
An On-Line Satisfiability Algorithm for Conjunctive Normal Form Expressions
with Two Literals

John F. Kolen
Institute of Human and Machine Cognition

University of West Florida
Pensacola, Florida 32501
jkolen@ai.uwf.edu

Abstract

This paper describes two algorithms for determining
the satisfiability of Boolean conjunctive normal form
expressions limited to two literals per clause (2-SAT)
extending the classic effort of Aspvall, Plass, and Tar-
jan. The first algorithm differs from the original in
that satisfiability is determined upon the presentation of
each clause rather than the entire clause set. This on-
line algorithm experimentally exhibits average run-time
linear to the number of variables. This performance
is achieved by performing a single depth first search
of one of the incoming literals. Additional search is
avoided by excluding clauses containing pure variables
or variables whose truth value has been explicitly pro-
vided or can be inferred. An off-line algorithm is also
described that incorporates these strategies.

Introduction
A conjunctive normal form Boolean expression (CNF) is a
conjunction of disjunctive clauses. Determining the exis-
tance of an assignment of truth values to the variables of
the CNF expression that makes it evaluate as true is the sat-
isfiability problem. When the clause size is greater than
two, the problem is NP-Complete (Cook 1971). A linear
algorithm for 2-SAT was originally developed by Aspvall,
Plass, and Tarjan (Aspvall, Plass, & Tarjan 1979) (APT al-
gorithm). Consider a directed graph where the vertices are
the set of literals from a 2-CNF formula. One could con-
struct a digraph on these vertices from the formula by in-
terpreting each clause a ∨ b as a pair of directed edges
a → b and b → a on the graph. They proved that a
formula is satisfiable if, and only if, no pair of literals, x
and x, appear in the same strongly connected component.
Since a linear time algorithm for determining the strongly
connected components of a digraph existed (Tarjan 1972;
Aho, Hopcroft, & Ullman 1974), the 2-SAT question could
be answered in linear time as well.

The APT algorithm requires the entire expression before
it can begin processing–an off-line algorithm. An on-line
algorithm, on the other hand, is one receives a sequence of
inputs and performs some computation on the sequence seen

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

so far. For instance, an on-line convex hull algorithm incre-
mentally maintains the convex hull of a sequence of coplanar
points (Preparata 1979).

In this paper, I first describe an on-line algorithm for 2-
SAT. At each insertion of a clause, the algorithm condition-
ally performs a depth first search of subset of the dual impli-
cation graph and checks affected components for inclusion
of literal pairs (x and x). A large performance savings is
made by not searching on pure variables, by making oppor-
tunistic variable assignments, especially during depth first
search of the graph. These techniques are used to construct
an off-line algorithm, as well. The performance of the algo-
rithms are demonstrated experimentally.

Preliminaries
During the course of this paper, the following terms are used
to describe satisfiability problems and their graph theoretic
equivalents. Let X = x1, ..., xn be a set of Boolean vari-
ables. A literal is either a variable or it’s negation, hence
L = {x1, ..., xn} ∪ {x1, ..., xn} is the set of literals. A
clause, c, is a multiset representing the disjunction of k
members of L. For this paper, we are only interested in the
case where k = 2. This restriction implies that clauses will
exhibit one of three forms (a, b ∈ L): i) unit clauses a ∨ a,
ii) tautological clauses, a ∨ a, iii) and regular clauses, a ∨ b.
A clause set is the multiset C drawn from Lk. An instance
of a k-SAT problem is F = (X, C). A literal, a, is pure, if
it’s negation does not appear in any clause in C.

