ���� standsfor the set of concept
mapsin � containingkeyword � . For simplicity weassume
that � is fixedanduse � � to denoteall conceptmapscon-
taining keyword � . It may be useful to refer to the global
weightof a keyword in a setof conceptmaps.If � is a set
of conceptmaps,� is akeyword,andw is aweightfunction,
theglobalweight ��� � �����  of � in � is definedby:� � � ����� �����! #"%$ � �&��' )(

Someof our algorithmscomputethe averageof the
	

highestvaluesof a setof values.For a setof values* , we
will usethenotation+ �,	 �-*  to referto thesumrestrictedto
the

	
highestvaluesof * , dividedby

	
. In thespecialcase

when * is empty, thereturnedvalueis 0.

Estimating Relevanceby Global Correlations
Our first two methodsuseglobal correlationmetricsto re-
trieve conceptmapscontainingconceptsthat tend to co-
occurwith conceptsfrom thecurrentconceptmap.Because
this allows correlatedkeywords to matcheachother, it is
moreflexible thanusingkeywordmatchingalone.Correla-
tion informationis combinedwith theweighteachkeyword
hasonthecorrespondingmaps—giving riseto weight-based
globalcorrelationmetrics—orwith thedistancebetweenthe
two involved keywords in eachconceptmap—giving rise
to distance-basedglobal correlationmetrics. (In a concept
mapthe notion of distancecanbe naturallydefinedasthe
minimumdistancebetweenconceptsin whichthekeywords
appear.) Both of theabove methodsareglobal in thesense
thatthey assignconceptimportancesbasedon global infor-
mationpre-computedfrom theentireconceptmaplibrary.

Method 1: Using weight-basedglobal correlations: To
computeweight-basedglobalcorrelationsbetweenasource
concept. anda targetconcept/ , we first computetheset021 � .3�-/  of weight-basedcorrelation values. Writing �
for ��4#56��798;:)<>= , wecalculate:?�@ � 8BA �DC @ E � � � � 8BA �DCF� G  � � � � 8HA �DCF� I @ � 8 @ � @ �DC @ � � � � 8 � G  � � � �DC�� I  J G�KL.3�MINKO/�PRQ
Then we computethe weight-basedglobal correlation asS � .3�T/ !� + �
	 � 021 � .3�T/ - , where

	U�2� @ . @WVX@ / @ -YFZ .
Method 2: Usingdistance-basedglobal correlations: In
order to computedistance-basedglobal correlations we
startby defining[ � � G��MI  , whichstatesthedistancebetween
keywordsG andI in theconceptmap ' . Thedistancemetric[ � � G\�BI  canbe naturallydefinedasthe minimumnumber
of links betweenconceptscontainingthosekeywords,or in-
finity if G and I arenot both in ' . Considerthesetof key-
words . and / . We begin by computingtheset ] 1 � .3�T/ 
of distance-basedcorrelationvalues:^_ ` ��! ba
"dcHef"&gTh Z� @ � 8 @iVj@ � C @  � [ � � G\�BI  J GkKl.!�BINKm/on pq (
The distance-basedglobal correlation is then r � .3�T/ ��+ �
	 ��] 1 � .3�-/ T , where

	l�s� @ . @iVj@ / @ �YtZ .
Estimating RelevanceBasedon Context
Whenproviding suggestionsto a userconstructinga con-
ceptmap,it is appealingto retrieve conceptsthatappearin
contextssimilar to themapunderconstruction.Wehavede-
velopedtwo methodsto comparelocal contexts, thefirst of
which is asimilarity-basedapproach.It positsthatthemore
similarthecontextsin whichtwo conceptsappear, thehigher
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thelikely relevanceof oneconceptto theother. Thesecond
is a usefulness-basedu approachthat favorsconceptsprovid-
ing additionalinformationastheuserseeksto addnew con-
ceptsto apartialconceptmap.

Method 3: Using contextual similarity: To comparethe
conceptmapstructuresin which two conceptsappear, we
considerthe four weightsobtainedfrom topologicalanaly-
sis to summarizethe positioningof eachconcept,anduse
thatinformationto comparetheroleof eachrelatedconcept
(i.e.,conceptwith overlappingkeywords)in its own concept
mapby calculatingthedistancesbetweenthesetsof associ-
atedweights.Thustheweightsobtainedfrom thetopologi-
cal analysisof a conceptmapareusedto definetopological
similaritiesbetweentwo conceptsbelongingto two different
conceptmaps.For example,two conceptsthatappearat the
top of their correspondingconceptmapswill have similar
u-weights, while two conceptsthatplaysimilar rolesashub
nodesin theircorrespondingconceptmapswill havesimilar
h-weights. Basedon theseintuitions we cancomparetwo
maps'wv and 'kx by first computing/�. � 'wvd�\'yx  , thesetof
topological similarity valuesasfollows:^zz_ zz`w{ |~}���{ � �� �  ��� �M���O�%��� |d�������M���T�!�&�9�{ ��� {��3� � |d�9�y� � |l�N� � �M����� � n

zzpzzq
where��� � .3�T/ ��s� @ . @iVj@ / @ �YtZ ,��� 0 =

� � a-weight,� h-weight,� u-weight,� l-weight� ,
and��� $ � .3�\' v �-/D��' x k�2� $ � .3�\' v d� $ � /D�\' x T E , and $ is
oneof thefour weights.

