
Category Similarity as a Predictor for SVM Learning Performance

Fabio Pardi
Dipartimento di Scienze dell’Informazione, Università La Sapienza

Via Salaria, 113 - 00198 Roma - Italy
fabio.pardi@tiscalinet.it

Abstract

In this paper we propose a method for the prediction of
learning performance in Support Vector Machines based on
a novel definition of intra- and inter-class similarity. Our
measure of category similarity can be easily estimated from
the learning data. In the second part of the paper we provide
experimental evidence to support the effectiveness of this
measure.

Introduction
In (supervised) learning tasks several design choices must
be made in order to build a learning system. Among these,
it is widely agreed that certain learning parameters
affecting the representation of the hypotheses and the
instance space, have a crucial impact on the algorithm
performance, perhaps even more than the algorithm itself.
Determining these parameters is usually based on
heuristics. Alternatively, one can use a validation set to
estimate the generalization error of the classifier (i.e. the
expected error on unseen cases) for a specific set of
choices. Automatically changing a parameter and
evaluating the generalization performance may eventually
lead to the optimal choice (or at least to a good one).
Though this approach is quite common (for instance in
feature selection) it is both time consuming and resource
consuming, since it requires additional manual training for
validation.

Therefore, the importance of a numeric estimator to
predict learning performance is twofold: from a theoretical
standpoint, it sheds light on the learning process by
showing the factors that make it possible, while from a
practical standpoint, it can be used for the construction of
an optimal classifier.

In the following, we describe a method for constructing a
matrix that might be a good source of information for
predicting the generalization performance of a specific, but
very popular, kind of classifiers: Support Vector Machines
(SVMs). SVMs are relatively young learning systems
(Cortes and Vapnik 1995) that have shown in many
problems better generalization performance than
competing methods (Burges 1998). One of their main
features is that their performance depends on a single
design choice: the choice of a kernel function. Roughly
speaking, a kernel is a formal equivalent for the informal
idea of similarity. We use this notion of similarity to define

Copyright © 2002, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

a measure of similarity between the various categories1 the
classifier must learn. The intuition behind this method is
that high intra-class and low inter-class similarity
positively affect the learning process. By verifying this
intuition through a series of experiments, we shall provide
a method to choose a ‘good’ kernel in a data dependent
way.

Support Vector Machines
In the two-class case, SVMs output functions of the form:

=˜
¯
ˆÁ

Ë
Ê -= Â

=

opt
m

i
i

opt
ii xxKysignxh qa

1

),()(

˜̄̃
ˆ

ÁÁË

Ê
-= Â

Œ

opt

SVx
i

opt
ii

i

xxKysign qa),(, where:

{ }m

iii yx 1),(=
 is the training set (xi Œ X and yi Œ {–1,+1}),

optopt
m

opt qaa ,,...,1
 are the solutions of an optimization

problem (briefly discussed later), SV is the set of training
instances of non-zero weight, i.e. the set of xi s.t. 0πopt

ia
(called support vectors), and ¬Æ¥ XXK : is a function,
called kernel, such that, for all x, y Œ X

>=<)(),(),(yxyxK ff
where: f : X Æ F is a mapping to a (possibly infinite
dimensional) Euclidean space F, called feature space2.

The choice of the kernel function, together with the
definition of the optimization problem, completely defines
a specific SVM. In most cases one verifies that a chosen
function is a kernel through Mercer’s condition (Vapnik,
1995) that guarantees the existence of the mapping f (but it

does not tell how to construct f or even what F is).

SVMs look for an ‘optimal’ hyperplane that separates
the data in the feature space, where different ways of
defining ‘optimal’ give rise to different SVMs. The
simplest approach is that of looking for the separating
hyperplane h that maximises the margin with the training
points, i.e. the minimum among the distances between h
and the varous f(xi). It turns out that it is possible to

express the search for such a hyperplane with an
optimization problem whose variables are the weights
_1,…, _m to assign to the training points. In this optimization
problem the various f(xi) never appear alone, but always

1 We shall use terms ‘category’ and ‘class’ interchangeably.
2 < x, y > denotes the inner product between x and y.

FLAIRS 2002 173

From: FLAIRS-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

inside an inner product ><)(),(ji xx ff that can be

computed through K. It follows that we can define a kernel
without worrying about the mapping f it implicitly defines.