The 2-SAT decision problem is intimately related to deci-
sions problems on graphs (Aspvall, Plass, & Tarjan 1979).
All graphs are assumed to be directed. Let G = (V, E)
designate a graph with V vertices and E edges. The graph
dual, or implication graph, G, of a 2-SAT problem instance
(X, C) directly represents the implication relationship be-
tween literals of X induced by the disjunctive clauses of C.
The vertices, V , of the graph are the literals, L. An edge
exists in the graph if and only if the implication relation-
ship holds between the two vertices. Hence, E = {(a, b) |
(a ∨ b) ∈ C}. Note that both (a, b) ∈ E if and only if(
b, a

)
∈ E. Literal and vertex will be used interchangeably

through out the paper.
A vertex b is reachable from vertex a if there exists a set

(xi, xi+1) ⊂ V of vertices such that a → x1, x1 → x2,
. . ., xi → b. Reachability of two vertices is represented as

FLAIRS 2002 187

From: FLAIRS-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

proc 2-SAT APT(F)
Construct the dual graph G=(V,E) of F
foreach v ∈ E do

if not(w.Mark) then SearchAPT(v); fi
return not(SearchFailed()) od.

proc SearchAPT(v)
Push(v);
v.Lowlink := v.Dfnum := count;
count := count + 1;
v.Mark := true;
foreach w where (v, w) ∈ E do

if not(w.Mark)
then SearchAPT(w);

v.Lowlink := min(v.Lowlink, w.Lowlink)
elsif w.Dfnum < v.Dfnum ∧ OnStack(w)

then v.Lowlink :=
min(v.Lowlink, w.Dfnum)

fi od
if v.Lowlink = v.Dfnum

then repeat
u := Pop();
if u is on the stack after v

then Fail(); fi
until u = v; fi.

Figure 1: The 2-SAT algorithm of Aspvall, Plass, and
Tarjan (Aspvall, Plass, & Tarjan 1979) embedded into a
strongly connected connected components algorithm (Aho,
Hopcroft, & Ullman 1974).

a � b. The set S ⊂ V such that for all a, b ∈ S, a � b
and b � a is a strongly connected component (SCC). A
maximal strongly connected component is known as a strong
component. Components throughout this paper will refer to
strong components. The set of all components partitions the
graph vertices. A contradictory component contains vertex,
a, and it’s negation, a.

When the graph is an implication graph, the partition
gives rise to an equivalence relation for literal truth values.
This view justifies (Aspvall, Plass, & Tarjan 1979) observa-
tion that if an some strong component of implication graph
contains a literal and it’s negation, the dual 2-SAT formula
is unsatisfiable. Figure 1 illustrates the APT algorithm along
with Tarjan’s connected components algorithm from (Aho,
Hopcroft, & Ullman 1974). This algorithm was much more
amenable to the optimization than Tarjan’s version (Tarjan
1972). Since SearchAPT (v) is called once for each literal
in the dual graph and all edges must be examined, the run
time is Θ(| V | + | E |) when an edge list is used.

Before discussing the new algorithms, four theorems will
be needed. When appropriate, let F be a 2-SAT instance and
G its graph dual. For sake of brevity, the theorems are stated
without proof.

Theorem 1 A pure literal from F and it’s negation are sin-
gleton strong components in G.

Theorem 2 Let set P be the component partition of G. Con-
sider the new partition, P ′, of G after adding edge (a, b) to

G. Either P ′ = P or there exist two components S1, S2 ∈ P
such that S1, S2 �∈ P ′ but S1 ∪ S2 ⊆ S, and S ∈ P ′.

Theorem 3 Let a � b and a � b. There exists a path from
a to a through b (and b) with length | a � b | + | a � b |.
Theorem 4 S is a contradictory component if and only if
∀b ∈ S, b ∈ S.

Algorithms
While the APT algorithm performs well–linear run time
with respect to the number of variables and edges–it requires
the entire formula to begin it’s processing. There are situa-
tions, however, that this may not be feasible or, at least, in-
convenient. For instance, the 2-SAT instance could be gen-
erated by some other procedure as the byproduct of a com-
plex computation (e.g. a planner) that might benefit from
knowing the formula it is building is unsatisfiable.

An on-line algorithm for 2-SAT must manipulate the un-
derlying data structures to allow efficient clause insertion
and satisfiability queries. Recent developments in dynamic
graph algorithms suggest that on-line 2-SAT may have a
quadratic run time (Khanna, Motwani, & Wilson 1996). For-
tunately, 2-SAT does not require such certificates during pro-
cessing due to the existential nature of it’s query. The re-
mainder of this section discusses the benefits of such a view
in the form of two algorithms. First, an on-line algorithm
for incrementally processing a sequence of binary clauses
is presented. A new off-line version is described, as well.
Analysis and experimental results will follow.