Wethencomputethetopologicalsimilaritybetweenconcept
maps ' v and ' x , as � � ' v ��' x �� + �
	 �-/�. � ' v ��' x - ,
where

	m�s� @ 'wv @>VX@ 'yx @ -YFZ .
Method 4: Using context and novelty of information:
Theconceptmapthat is themostsimilar to thesourcemap
may not be mostusefulfor suggestinginformationto con-
nectto a new concept.For finding new connections,useful
prior conceptmapsarethosethatboth includesimilar con-
ceptsandsuggestnew connections.Consequently, we are
alsoexploringmethodsthatfavor bothcommonalityandthe
existenceof new materialin thestoredconceptmap.

A simpleusefulnessmeasurebetweena sourceconcept
map ' v anda targetconceptmap ' x canbecomputedby:� � 'wv���'yx �� � � @ ' v A 'yx @
VN¡ � @ 'kx � ' v @ ��¢ � @ ' v � 'kx @
where � ,

¡
and

¢
areconstantsthat adjustthe balancebe-

tweenoverlapandnovelty. (
�

neednot besymmetric,so it
is a measure, ratherthana metric.) We arealsoinvestigat-
ing measuresthat considerthe correlationsbetweentarget
andthesourcekeywordsfor moreflexible matchingof non-
identical terms. For example,applyingthe distance-based
correlationmeasurefrom Method 2, we can computethe
usefulnessmeasure:

��£ � ' v �\' x �� � � @ ' v A ' x @ V¡ � r � ' v ��' x � ' v  � @ ' x � ' v @ �¢ � ��¤¥� r � 'yx!��'wv � 'yx T � @ 'wv � 'yx @ (
Discussionof Methods
Assessingthe previous methodsrequiresconsideringtheir
costandthequalityof their relevancepredictions.

Cost: Methods1 and2, theglobalcorrelationmetrics,are
efficientto compute.Computingtheglobalweightfor akey-
word (Method1) is linear in the numberof conceptmaps
involved. Computingthe weight-basedcorrelationvalues
for keywords G andI involvescountingtheconceptmapssi-
multaneouslycontainingthosekeywords,whichcanbedone
in timesfrom

��� @ � 8 @  to
��� @ � 8 @ � @ �DC @  , dependingon the

underlyingindexing scheme.Weight-basedglobal correla-
tionsmustbecomputedfor eachpair of keywordsin source
and target concepts,but becausethe numberof keywords
in conceptsis usually small, this is inexpensive in prac-
tice. Computingdistance-basedglobalcorrelations(Method
2) requirescomputingminimumdistancesbetweenpairsof
keywordsin conceptmaps,which is basicallythe shortest
path problem, and can be computedin

��� @ ¦o@ �N§
¨W© @ 1 @  ,
where

1
is the numberof vertices(conceptsin our case)

and
¦

is thenumberof edges(links in ourcase).
Method3, thefirst context-basedmethod,requirescom-

putingtopologicalsimilarity betweeneachpair of concepts
in two conceptmaps.In principle,this canbequiteexpen-
sive,but thesevaluesonly needto becomputedfor pairsof
conceptsthathave at leasta keyword in common.Usually
therearefew suchconceptsin any conceptmap,makingthis
inexpensive in practice.Dependingon theindexing mecha-
nismused,thebasictechniqueconsideringcontext andnov-
elty (the first versionof Method4) canbe implementedin
times

���
ªl
to
���,ª � 	� , where

ª
and

	
arethe sizesof

the conceptmapsto be compared.The secondversionof
Method4, which addsglobal correlations,is significantly
lessefficient. Its speedof calculatingglobalcorrelationsis
reasonablefor comparingindividual concepts,but not for
comparingconceptmaps. In future researchwe intendto
performa formal analysisandto developefficient approxi-
mationsof thisapproach.

Relevanceof suggestions: We performeda pilot experi-
ment to evaluatewhetherour metricscan be exploited to
provide better recommendationsthan the simple baseline
methodof countingsharedkeywords. In the experiment,
subjectswerepresentedwith a conceptmap,with onecon-
ceptdesignatedastheconceptto beextended,anda list of
50 suggestionschosenrandomlyfrom thesetof extensions
containingat leastonekeyword in commonwith the con-
ceptto beextended.Tensubjects,all graduatestudentsnot
involved in the project,assessedthe relevanceof retrieved
informationona scaleof 0 to 10. Their rankingswerecom-
paredto therelevancescoresassignedbyourtechniques.We
thenusedSpearmanrankcorrelationto comparetheranking
producedby thehumansubjectsto therankingproducedby
ouralgorithms.
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In our study, bestresultsareobtainedwhenusefulness-
based« comparisonmeasures(Method 4) are usedto pre-
selecttarget conceptmapsandthe combinationof weight-
basedcomparisonmetric (Method 1) and distance-based
comparisonmetric (Method2) is usedto ranksuggestions.
In thisapproach,theweight-basedmetricmeasuresthesimi-
larity betweenthesourcebaseconcept,i.e.,theconcepttobe
extended,andthe targetbaseconcept,i.e., theconceptthat
is connectedto potentiallyrelevantextensions;thedistance-
basedmetriccomparesthebasesourceconceptto thepoten-
tially relevant extension. Intuitively, weight-basedmetrics
betweenconceptstell ushow similartwo givenconceptsare,
while thedistance-basedmetrichelpstopredicthow suitable
is for aconceptto haveanothernew conceptasaneighbor.