This is very important, since usually the feature space is
high-dimensional and working directly with f(x) would be

a problem.
Another advantage of SVMs is that the optimization

problem has a unique global solution and it is not subject
to the problems deriving from the existence of several local
minima.

In the multi-class case a hyperplane is learned for each
category and every new instance x is assigned to the class
whose hyperplane is furthest from f(x). This means that

the feature space is split into N convex regions.

A Similarity Based Performance Predictor
Following what we said in the preceding section, feature
space decision surfaces are represented by linear functions.
Therefore, we expect that the more categories are linearly
separable3, the easier will be for SVMs to learn such
categories. Hence we are interested in finding an
efficiently computable measure of such linear separability.

It is clear that a measure of linear separability between
classes in the feature space must take into account the
positions f(x) of the learning points. Yet, as we saw

before, the definition of a kernel does not necessarily
imply the possibility to construct f. It follows that the

distribution of the examples in the feature space must be
investigated only through the values of K on the various
example pairs.

Let us consider those kernels such that K(x,x) = 1 for
every instance x . This restriction is equivalent to
considering all kernels such that K(x,x) equals a constant k,
since every kernel of this kind can be transformed in an
equivalent kernel K’ = K / k, such that K’(x,x) = 1 for all x.
We call these kernels Hypersphere kernels, since instances
are mapped on the surface of a sphere of radius 1:

1),()(),()(==><= xxKxxx fff . Notice that K(x,y)

equals the cosine of the angle _ between vectors f(x) e f(y):

),(
)()(

)(),(
cos yxK

yx

yx =
◊

><=
jf

ffq

Besides, limiting our analysis to Hypersphere kernels is
not an excessive restriction, since they include some of the
most successful kernels, Gaussian kernels 4. Finally every
kernel K can give rise to an induced Hypersphere kernel

3 One might object that training data either are linearly separable or they
are not, without anything in the middle. Here, we implicitly refer to a
quantity, that could be formally defined, related to the difficulty to find
surfaces that discriminate between the distibutions (in a probabilistic
sense) of the various classes in the feature space.
4 We define Gaussian kernels later.

HK, in this way:
),(),(

),(
),(

yyKxxK

yxK
yxH

def

K = (unless

either K(x,x) or K (y ,y) equals 0, and in that case

0),(
def

K yxH =).

We are now ready to state the thesis of this paper:

This claim has an intuitive justification. Avg(K)i,j is the
expected value of the cosine of the angle between an i-th
class element and one of the j-th class. Therefore it is
related to the ‘confusion’ between classes Ci and Cj, if iπ j,

or to the ‘learnability’ of class Ci, if i=j.

For example, if Avg(K) =
1 1 - e

1 - e 1

Ê

Ë
Á

ˆ

¯
˜ , where 0< e <2,

since the elements on the diagonal equal 1, the internal
cohesion of the two classes is maximal, i.e. the images of
the instances in the feature space are concentrated in two
points. Note that Avg(K)1,2 π 1 implies that these points are

distinct. No matter how close the two classes are (i.e. how
close to 1 Avg(K)1,2 is), the linear separability between
them is guaranteed: the generalization error will be 0
whenever an example for each category will be collected.
Unfortunately this is an extreme case, since Avg(K) is
seldom so informative.

In the following we provide experimental evidence that
shows the existence of a connection between Avg(K) and
the error of a SVM that has K as kernel.

