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Abstract

Comparisons between primal and dual approaches have re-
cently been extensively studied and evaluated from a theoret-
ical standpoint based on the amount of pruning achieved by
each of these when applied to non-binary constraint satisfac-
tion problems. Enforcing arc consistency on the dual encod-
ing has been shown to strictly dominate enforcing GAC on
the primal encoding (Stergiou & Walsh 1999). More recently,
extensions to dual arc consistency have extended these results
to dual encodings that are based on the construction of com-
pact constraint coverings, that retain the completeness of the
encodings, while using a fraction of the space. In this paper
we present a complete theoretical evaluation of these different
consistency techniques and also demonstrate how arbitrarily
high levels of consistency can be achieved efficiently using
them.

I ntroduction

Recently, a lot of research has gone into the development of
techniques that can directly handle non-binary constraints.
On one hand, many extensions to existing binary constraint
satisfaction algorithms have been proposed that directly deal
with the non-binary constraints (Bessiére et al. 1999). The
other choice is to perform a structural transformation of the
representation of the problem, so that the resulting prob-
lem is a binary CSP except that now the original constraints
which were non-binary are replaced by binary compatibil-
ity constraints between relations. A lot of recent work
has been concerned with comparing different levels of lo-
cal consistency enforceable in the non-binary representa-
tion with the dual representation. The dual encoding can
often enforce high levels of consistency when compared
to the primal representations (Bacchus & van Beek 1998;
Stergiou & Walsh 1999). In some cases the space complex-
ity of the dual encodings is prohibitive and this is sometimes
a drawback when trying to use these encodings. More re-
cently (Nagarajan et al. 2000) modifications to the standard
dual encoding have been proposed that can compactly rep-
resent the given CSP using an equivalent dual encoding that
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contains all the original solutions to the CSP, using con-
straint coverings. It has also been shown that enforcing arc
consistency in these constraint covering based encodings,
strictly dominates enforcement of GAC on the primal non-
binary encoding. In this paper we present a complete analy-
sis of these covering based encodings and the consistencies
that can be enforced using them.

Background

In this section we present some preliminary definitions and
background information.

Definition 1 A constraint C'; on an ordered set of variables
Vi = (v3y,...,v;,) C V,is defined as a predicate on these
variables, S; C D(v;,) X -+- x D(v;,). The set of subsets
{V4,...,Vu} on which constraints are specified is called
the scheme of N. The number of variables in a constraint
is called the arity of the constraint. A constraint network in
which each constraint is of arity 2 is called a binary con-
straint network, and the problem that it represents is called
a binary CSP.

Definition 2 Given a constraint C; on variables V; the set
S; is a subset of the Cartesian product D(v;, ) X - - -x D (v;, )
that specifies the set of allowable combinations of values for
the variables v;, x --- x v;, . Anelement ¢; € S; is known
asatupleonV;.

Definition 3 Given a binary CSP, the primal constraint
graph associated with it is a labeled constraint graph,
where N=V/, (’Ui,’Uj) e Aiff HCZ'J' eC | Vi]' = {U,’,’Uj}.
Also the label on arc (v;,v;) is C;.

Definition 4 Given an arbitrary CSP, the dual constraint
graph associated with it is a labeled graph, where N=C,
(Ci, C)) € AiffV;NV; # (. Also the label onarc (C;, C;)
isVinvj.

Intuitively [N |=|V|, and |A|=|C|, and an arc a € A that
connects two variables connected by constraint ¢, is labeled
by the definition of ¢. This representation is good for bi-
nary CSPs but is not as useful for general CSPs. The primal
graph for higher order CSPs is a hypergraph. The dual graph
constraint network can be solved by techniques that are ap-
plicable to binary networks by considering the constraints as
the variables and tuples that instantiate them as the domains.



Definition 5 If V; and V; are sets of variables, let S; be
an instantiation of the variables in V;. S;[V;] is the tuple
consisting of only the components of V; that correspond to
the variables in V;. This is also called the projection of
tuple S; on the variables in V;.

We say that an instantiation ¢, on the variables in V;, is
consistent with respect to a constraint network N, iff for all
Vi in the scheme of N such that V; C V,, t,[V;] € S;. If we
enumerate all consistent instantiations of variables in V,, we
get a set of all solutions of the subnetwork defined by V.