Our resultsshow a correlationfactorof 0.77, with a 2-
tailed significancelevel ¬®°¯ ( ¯F¯F¯ ¤ , betweenthe values
obtainedby the combinedmethodand the aggregationof
theevaluationsmadeby humansubjects.Our resultsshow
a correlationfactorof 0.63,with ¬R2¯ ( ¯F¯F¯ ¤ , betweenval-
uesfrom thebaseline“countingcommonkeywords”andthe
aggregateof the resultsreturnedby humansubjects.This
suggeststhatour methodsarecapturingregularitiesbeyond
thosecapturedby thebaselinemethod.

Comparisonto RelatedWork
Theprojectdescribedhererelatesto numerousresearchar-
eassuchasknowledgemodelingandsharing,conceptrep-
resentation,information retrieval, and case-basedreason-
ing. As a knowledgemodelingproject, it contrastswith
knowledgeengineeringapproachesthat dependon hand-
craftingknowledgerepresentations,aimingto empowerdo-
mainexpertsto directlyconstruct,navigate,share,andcriti-
cizeknowledgemodels.This requiresthat theconceptrep-
resentationsbenaturalfor themto construct,andsufficiently
expressivefor othersto understandtheir conceptualizations.
Therepresentationthatwe have chosen,conceptmapsaug-
mentedwith supplementaryresources,appearsto provide
theneededinformationin aneasy-to-useform, anda recent
studysubstantiatestheusefulnessof conceptmapnavigation
for guidingknowledgeaccess(Carnotetal. 2001).

Keyword-basedretrieval techniquesare commonin the
informationretrieval literature(Baeza-Yates& Ribeiro-Neto
1999). Becauseconceptmapsprovide additionalstructure,
our methodsaugmentkeyword-basedmethodswith consid-
erationof thetopologicalrole of a keyword, inheritedfrom
thetopologicalrole of theconceptin which it appears.The
IR communityhasalsodoneconsiderableresearchonmeth-
odsinvolving metricclusters, in which keywordsarecom-
paredin termsof theirdistance(usuallydefinedby thenum-
berof wordsbetweenthemin a document,with infinite dis-
tancebetweenkeywordsin differentdocuments).Our no-
tion of distance-basedglobal correlationsis an adaptation
of theseideas.

Thecomparisonof structuredinformationhasbeenexten-
sively studiedin researchon case-basedreasoningandana-
logical reasoning.Ourmethodsrely on topologicalanalysis
techniquesratherthanonexplicit structuremapping,asdone
by (Falkenhainer, Forbus,& Gentner1989).Structuralanal-
ysisrequiresastandardizedrepresentationlanguage,andas-

sumesthat the most importantmatchesinvolve the links,
ratherthan the entitiesthat theselinks relate. In concept
maps, the representationalvocabulary is nonstandardized
andlink namestendto be generic,so the mostsignificant
informationsourceis usuallyon theconceptsratherthanon
thelinks.

Conclusion
Conceptmappingprovidesa meansto captureand exam-
ine humanconcepts,aswell asa tool for aidingexpertsand
novicesatconstructingandrefiningtheirown understanding
of adomain.Augmentingconceptmappingtoolswith intel-
ligent methodsfor suggestingrelevantconceptsto compare
andconsideris promisingfor aidingtheseprocessesandfa-
cilitating knowledgesharing.Developingthesemethodsde-
pendson beingableto efficiently andeffectively assessthe
relevanceof conceptsin prior mapsto selectedconceptsin
theconceptmapscurrentlybeingconstructed.

Thepaperhasidentifiedkey issuesfor this taskandpre-
senteda setof approachesfor assessingconceptualsimilar-
ity andrelevancefor conceptmapping. Theseapproaches
have beenimplementedin a suggestersystemcombined
with the electronicconceptmappingtools of the Institute
for HumanandMachineCognition,with encouraginginitial
resultsthat we arepreparingto test moreextensively in a
larger-scalestudy. Basedon theresultsof thatstudy, we in-
tendto refinetheseindividualmethodsandinvestigatepossi-
bilities for combinationsto exploit theirindividualstrengths,
as well as to addressadditionalissuessuchas selectively
adjustingconceptweightsto reflectadditionalinformation
abouttaskcontexts.
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