Notice that Avg(K) only depends on the (unknown but
fixed) probability distribution on the set of input/output
couples (x,y) Œ X ¥ {C1 ,…, CN}. It follows that Avg(K)

cannot be ‘computed’ (since the distribution is always
unknown) but only ‘estimated’ using the training data. We
could have defined Avg(K) directly from these data, but we
think that it is easier to consider Avg(K) as an intrinsic
quality of distributions, independent from the result of any
sampling of data (x, y).

In general the estimation of Avg(K) requires computing
K(x,y) for every pair of examples in the learning set, i.e. a
number of steps proportional to m2. This is however a
highly parallelizable computation: all the K(x,y) can be

We claim that, for Hypersphere kernels, the matrix
Avg(K) defined by:

Avg(K)i,j = E[K(x,y) | x Œ Ci, y Œ Cj]

is a good predictor for the performance of a SVM that
has K as kernel.
Here, by E[K(x,y) | x Œ Ci, y Œ Cj] we mean the

expectation of K evaluated on x and y taken randomly
and independently, according to the class-conditional
probability distributions (Duda and Hart 1973)
respectively of classes Ci and Cj.

174 FLAIRS 2002

computed simultaneously in time O(1), while the
estimation of Avg(K) requires parallel time5 O(log m).

Experimental Evidence for Gaussian Kernels
Let us now discuss experimental results on two different
implementations of a SVM that uses a Gaussian kernel:

2

2

2
exp),(

s
yx

yxK
--

=

This class of kernels assumes that a notion of distance _x
– y_ is defined in X (usually X = ¬f). Besides, it is

parametric in s. For larger s, a higher number of training

examples will influence the classification of a new
instance. For smaller s, the classification will only depend

on the examples in its neighbourhood. When s is small

there is a risk of overfitting, when s is large the risk is to

give the wrong importance to the various training
examples. It is therefore important to find the best
compromise for the value of s:

It would be useful to define a parameter, in function of
training data and kernel, such that, varying s, its value

approximately follows the generalization error of the
SVM, and, even more important, in such a way that its
minimum is approximately where the error has its
minimum. In this way we would be able to identify the
value of s that minimizes this parameter, as we show later,

in a much more efficient way than looking for the value of
s that minimizes the error on a validation set.

Let us start with some definitions:
W(K) = E[K(x,y) | x and y belong to the same class]
B(K) = E[K(x,y) | x and y belong to different classes]

Both W(K) and B(K)6 can be easily derived from Avg(K),
or directly estimated from the data in the same way as
Avg(K)i,j. Since W(K) and B(K) respectively represent the
internal cohesion of classes and the external similarity
between different classes, it is clear that the parameter we
are defining must decrease with W(K) and increase with
B(K). We shall therefore define our parameter, that we call
Class Similarity (CS), so that it is monotone in B(K) –
W(K). Here is one of the many possible definitions:

CS = arccos W(K) – arccos B(K)
The three following figures refer to three experiments on

three different data sets, all available in the UCI
Repository (Blake and Merz 1998).

In each of the following graphs the solid line on the top
indicates an estimate of CS and its values appear on the
right axis. The lines at the bottom indicate the
generalization errors of two SVMs and they refer to the
values appearing on the left axis. The solid line is a leave-

5 Since the sum of n numbers can be executed in time O(log n) by O(n)
processors (JàJà 1992).
6 W stands for ‘within’, B stands for ‘between’.

0

10

20

30

40

50

60

70

80

90

100

0,2 1 1,8 2,6 3,4 4,2 5 5,8 6,6 7,4 8,2 9 9,8

sigma

-0,4

-0,35

-0,3

-0,25

-0,2

-0,15

-0,1

-0,05

0

Fig. 1: Experiment on ionosphere

0

10

20

30

40

50

60

70

80

90

100

0,1 0,5 0,9 1,3 1,7 2,1 2,5 2,9 3,3 3,7 4,1 4,5 4,9

sigma

-0,1

-0,09

-0,08

-0,07

-0,06

-0,05

-0,04

-0,03

-0,02

-0,01

0

Fig. 2: Experiment on sonar

one-out estimate of the error of SVMlight (Joachims
1998), while the dashed line is a 10-fold cross evaluation
of the error of LIBSVM (Chang and Lin 2001). The
behaviour of the parameter CS is quite satisfying: in all the
experiments, and in others that we have performed, not
only the minimum of CS is not far from the minima of the
errors, but also the curve closely follows those of
generalization performance.