Definition 6 Two constraints C;, C; € C are consistent if
either C; and C; are not connected, or the induced con-
straints of C; and C; on V; N V; can be satisfied simultane-
ously by at least one instantiation of the variables in V;NV;.

Clearly, if there exist C;, C; € C such that C; and C; are
not consistent, then there is no solution to the given prob-
lem. Arc consistency has been used to enforce local consis-
tency in binary CSPs with a lot of success. This definition of
AC is not applicable directly to non-binary constraints. Arc
consistency is extended for non-binary constraints as gener-
alised arc consistency (GAC). A non-binary CSP is GAC iff
for any variable in a constraint and a value that is assigned
to it there exist compatible values for all other variables in
the constraint (Mohr & Masini 1988).

Definition 7 A tuple ¢ on (v;,,...,v;,) is valid iff ¢t €
D(vy;) x ... x D(v;,). A CSP is said to be generalised
arc consistent (GAC) if Yv; € V, Yval; € D(v;),YC; €
C,3t € S; such that ¢ is valid and t[v;] = val;.

Given a dual encoding of a non-binary CSP, one can de-
fine arc consistency in terms of the variables in the dual
variables and the tuples in the various constraints. This
form of local consistency has been defined for non binary
CSPs known as pair-wise consistency. Pair-wise consis-
tency was originally introduced in databases, and is also
called dual arc consistency.

Definition 8 ( (Beeri et al. 1983)) Given a CSP , iff
VC;, C;, S;[Vi U V;]=S;[V; U V5] and VS;, S; # 0, this
CSP is said to be pair-wise consistent.

Generalised dual arc consistency

If a binary CSP is arc consistent then there is always a con-
sistent instantiation to any pair of variables. But in a gen-
eral (non-binary) CSP pair-wise consistency does not guar-
antee a consistent instantiation to the variables involved in
every pair of constraints. This is because a consistent in-
stantiation to a pair of constraints must satisfy both the con-
straints in question and also all constraints that are posed on
all the variables involved. Although pair-wise consistency
guarantees that the common variables between constraints
are assigned consistent values, the other constraints on the
variables are not necessarily satisfied. In (Pang 1998) this
insight regarding pair-wise consistency led to the definition
of w-consistency. Enforcing w-consistency removes tuples
from constraints that cannot participate in any solution.

Definition 9 Given two constraints C; and Cj, the tuple
tjps € S; is called a w-support for tuple ¢;, € S;, if

tio[ViNVj]=t;[ViNnV;] and VCy, € CVie C (V; U V),
(ti,a M t55)[Vi] € Sk. Atuple¢;, in a constraint C; is w-
viable iff for every constraint C;, tuple t; , has w-support
in C;. A constraint network is w-consistent, iff for every
constraint C;, S; # 0 and all the tuples in S; are w-viable.

Basically, enforcing w-consistency on a set of constraints,
solves the sub-problem induced by these constraints on the
original CSP. Just like pair-wise consistency, w-consistency
is applicable to both binary and non-binary CSPs . By ex-
tending the algorithm for Dual arc consistency given earlier
we can get an algorithm for enforcing w-consistency.

In (Nagarajan et al. 2000) this was generalised to gen-
eralised dual arc consistency.® Generalised dual arc consis-
tency (GDAC) is also defined on the dual encoding, and is
an extension of pair wise consistency and w-consistency that
takes into account projections of constraint relations on sub-
sets of variables while enumerating supports for the tuples.

Definition 10 Given two constraints C; and C}, the tuple
t;» € S; is called a generalised dual arc support for tu-
ple tia € Si if ti,a[Vi N VJ]: th,[Vi N VJ] and VC}, €
Cl(Vin(ViuV;) # 0, (ti,a X t;5)[Vk] € Sk. A tuple
t;,o in @ constraint C; is generalised dual arc viable iff for
every constraint C;, tuple ¢; , has generalised dual arc sup-
port in C;. A constraint network is generalised dual arc
consistent, iff for every constraint C;, S; # @ and all the
tuples in S; are generalised dual arc viable.

In addition to verifying that all the pairs of tuples (;
and t; ) in the constraints are pair-wise compatible, gener-
alised dual arc consistency also verifies that all constraints
that share variables with ¢; , X t;; are also compatible
with them. In order to demonstrate the fact that both w-
consistency and GDAC enforce very high levels of consis-
tency in the CSPs we present the following theorems.