The On-Line Algorithm
The on-line algorithm consists of three cooperative proce-
dures (Figure 2). The procedure InsertClause receives
the clause stream. Two recursive functions, Search and
AssignTrue perform most of the work of the algorithm by
exploring components and maintaining truth values of the
literals. The V alue field of a literal can take on one of three
values: true, false, and unassigned. Two forms of negation
appear below. An overbar (a) indicates a negated literal,
while ¬ is a Boolean operator.

The procedure InsertClause(a, b) translates the disjunc-
tive clause a ∨ b into its equivalent implications. If both
literals are known to be false, then processing can stop, as
this clause, as well as the entire formula, can not be sat-
isfied. Discovering a true variable allows the algorithm to
avoid processing this clause. Tautologies (a ∨ a) can be
safely ignored, as well. If one and only one of the literals
is false, then the other must be true, and it can then recur-
sively assign true to that literal and all of its implicants. If
none of these conditions hold, the algorithm can finally in-
sert the two implications into the graph. According to Theo-
rems 2 and 4, if a contradictory component is formed by the
insertion it must contain a (or equivalently b). Hence, it per-
forms a single search from the head of one of the new edges.
Searches involving pure variables are avoided per Theorem
1.

Truth maintenance is handled by AssignTrue. It assigns
truth values to undecided literals in a depth-first fashion,

188 FLAIRS 2002

proc InsertClause(a, b)
if a.V alue = false ∧ b.V alue = false

then Fail(); // can’t satisfy
elsif a.V alue = true ∨ b.V alue = true

then return ; // satisfied
elsif a.V alue = false

then AssignTrue(b); // forced
elsif b.V alue = false

then AssignTrue(a); // forced
elsif a = b

then AssignTrue(a); // unit clause
elsif a �= b // not tautology

then Add edge (not(a), b) to E;
Add edge (b, a) to E;
if a and bare not pure

then Search(a, UniqueMark()); fi fi.

proc AssignTrue(v)
oneof v.V alue

true : return ;
false : Fail();
unassigned : v.V alue := true;
v.V alue := false;
foreach w where (v, w) ∈ E

do AssignTrue(w); od foeno.

proc Search(v,mark)
Push(v);
v.Lowlink := v.Dfnum := count;
count := count + 1;
v.Mark := mark;
foreach w where (v, w) ∈ E
∧ w.V alue �= true ∧ w is pure do
if w.V alue = false

then Empty the stack;
AssignTrue(v);
AbortSearch();

elsif OnStack(w) then AssignTrue(w);
elsif Mark(w) �= mark

then Search(w,mark);
v.Lowlink :=
min(v.Lowlink, w.Lowlink)

elsif w.Dfnum < v.LowlinkandOnStack(w)
then v.Lowlink := w.Dfnum fi

od
if v.Lowlink = v.Dfnum

then repeat u := Pop(); until u = v; fi.

Figure 2: The on-line algorithm. The InsertClause proce-
dure performs simple truth maintenence on the literals, adds
implications, and initiates component checking, when nec-
essary. Search recursively explores the dual graph, while
AssignTrue maintains truth assignments.

pruning the traversal at vertices with known truth values.
Truth values are assigned to the complementary pair of lit-
erals: v is assigned true and v is assigned false. A recursive
AssignFalse procedure is unnecessary because the graph

edges appear in pairs, thus performing the backward push of
false values that this procedure would provide.

The DFS procedure, Search, differs slightly from the
one implementing the APT algorithm. Note that the ver-
tex traversal mark is no longer Boolean. The initial call to
Search instantiates a unique symbol to mark the current
traversal. More importantly, it takes advantage of the log-
ical interpretation of the search vertex to prune the search
space. As before, it performs DFS of the graph from the
start vertex, v. It is possible, however, to eliminate certain
vertex expansions. Expanding a literal whose truth value is
known serves no purpose. Pure literals, according to Theo-
rem 1, will always end up in a singleton component, so they
should remain unexpanded. Search, unlike the generic con-
nected component algorithm, is attempting to traverse the
single component containing the original vertex.