Notice that, in the three experiments, S V Mlight and
LIBSVM approximately show the same generalization
performance. In the experiments that will follow we
therefore report only the results referring to SVMlight.

Experimental Evidence for
an Aggregation Kernel

The kernels specified by the following definition can be
applied to problems whose instances are vectors of
symbolic attributes7:

7 One of the possible values of each attribute is ‘?’, which represents an
unknown value.

FLAIRS 2002 175

0

10

20

30

40

50

60

70

80

90

100

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113

sigma

-0,1

-0,08

-0,06

-0,04

-0,02

0

0,02

Fig. 3: Experiment on liver

Â

Â

=

=

◊
=

f

k
k

f

k
kkk

w

yxw
yxK

1

1

),(
),(

d

where d(a,b) = 1 if a = b π ‘?’, else d(a,b) = 0, and w is any

vector of weights.
w is the parameter that indexes this class of kernels. The

search for its optimal value is a problem of Feature
Weighting. If we succeed in verifying that CS strictly
follows the performance of the SVM defined by K, we
would have found an efficient method for solving this
problem.

We shall explore the space of possible weights and plot
the graphs of both the generalization error and CS. This
will be done so that, at every step, the weights of a
‘window’ of consecutive attributes are 1, while all the
other weights are 0. Initially all weights, except the first
(w1 = 1), will be set to 0. The window will shift towards
the right until it reaches the end of the vector. Then its
width will be increased by 1, and the window will continue
moving in the opposite direction. If we do not stop this
exploration8, it will continue until all weights will equal 1.
For example if f = 4, the explored sequence of weights will
be: (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (0,0,1,1), (0,1,1,0),
(1,1,0,0), (1,1,1,0), (0,1,1,1), (1,1,1,1).

In practice we consider all w whose elements are 1 or 0
and such that the ‘1s’ are assigned to consecutive
positions. The reason for defining our exploration in this
particular way, is that we wanted to obtain each w from the
preceding one, by modifying at most 2 weights. In this way
the graphs we obtain are not too ‘zigzagging’ and are
sufficiently continuous. We finally remark that choosing

8 In practice this is often necessary, since the exploration can go on for a
long time. This is due to the computational complexity of training and
testing the SVM for each weights assignment.

0

10

20

30

40

50

60

70

80

90

100

iterative step

-2

-1,8

-1,6

-1,4

-1,2

-1

-0,8

-0,6

-0,4

-0,2

0

Fig. 4: Experiment on votes

weights in {0,1} is motivated only by reasons of
simplicity.

In each of the following three figures, the line at the
bottom shows the performance of SVMlight and its values
appear on the left axis. The upper line indicates the value
of CS and refers to the right axis. Each figure refers to a
different dataset.

First of all, let us consider figure 4.
Thanks to the small number of features (16) and to the

limited dimension of the dataset, it has been possible to
execute the exploration until the end (i.e. until w = 1) and
to estimate the error through a leave-one-out evaluation.
Notice that, despite its similarity with performances, CS
shows an unjustified growth. Compare its minimum with
the value it assumes in the last iteration: although they
approximately correspond to the same error (about 5%)
they have very different values: –1 versus about –0.25.
This suggests that CS still needs some modifications,
before being readily usable.

The exploration corresponding to figure 5 starts from the
vector w = (1,1,0,…,0) and stops once all windows of width
6 have been taken into account9. The generalization error is
estimated on a fixed test set, whose size is approximately
one half of the entire dataset.

The results are here very positive: CS precisely reflects
the error. Also the unjustified growth of CS looks less
evident, but this is probably due to the early interruption of
the exploration.