Theorem 1 If 3C; € C such that |V;|=n, where n is the
arity of the CSP, then enforcing w-consistency or GDAC on
the CSP is equivalent to solving the CSP.

Proof Enforcing w-consistency on the CSP, in addition to
enforcing pair-wise consistency between all pairs of vari-
ables, also ensures that each pair of constraints satisfies all
constraints contained in the sub-problem induced by them.
In the case that there is an n-ary constraint included in the
CSP, the induced sub-problem contains all the constraints
and hence enforcing w-consistency and GDAC is equivalent
to solving the CSP. O

Theorem 2 If 3C;,C; € C such that V; U V;=V, where
n is the arity of the CSP, then enforcing w-consistency or
GDAC on the CSP is equivalent to solving the CSP.

Proof As in theorem 1, both w-consistency and GDAC solve
the sub-problem induced by every pair of constraints. Given
two constraints C; and C; whose scopes are V; and V; re-
spectively, such that (V; U V)=V, the sub-problem induced
by this pair includes all the constraints in the CSP. Hence
enforcing w-consistency or GDAC is equivalent to solving
the CSP. m|

1GDAC was called covering arc consistency.
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As seen in theorems 1 and 2, both w-consistency and
GDAC enforce consistencies that are effectively as high as
global consistency in some cases.

Analysis
An arc consistency algorithm removes all arc inconsistent
values from the domains of the variables of the encoding.
Constraint propagation (as performed by an arc consistency
algorithms) infers no-goods in both the primal and the dual
domains.

To theoretically compare the amount of pruning achieved
by enforcing one form of arc consistency on a CSP with
other forms of arc consistency, Stergiou and Walsh (Ster-
giou & Walsh 1999) define a scheme to compare the vari-
ous no-goods derived in the different encodings. Constraint
propagation in the dual might infer no-goods involving dual
variables and these cannot be directly compared with the no-
goods inferred in the original problem using generalised arc
consistency. But, one can translate the no-goods derived in
the dual into no-goods involving the original variables and
values. i.e., If constraint propagation in the dual encoding
removes all tuples from a dual variable that assign a value
val;, to a variable v;, we can derive a single no-good that
removes val; from the domain of v; in the original problem.
Hence one can compare the no-goods in the original non-
binary problem using arc consistency, with no-goods that
can be derived from the dual arc inconsistent tuples.

In (Stergiou & Walsh 1999) enforcing arc consistency
in the two binary encodings for non-binary CSPs, the dual
encoding and the hidden variable encoding are compared to
GAC. The following theorems are proven in (Stergiou &
Walsh 1999).

Theorem 3 Enforcing AC on the hidden variable encoding
is equivalent to enforcing GAC on the variables in the orig-
inal problem.

Theorem 4 Enforcing AC on the dual encoding is strictly
stronger than enforcing GAC on the original problem.

Theorem 5 Enforcing AC on the dual encoding is strictly
stronger than enforcing AC on the hidden variable encoding.

The above results indicate that enforcing AC in the dual
derives more no-goods than enforcing GAC or AC on the
hidden encoding. These results were extended in (Nagarajan
et al. 2000) to compare GDAC to GAC and PWC.

Theorem 6 Enforcing GDAC on the dual encoding is
strictly stronger than enforcing pair-wise consistency on the
dual encoding (and therefore strictly stronger than enforcing
GAC or AC on the hidden variable encoding).

Covering based dual encodings

Intuitively, a tuple, ¢;, is consistent if it satisfies all the con-
straints whose variables are completely instantiated by ¢;. A
complete solution is a consistent instantiation of all the vari-
ables. The goal of CSP solving algorithms is to find one (or
all) consistent extensions on n variables. Given the set of all
constraints in the CSP, a special subset of constraints called
a constraint cover can be defined as follows.
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Definition 11 Let Ceoper = {C1,Ca,...,Cn}. Also
Ceover C C. Each C; € Cioper is given as (V;, S;), where
Vi C V. Ceoper covers Viff |J;o, Vi=V. Ceoyer is acon-
straint cover of V. As well, C.over IS @ minimal constraint
cover of V' if it is a constraint cover of V' and no proper sub-
set of C.oper IS @ constraint cover of V.