The stack serves dual purposes in the new procedure: it
is a valid implication chain in addition to the component
holding area. The literals on the stack were pushed in their
implication order, x1 → x2 → . . . → xi → v, where
the index of xi reflects the order that literals were pushed
onto the stack and v is the current literal. Consider the event
where the search algorithm stumbles upon a literal, w whose
truth value is false while at v. Given that w is a child of v,
v =⇒ w. The only way to avoid a contradiction is to
assign v the value false. During the AssignTrue(v) call
this assignment propagates down the stack, with eventually
all the stack literals, including the root literal, receive an as-
signment. Hence, the entire traversal can be aborted.

Another assignment can be determined from the stack. If
an implication chain exists from a literal to it’s negation, the
negation is asserted true. This rule can be implemented with
an examination of the stack for the negation of the vertex
whose expansion in question.

If the vertex was not marked during the current traver-
sal, then it is expanded and v’s backedge is updated ac-
cordingly. In the case of a backedge, a small simpli-
fication can be performed. Since Lowlink is assigned
the value of the vertex’s traversal number, Dfnum, or
the minimum of itself and some other value, Lowlink ≤
Dfnum for all vertices. The APT algorithm performs
two comparisons involving Lowlink on the backlink test.
First, the target must have appeared previously in the DFS,
w.Dfnum < v.Dfnum. Second, v receives a new
Lowlink if w.Dfnum < v.Lowlink. The second compar-
ison subtends the first, so the former can be replaced by the
latter and used to record the destination of the new backedge.

The algorithm fills the stack with candidate literals dur-
ing its DFS of the implication graph. When it encounters
a literal whose Lowlink points to itself after visiting it’s
progeny, it has discovered the root vertex of the current com-
ponent occupying the topmost portion of the stack. In the
APT algorithm, the stack is checked for the negations of all
literals of the component. This check, however, can be re-
duced to one comparison: the presence of the root’s nega-
tion. Theorem 4 supports this simplification.

Even this comparison can be eliminated. During DFS of
a contradictory component, the negation of some literal, w,
will be found on the stack and trigger the assignment of true

FLAIRS 2002 189

to the newly found literal, w. Recall that truth assignments
are recursive, all literals found via DFS from the source are
assigned true and the negated literals are assigned false. The
complimentary pair assignments occur before vertex expan-
sion in AssignTrue. Since w � w, the algorithm will
eventually try to make a contradictory assignment to w and
trigger a failure. When the algorithm safely returns to com-
ponent’s root vertex, it is guaranteed not to contain any con-
tradictory literal pairs. Thus, the constituents need only be
popped from the stack.

The Off-Line Algorithm
The APT algorithm, separated the two abstractions, logical
and graph, that made their algorithm work. While convert-
ing the formula to a graph and looking for contradictory
components solves the satisfiability problem and achieving
asymptotic optimality, it fails to take advantage of regular-
ities of the graph submitted to component subroutine. The
remainder of this section addresses optimization of the off-
line algorithm in light of the on-line algorithm.

The new off-line 2-SAT algorithm still works depth-first,
but it is able to prune a great many vertex expansions that
the APT algorithm would follow. It can operate with a sin-
gle vertex mark, as the graph is stable. It can not, however,
rely on truth assignments to pick up all contradictions. Test-
ing a component for contradictions requires a single check
for the negation of the root literal. The main procedure dif-
fers as well. Recall that pure literals are in singleton com-
ponents, so they are skipped. Assigned literals need no fur-
ther expansion, either. The algorithm expands literals only
if they are not negated and neither it, nor its negation, are
marked (contradictory components are closed under nega-
tion by Theorem 4). Expanding from the main loop only
positive literals applies this reasoning to limit the loop con-
struct and avoiding mark and purity tests. This optimization
mirrors the single DFS invoked in InsertClause.

Analysis and Experimental Results
The linear run time of the APT algorithm sets it apart from
other satisfiability algorithms. In this section, the asymptotic
run times of both algorithms are examined.