The experiment on splice also required interrupting
the execution after a certain number of iterations (180): the
number of attributes is in fact high (f = 60) and each
iteration needs a long time (since m = 3190). The error is
estimated through a 2-fold evaluation. Even in this case the
correspondence between CS and generalization error is
quite good.

9 For the entire exploration f(f – 1)/2 + f = 666 iterations (f = 36) would be
needed. We thought they were too many.

176 FLAIRS 2002

0

10

20

30

40

50

60

70

80

90

100

iterative step

-0,4

-0,35

-0,3

-0,25

-0,2

-0,15

-0,1

-0,05

0

Fig. 5: Experiment on kr-vs-kp

0

10

20

30

40

50

60

70

80

90

100

iterative step

-0,4

-0,35

-0,3

-0,25

-0,2

-0,15

-0,1

-0,05

0

Fig. 6: Experiment on splice

The Usefulness of Avg(K)
In the last two sections, we provided strong experimental

evidence to suggest a connection between Avg(K) and the
error of a SVM that has K as kernel. We also mentioned
that a predictor of SVM learning performance can provide
a method to select an optimal kernel in a very efficient
way.

In order to see this, consider a predictor defined on the
basis of Avg(K). Every parameter of this kind can be
estimated only looking at values of K on pairs of training
examples. Let CS be such an estimate. Notice that, if

{ }m

iii yx 1),(=
 is the training set, CS is function of every

K(xi,xj), for i,j = 1,…,m.
 Besides, suppose we are looking for an optimal kernel

in a family of kernels K_ indexed by parameters _. If K_

can be differentiated with respect to _ (as for Gaussian
kernels), and if CS is a differentiable function of each
K(xi,xj), it will be possible to express the gradient of CS
with respect to _. There are several techniques for using
this gradient to efficiently find the value of _ that
optimizes CS and, hopefully, the performance of the
resulting SVM.

Current Work
We are currently investigating two possible directions of

future research. The first one consists in extending our
method so that it can be applied to every kernel. Recall our
definition of the induced kernel HK. Our thesis is that, for
every K , Avg(HK) can be a good predictor of the
performance of unbiased SVMs, i.e. SVMs that select an
optimal hyperplane among those passing through the
origin (_ = 0). In fact Avg(HK)i,j is the expected value of the
cosine of the angle between an i-th class element and one
of the j-th class10. It is therefore related to the hardness of
separating classes Ci and Cj, using a hyperplane such that _
= 0.

The other aim of current research consists in looking for
a formal connection between Avg(K) and the error of a
SVM using K . We recently proved an upper bound,
expressed in terms of Avg(K), for the optimal error of
linear classifiers in the feature space.

Acknowledgments
I would like to thank my graduation thesis supervisor,
Paola Velardi, for helpful comments and discussions.

References
Blake, C.L. and Merz, C.J. 1998. UCI Repository of

machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html
Irvine, CA: University of California, Department of
Information and Computer Science.

Burges, C. 1998. A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge
Discovery, 2:1.

Chih-Chung Chang and Chih-Jen Lin 2001. LIBSVM: a
Library for Support Vector Machines (Version 2.31).
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Cortes, C. and Vapnik, V. 1995. Support Vector
Networks. Machine Learning, 20: 273-297.

Duda, R. and Hart, P. 1973. Pattern Classification and
Scene Analysis, John Wiley and Sons.

JàJà 1992. An Introduction to Parallel Algorithms,
Addison Wesley.

Joachims, T. 1999. Making large-scale SVM Learning
Practical. Advances in Kernel Methods – Support Vector
Learning, B. Schölkopf and C. Burges and A. Smola (ed.),
MIT-Press.

Vapnik, V. 1995. The Nature of Statistical Learning
Theory, Springer Verlag.

10 This is true also for Avg(K) only when K has the hypersphere property.

FLAIRS 2002 177