Given a constraint cover, if one tuple is selected from each
constraint in the cover, the relational join of these |Ccoper|
tuples is a tuple on n variables. It can easily be shown that
the covering based encoding, even though it includes only
a subset of all the constraints, still contains all the solutions
to the original CSP. Any method that enforces consistency
on this covering based encoding (e.g. GDAC or w con-
sistency or forward checking that enforces these consisten-
cies) is both sound and complete. Given a constraint cover,
Ceover = {015027---7Cm} ifm > |V|, AC; € Ceover
such that C.ger-C; is still a constraint cover. Although the
size of a minimal constraint cover is upper bounded by |V,
in practice in CSPs of higher arities, this number is even less.

We now re-define GDAC in terms of the covering based
dual encoding. Instead of searching for support for values
in the domains of the dual variables for every pair of values,
the arc consistency algorithm w.r.t. a covering only searches
for support for values in dual variables that are actually in
the constraint covering.

Definition 12 Consider a covering based dual encoding of
a CSP with Ceoper = {C1, Ca,...,Cp}. Given two con-
straints C;,C; € Cleover, the tuple t; € S; is called
a generalised dual arc support for tuple t; € S; w.rt.
Ceover, it t;[V;NV;]=t;[ViNV;] and VC, € {C-{C;,C;}},
(t; ™ tj)[Vij ﬂVw] € Sw[VUﬂVw] Atuplet; € C; € Cepper
is viable iff for every constraint C; € Ceoper, tuple ¢; has
generalised dual arc support in C; W.r.t. Ceoper. A CON-
straint network is generalised dual arc consistent (GDAC)
w.r.t. a covering Coper, if VC; € Cepyer, all the tuplesin S;
are viable.

Since there are a few ways to generate constraint covers,
we now analyse the pruning achievable by special kinds of
constraint covers.

Definition 13 Given a CSP, a set of constraints Coper C C
is called an w-cover iff C,oper 1S @ covering, and VC; &
Ceovers ACp, Cy € Ceoper Suchthat vV; C (V,UV,). Acover
Cleover is called a minimal w-cover if no subset of C.pyer IS
an w-Cover.

Definition 14 Given a CSP, a set of constraints Cper C C
is called an i-cover iff Ccoer is @ covering, and VC;, C; &
Ceovers ACp, Cq € Coroper, such that (V; NV;) C (V, U
V,)- Again, a cover C.oyer i called a minimal é-cover if no
subset of C.oyer IS an i-cover.

Clearly every w-cover is an ¢-cover. Consider an w-cover,
Ccover- VCz ¢ Ccoverr Ecp; Cq € Ccoveri such that V; g
(VpUV,). Forany V;, (V; N'V;) C V;. Hence, for the same
Ciand any C; ¢ Cooper, (ViNV;) C (VU V,). Thisis
exactly the condition for an ¢-cover. w-covers were briefly
described in (Pang 1998)



Theorem 7 If Coper IS @ w-cover, pair-wise consistency
on the standard dual encoding prunes at most as much as
GDAC on the covering based dual encoding w.r.t Coper-

Proof Pair-wise consistency find inconsistencies between
pairs of constraints. GDAC performs pair-wise consistency
on all the pairs of constraints in the covering. Given a con-
straint covering Coyer, if it is the case that VC; € Ceover,
3C,,Cy € Ceover such that V; C (V, U V), the algo-
rithm enforcing GDAC will find all inconsistent tuples in
all C; & Ceoper by projection. Hence under this condition,
pair-wise consistency prunes at most as much as GDAC on
the covering based dual encoding w.r.t. a given Ceope. O

Theorem 8 If C.yyer is an i-cover, GDAC on the covering
based dual encoding w.r.t. C.oye prunes at least as much
as pair-wise consistency on the standard dual encoding.

Proof If it is the case that VC;,C; & Ceoyer if 3C,,Cy €
Ceover, (ViN'V;) C (V, UV,), then GDAC .w.rt. Ceoper
derives all pair-wise inconsistent tuples that AC on the dual
encoding would derive. (This is because all sets of com-
mon variables between pairs of constraints & C..oyer are sub-
sumed by either the X of two other constraints in Cyye, OF
by the projection of that X onto the constraints in Ccoyer)-
Hence this is precisely the condition when GDAC w.r.t. a
cover is no worse than dual AC. O

Theorem 9 Achieving GDAC on the constraint covering
based dual encoding w.r.t. an arbitrary cover is incompa-
rable to achieving AC on the standard dual encoding.