Unfortunately, the off-line version worst-case run time is
θ(n2). This behavior can be induced by a clause stream
containing groups of three clause pairs of the form (xi−1 ∨
xi) ∧ (xi ∨ y) ∧ (xi ∨ zi). The first clause inserts the edges
(xi, xi−1) and (xi−1, xi). Since this is the first appearance
of xi, it’s purity postpones it’s expansion to a future in-
sert. When the second clause is inserted, the edge (zi, xi)
is added and xi is defiled. If z is impure as well (easily in-
duced by w ∨ y), then xi is traversed. Thus, there exists a
clause stream of length 3n + 2 whose run time is Θ(n2) as
all xi are recursively visited on each insert. This run time
is asymptotically the same as running the original algorithm
on each iteration. Fortunately, such expressions are uncom-
mon.

The average run time is much more acceptable than this
quadratic upper bound. While a proof is elusive at this time,
experimental results suggest linear expected run time. The

proc OffLine2-SAT(F)
Construct the dual graph G = (V, E) of F , then

foreach non-negated v ∈ E
∧ w.V alue = unassigned
∧ w is not pure
∧ ¬w.Mark ∧ ¬w.Mark do
SearchOffLine(v); od

return ¬SearchFailed(); .
proc SearchOffLine(v)

Push(v);
v.Lowlink := v.Dfnum := count;
count := count + 1;
v.Mark := true;
foreach w where (v, w) ∈ E
∧ w.V alue �= true ∧ OutEdges(w) > 0 do
if w.V alue = false

then EmptyStack();
AssignTrue(v);
AbortSearch();

elsif OnStack(w) then AssignTrue(w);
elsif ¬w.Mark

then Search(w);
v.Lowlink :=
min(v.Lowlink, w.Lowlink)

elsif w.Dfnum < v.Lowlink ∧ OnStack(w)
then v.Lowlink := w.Dfnum fi

od
if v.Lowlink = v.Dfnum

then if u is on the stack after v
then Fail(); fi

repeat u := Pop(); until u = v; fi.

Figure 3: The 2-SAT algorithm of Aspvall, Plass, and Tar-
jan (Aspvall, Plass, & Tarjan 1979) embedded into Tarjan’s
strongly connected connected components algorithm (Tarjan
1972).

experiments described below compare the run times of four
different versions of the algorithm: the off-line algorithm
where value truth values are identified and propagated (once
assign) or not (once), the on-line approach utilizing variable
assignments (insert assign) or not (insert). Two hypotheses
were tested: first, that run time grows linearly with prob-
lem size; second, that variable assignments improved per-
formance. The latter is of interest as truth maintenance adds
significant complexity to the algorithm.

Each algorithm was ran on variable sets of size 1000,
3500, 6500, 10000, 35000, 65000, and 100000. The ratio
of clauses to variables examined were 0.9, 1.0, 1.1, 1.2, 2.0,
and 5.0. For each condition, variable set size and clause ra-
tio, 100 clause sets were generated and presented to each
of the algorithms. Clauses were independently generated
by selecting, with replacement, two literals from L under
the assumption of uniform probability. Presentations to the
on-line versions maintained identical orderings of the clause
sets.

Table 1 displays the mean run times for the experimen-
tal conditions conditions. To test the linearity hypothesis,

190 FLAIRS 2002

Clause
Ratio

Variables Once
Assign
(sec)

Once
(sec)

Insert
(sec)

Insert
Assign
(sec)

0.9

1000 0.005 0.005 0.005 0.004
3500 0.010 0.011 0.010 0.010
6500 0.018 0.019 0.019 0.020

10000 0.030 0.027 0.031 0.031
35000 0.096 0.098 0.107 0.114
65000 0.180 0.181 0.205 0.215

100000 0.274 0.280 0.318 0.333

1.0

1000 0.005 0.004 0.005 0.005
3500 0.011 0.011 0.012 0.014
6500 0.020 0.024 0.024 0.024

10000 0.030 0.031 0.039 0.041
35000 0.104 0.107 0.182 0.182
65000 0.192 0.196 0.368 0.361