Proof To show that enforcing GDAC on the covering based
dual encoding and enforcing AC on the standard encoding
are incomparable, all that is required is to show a) a problem
where enforcing GDAC on the covering based dual encod-
ing prunes more than AC on the standard dual encoding, and
b) another problem where AC on the standard dual encoding
prunes more than GDAC on the covering based dual encod-
ing. To show a) we can consider the following example.
Consider the following example taken from (Bessiére
1999). Here is a very simple CSP, with 4 variables, vy, va, v3
and v4. The domain of each of the variables is a, b, c. The
CSP is shown in figure 1. The CSP has three constraints,
C123,Ca34 and Cp4. This problem is GAC, and all values
in the domains of all the variables are viable. As a result
an algorithm that enforces GAC, will not remove any values
from the domains of the variables in the original problem.

C123: C234; Cl4:

V1 V2 V3| V2 V3 V4| V1 V4

a a a a a a a ¢

a a b a a b b

b b b b b b b b

b b ¢ b b ¢ c a

c c a c c a c b

ccb ccb c ¢

Figure 1: Non-Binary CSP: An example

While enforcing GDAC, from the set of given constraints,
C={C123,Ca34,C14}, We can construct a minimal con-
straint covering, by considering any two of the three con-
straints. From definition 12, the generalised dual arc con-
sistency algorithm would enforce pair-wise consistency be-
tween pairs of constraints in a covering, while ensuring that
the relational join of the pairs of constraints is consistent
with rest of the constraints in C'. The only dual domains that
are pruned of values are the constraints in the covering. A
constraint cover is constructed as Coper={C123,C14}. The
pruning achieved by enforcing generalised dual arc consis-
tency is given in the figure. The derived no-goods when
translated back to the domains of the variables in the origi-
nal problem, reduce the domains to singleton domains. For
b) consider the following example. Given a CSP on 6 vari-
ables with binary domains, {a, b, ¢, d, e, f}. Thereare 6 con-
straints, which are given as follows.

Ca,b:{(oa 0)}

Cb,C:{(O7 0)}

Cd’e:{(o, 1)}

Ce,r={(1,0)}

Ca,b,c,d,e:{(oa 07 07 07 1)}
Cap,c,4,~1{(0,0,1,0,0),(0,0,0,1,0),(1,0,0,0,0) }
Consider a constraint covering Ceoper= {Ca,b, Cb,c, Cae,
Ce,f}. This CSP is generalised dual arc consistent w.r.t. the
covering C.oyer- But enforcing AC on the standard dual en-
coding, will prove that the problem is insoluble since pair-
wise consistency between Co p c,d,c and Cop,c,q,¢ Will fail.
Hence there is a problem where AC on the dual encoding
prunes more than GDAC on the covering based dual encod-
ing. O

ClZ‘ C23 ‘ c24 ‘C1234
00 00 00 1000
1010
1101
1111
1001
1011

C_cover ={C12. C23. C24}

w_cover = {C1234}

Figure 2: CSP that is w-consistent w.r.t. a cover

Now consider the example in figure 2. The CSP has
4 variables, and 4 constraints. The variables all have do-
mains 0..1. The constraints are {C4 2,C2,3,C2.4, C1,2,3.4}-
This problem is not generalised arc consistent, and enforcing
GAC on it will show that the problem has no solution. Con-
sider a cover Ceoper={C1,2,C2,3,C2.4}. Now, this is not an
w-cover, but enforcing w-consistency w.r.t. to C'yy ey, Would
see that the CSP is w-consistent w.r.t. C.operr. On the other
hand, enforcing GDAC w.r.t. the same cover C.yyer Would
also show that the problem has no solution. It is interest-
ing to see that this problem has only one minimal w-cover,
which includes the 4-ary constraint, C' 2,3 4.

Theorem 10 If C.pper IS not an w-cover, enforcing w-
consistency w.rt.  Cloper IS incomparable to enforcing
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GAC on the original problem

Proof To show the w-consistency w.r.t. an arbitrary Ceoper
that is not a w-cover, is incomparable to GAC on the origi-
nal problem, it suffices to show that a) a problem in which
GAC > w-consistency w.rt. an arbitrary Ceoper and b)
another problem where w-consistency w.r.t. an arbitrary
Ceover > GAC where Cloper IS NOt an w-cover in either
case. To show a) consider the example given in figure 2. En-
forcing w-consistency w.r.t. the Ceoper= {Ci2,C23,C24},
would recognise the CSP to be w-consistent. But enforcing
GAC would show that the problem has no solutions. (Since
w.r.t. variable 1, constraint C;, does not assign the value
1 to any tuple in it, while constraint C;234 does not assign
the value 0 to variable 1 in any of its satisfying tuples. To
show b) consider the following CSP, with 4 variables and 5
constraints. The variables all have domains 0..1. The con-
straints are

Consider the cover Ceoper={C1,2,Ca,3,Ca4}. This is
not an w-cover, while the only w-covers for this CSP are
{C1,2,3,4} and {Ca4, C13}. When we enforce w-consistency
w.r.t. this C.,yer, ONe can see that the problem has no so-
lutions, but enforcing GAC on the problem will not remove
any inconsistent values. O

Theorem 11 Enforcing GDAC w.r.t. an aribitary Coqer 1S
strictly stronger than enforcing w-consistency w.r.t. the same

CCOUC’I‘ .

Proof Given a constraint covering C.oyer, GDAC and w-
consistency enforce pair-wise consistency between all pairs
of constraints in the covering, and then go on to ver-
ify the pairs of constraints against other constraints in the
CSP. The set of constraints verified against by GDAC is
a superset of the constraints verified by w-consistency To
show strictness consider the example in figure 2. Using
Ceover={C1,2,C2,3,C> 4}, GDAC determines that the prob-
lem has no solution without search, while the problem is w-
consistent w.r.t. Ceoper- O

Theorem 12 Enforcing w-consistency on the standard dual
encoding is incomparable with enforcing GDAC w.r.t. a con-
straint covering.

Proof To prove this we must show that, a) a problem in
which enforcing w-consistency on the standard dual encod-
ing is stronger than enforcing GDAC on a covering based
dual encoding and b) another problem in which enforc-
ing GDAC on a covering based dual encoding is stronger
than enforcing w-consistency on the standard dual encod-
ing. To show a) consider the example used in part b)
of theorem 9. Consider the constraint covering Ceoyper=
{Ca,5,Ch,c,Ca,e,Ce s }. This CSP is generalised dual arc
consistent w.r.t. the covering Cgoper-. But enforcing w-
consistency on the standard encoding will show that this
CSP is inconsistent and does not admit any solutions. To
show b) consider the following example
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01,2,3_{(07 ]-7 0)7 (17 07 1)}
03,4,5_ (07070)7(17171)}
1,4,6— (17030)7(05171)}

C>,3={(1,0),(0,1)}
03,5:{(07 0)7 (17 1)}

This problem is still w-consistent. Consider a con-
straint covering Ceoper={C1,2,3, C3.4,5, C1,4,6}. Enforcing
GDAC on the problem w.r.t. C.,yer Would show that the
problem has no solutions without search. |

Given all these relative orderings between the various
forms of local consistency in the dual encodings, it is useful
to quickly summarise the various consistencies and their re-
lationship with other consistencies. The results can be sum-
marised in a theorem as:

Theorem 13 a. GDAC > wAC > PWC.

GDAC > wAC > GAC.

GDAC ,—cover > WAC,—cover > PWC.

GDAC ,,_cover > WAC,,_cover > GAC.

GDAC > GDAC ,—cover > GDAC ;_coyper > PWC.
GDAC > GDAC ,—cover > GDAC ;_cover > GAC.
GDAC (over > GAC.

GDAC .oyer ~ wAC.

WAC oper ~ GAC.

where LC,,y¢r is enforcing local consistency property LC
on the covering based dual encoding, w.r.t. a cover that is
not an w-cover (i.e., an arbitrary cover). LC,,_coper IS €N-
forcing local consistency property LC on the covering based
dual encoding w.r.t. an w-cover. GDAC, wAC and PWC are
the three local consistencies when applied to the standard
dual encoding. Since GAC is equivalent HVAC, the results
regarding GAC apply to HVAC too.

As we saw in Theorems 1 and 2 enforcing GDAC and
wAC on some CSPs can be as high as enforcing global con-
sistency on the CSP. This can be translated into a similar
result for covering based encodings too.

Lemmal If 3C; € Ceoper Such that |V;|=n, where n is the
arity of the CSP, then enforcing w-consistency or GDAC on
the CSP w.r.t. C\over IS equivalent to solving the CSP.

Proof Similar to theorem 1 O

Lemma 2 If 3C;, C; € Ceoper such that V; U V;=V, where
n is the arity of the CSP, then enforcing w-consistency or
GDAC on the CSP w.r.t. C.,yer IS equivalent to solving the
CSP.