100000 0.296 0.301 0.592 0.578

1.1

1000 0.005 0.005 0.006 0.006
3500 0.012 0.011 0.017 0.015
6500 0.021 0.021 0.037 0.030

10000 0.030 0.030 0.077 0.053
35000 0.100 0.097 0.394 0.238
65000 0.184 0.175 0.838 0.489

100000 0.287 0.270 1.380 0.775

1.2

1000 0.005 0.005 0.007 0.006
3500 0.013 0.012 0.020 0.016
6500 0.021 0.022 0.045 0.032

10000 0.034 0.031 0.082 0.055
35000 0.115 0.103 0.397 0.238
65000 0.203 0.184 0.837 0.492

100000 0.322 0.287 1.383 0.776

2.0

1000 0.006 0.006 0.007 0.006
3500 0.017 0.015 0.020 0.016
6500 0.028 0.026 0.044 0.032

10000 0.046 0.039 0.083 0.055
35000 0.164 0.134 0.398 0.239
65000 0.271 0.230 0.839 0.493

100000 0.466 0.378 1.380 0.773

5.0

1000 0.007 0.006 0.008 0.007
3500 0.016 0.018 0.020 0.016
6500 0.033 0.031 0.045 0.033

10000 0.055 0.050 0.083 0.055
35000 0.188 0.174 0.399 0.241
65000 0.309 0.282 0.845 0.497

100000 0.612 0.535 1.386 0.783

Table 1: Comparison of run-time’s of the algorithms.

variable count and mean run times with a ratio condition
were subjected to regression. Across all ratio conditions, the
smallest R2 value was 0.9941 strongly indicating a linear
relationship between problem size to run time. Performing
variable assignments had minimal impact on the offline al-
gorithm, but significantly reduced the run time of the online
version.

Conclusion
Satisfiability is an important problem for both AI and com-
puter science. Many AI problems, such as planning, have
been shown to be NP-complete. The algorithm described
above, an on-line 2-SAT algorithm, can be brought to bear
in restricted cases of various AI problems that can be trans-
lated into 2-SAT instances.

Future work includes theoretical validation of the experi-
mental results described above. The on-line algorithm will
also be enhanced to allow rollback. That is, the partially-
dynamic version will be able to forget an arbitrary number
of the most recent clauses and process new clause inserts
as if the forgotten clauses never appeared. More impor-
tantly, however, is the application of the on-line algorithm
to a novel k-SAT algorithm. This new approach to k-SAT
reduces the problem instance into an exponential number of
(k-1)-SAT instances. A preprocessing step iteratively re-
moves clauses from the set containing the most common
literal. The removed clauses are associated with the lit-
eral. The algorithm then examines all possible truth assign-
ments to the common literals. The on-line version described
above will allow the algorithm to prune the tree during the
brute-force search by examining prefixes to the generated
clauses. The envisioned partially-dynamic 2-SAT algorithm
will help even more with rollback mimicking the variable
assignments.

Acknowledgements
This work was supported by the Office of Naval Research,
grant number N00014-01-1-0926.

References
Aho, A.; Hopcroft, J.; and Ullman, J. 1974. The Design
and Analysis of Computer Algorithms. Addison-Wesley
Publishing Co.
Aspvall, B.; Plass, M.; and Tarjan, R. 1979. A linear-time
algorithm for testing the truth of certain quantified boolean
formulas. Information Processing Letters 8:121–123.
Cook, S. A. 1971. The complexity of theorem-proving
procedures. In Proceedings of the 3rd Annual ACM Sym-
posium on the Theory of Computing, 151–158. Association
for Computing Machinery.
Khanna, S.; Motwani, R.; and Wilson, R. 1996. On certifi-
cates and lookahead in dynamic graph problems. In SODA:
ACM-SIAM Symposium on Discrete Algorithms (A Confer-
ence on Theoretical and Experimental Analysis of Discrete
Algorithms).
Preparata, F. P. 1979. An optimal real-time algorithm for
planar convex hulls. Communications of the ACM 22:402–
405.
Tarjan, R. E. 1972. Depth-first search and linear graph
algorithms. SIAM Journal of Computing 1:146–160.

FLAIRS 2002 191