Proof Similar to theorem 2 O

~TQ@ o 20T

Algorithmsto enforce GDAC

By extending the algorithm to enforce AC for binary CSPs in
the primal graph (AC-6), we can construct a similar algo-
rithm to enforce w-AC in the dual encoding. The space com-
plexity of w-AC6 is O(e?-d¥) where e=|C|. The time com-
plexity is O(e®-k-d?*). The extra e factor when compared
to pair-wise consistency is because the every time support
is sought, all constraints posed on the variable set are also
checked to see if they are satisfied. GDAC has space com-
plexity O(e? -d*) where e=|C| and the time complexity is



O(e? -k -d?*) given that checking a k-ary constraint takes
O(k) time. This complexity is, in theory, the same as that
for w-consistency although, in practice, GDAC performs
more constraint checks than w-consistency since {C} €
C|Vi C (V; UV;)} (the set of constraints being checked in
w-consistency) is a subset of {Cy, € C|(Vy,N(V;UV;)) # 0}
(the set of constraints being checked in GDAC).

AC algorithmsfor the covering based encodings

In order to extend these algorithms to enforce GDAC or w-
AC in the covering based encodings, we can just apply the
local consistency properties to the covers obtained. A con-
straint cover can be obtained in advance. The cardinality
(size) of a minimal constraint cover is always < |C| and
< |V| and often even lower.

As seen before, the space/time complexity of the AC6 al-
gorithms enforcing wAC or GDAC are (O(e?-d*)/ O(e®-
k-d?*)), where e is the number of constraints. When en-
forced on the constraint covers, e is typically < n, where n
is the number of variables in the problem. The space/time
complexity of the AC algorithms on the covering based en-
codings then become (O (n?-d*)/ O(n?ekd?k)). As seen be-
fore while the time/space complexity of the AC algorithms
has reduced considerably, the level of consistency enforced
is still high.

Higher consistenciesin the dual

In the same spirit of the extensions made in the primal graph
for local consistencies to higher forms of consistencies like
singleton consistencies, both GDAC and w-AC can also be
extended to similar singleton consistencies. A binary CSP is
singleton arc consistent (SAC) iff it has non-empty do-
mains and for any instantiation of a variable, the resulting
sub-problem can be made arc-consistent. Singleton arc con-
sistency can be achieved by any algorithm that achieves arc
consistency. The definition of singleton arc consistency re-
quires that upon assignment of a value to a variable, the
resulting problem can be made arc consistent. In (Prosser,
Stergiou, & Walsh 2000) singleton consistencies were stud-
ied and rank the singleton consistencies within the hierarchy
of local consistencies. Among other results, they show that
if, for some two local consistency properties LC1 and LC2,
LC1 > LC2, then singleton LC1 > singleton LC2. There-
fore, given the results described in the earlier sections in this
paper we can conclude the following:
Singleton wAC > Singleton PWC > Singleton GAC
Singleton GDAC > Singleton PWC > Singleton GAC
Singleton GDAC > Singleton wAC
Singleton GDAC ... > Singleton GAC
Singleton GDAC ;_cover > Singleton PWC
Singleton wAC,, _cover > Singleton PWC
Singleton GDAC , couer > Singleton wAC,, cover

where Singleton wAC, Singleton GAC , Singleton
PWC and Singleton GDAC are the singleton extensions to
the different local consistencies. Singleton consistency for
each of the local consistency properties can be achieved
by using the same algorithm that achieves the relevant lo-
cal property, by first making the problem LC (local con-
sistent with the relevant property) and then going through

each value val; (tuple tup;) in the domain of every variable
v; (dual variable V;) in the CSP, and if the resulting sub-
problem with this variable (dual variable) being assigned
this value (tuple), cannot be made LC, this value is removed
and the LC property restored. This process continues un-
til all inconsistent values are removed and deleted (propa-
gated).

Conclusions

In this paper we have presented extensive theoretical re-
sults relating to enforcing high levels of local consistency
in the dual encoding. We show how it is possible to effi-
ciently enforce extremely high levels of consistency by the
use of constraint coverings. This paper compares and ex-
tends many different previous results in enforcing arc con-
sistency in non-binary constraint satisfaction problems. The
theoretical results presented here have also been empirically
evaluated on non-binary CSPs, and will be available in an
extended version of this paper.
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