
Memory-Bounded A* Graph Search

Rong Zhou and Eric A. Hansen
Computer Science Department

Mississippi State University
Mississippi State, MS 39762

rzhou,hansen @cs.msstate.edu

Abstract

The strategy for memory-bound A* search adopted by MA*
(Chakrabarti et al. 1989), SMA* (Russell 1992), and
SMAG* (Kaindl and Khorsand 1994) is to prune the least-
promising nodes from the open list when memory is full, in
order to make room for insertion of new nodes. To preserve
search information from pruned nodes, heuristic estimates
are backed-up through the search graph. We show that even
when the heuristic function is consistent, backed-up heuris-
tic estimates become inconsistent. Thus, it is always possi-
ble to find a better path to a node that has been previously
expanded. We describe how to modify a memory-bounded
A* graph-search algorithm so that it handles the discovery
of a better path to a previously expanded node in a more ef-
ficient way. We demonstrate its improved performance on a
challenging graph-search problem in computational biology.

Introduction

The well-known A* algorithm finds a least-cost path from
a start node to a goal node in a graph, guided by a heuris-
tic evaluation function, , where
is the cost of the best path found from the start node to
node and estimates the cost of the best path from
node to the goal node. A significant drawback of A* is
that the amount of memory required to store the open and
closed lists used to organize the search is exponential in
the depth of the search. This has led to development of
several memory-bounded extensions of A*. One approach
abandons open and closed lists, and integrates the heuris-
tic estimates into a depth-first search strategy that requires
only linear space in the depth of the search. Examples in-
clude IDA* (Korf 1985), RBFS (Korf 1993), and variants
that exploit additional memory to improve performance, ei-
ther by caching part of the search tree to avoid node re-
generations (Miura and Ishida 1998), or, in graph search,
by using a transposition table to detect and avoid duplicate
paths (Reinefeld and Marsland 1994). A second approach

Copyright c 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

to memory-bounded search retains the open and closed lists
of A*, but does not let them grow beyond a bound on mem-
ory. When the bound is reached, the least promising nodes
in the open list are pruned to make room for more promis-
ing nodes to be inserted. This approach was first adopted
by the MA* algorithm of Chakrabarti et al. (1989). Rus-
sell (1992) described a simpler and more efficient version
of MA*, called SMA*. Kaindl and Khorsand (1994) de-
scribed a graph-search extension of SMA*, called SMAG*.
Because it uses open and closed lists, we refer to this sec-
ond approach as memory-bounded A*, and we focus on it
in the rest of this paper.

Heuristic search in graphs is more complex than in trees
because there can be more than one path to a node. To
avoid duplicate search effort, A* must recognize when it
re-encounters the same node along different paths. This is
accomplished by comparing each newly generated node to
nodes already in the open and closed lists. The value of
can change when a shorter path to a node is found, and, if
the node has already been expanded, the -values of all of
its descendents may need to be revised. Propagating these
changes complicates the implemenation of A*. However,
Hart, Nilsson and Raphael (1968) showed that this compli-
cation can be avoided if A* uses a consistent (or monotone)
heuristic. In a well-known result, they proved that it is im-
possible to find a better path to a node that has previously
been expanded, if the heuristic is consistent.

We begin this paper with the observation that the result
of Hart, Nilsson and Raphael does not extend to memory-
bounded A* search. Because MA*, SMA*, and SMAG*
modify heuristic estimates during search by performing
backups, heuristic estimates become inconsistent, even if
the original heuristic function is consistent. Consequently,
memory-bounded A* graph search cannot avoid the com-
plication of finding better paths to already expanded nodes.
We carefully analyze this problem, and present an improved
version of SMAG* that handles it more efficiently than the
original SMAG* algorithm.

FLAIRS 2002 203

From: FLAIRS-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Background

In graph search, whenever A* expands a node, it checks
each child to determine if it is a duplicate of a node already
in the open or closed list. If a child of is already present
in the open list and , then is
reset to and the pointer to its best parent
is redirected. (A* maintains a pointer to a node’s parent
along the best path from the start node, to allow the best
path from the start to the goal to be extracted at the end
of the search.) If a child of is already present in the
closed list and a better path to it is found, then, similarly,

is reset to the smaller path cost and the pointer to its
best parent is redirected. In addition, A* must update the -
values and backward pointers of all the node’s descendents
in the search graph. We focus on this latter complication of
graph search in the rest of this paper.

There are two ways in which it can be handled by A*.
In the original version of A* (Hart et al. 1968), node is
moved from the closed list back to the open list. This sets
in motion a chain of node selections and (re-)expansions
that eventually propagates the updated information through
the search graph. Nilsson (1980) later described a version
of A* that handles this differently. Instead of moving
from the closed list back to the open list, it leaves on
the closed list and immediately updates the -values and
backward pointers of all of its descendents in the search
graph. This allows A* to use the revised -values as soon
as possible to improve selection of nodes from the open list.
But propagation incurs a potentially exponential overhead.
As a result, the first version of A* is usually more efficient,
and it is more widely used in practice.

To prevent the combined size of the open and closed lists
from exceeding memory, MA*, SMA*, and SMAG* prune
the least-promising nodes from the open list when memory
is full. They also allow partial expansion of nodes. Nodes
are generated (and pruned) one at a time and the open list
contains both unexpanded nodes and partially expanded
nodes. To preserve search information that would be lost
by pruning, heuristic estimates are “backed-up” through the
search tree, where a backup takes the form,

These backed-up heuristic estimates improve the direction
of the search after pruning, when the parents of pruned
nodes are moved from the closed to open list.

The combined effect of pruning, partial expansion, and
backups makes the extension of memory-bounded search to
graphs non-trivial. A significant complication is the need to
prune a node from the closed list if it does not occur on the
best path to any node on the fringe. If this is not done, nodes

can accumulate on the closed list that perform no function
and cannot be pruned – in effect, a “memory leak” is cre-
ated. To detect such nodes, Kaindl and Khorsand (1994)
introduced a sophisticated book-keeping technique called
“blocking.” This is the principal innovation of their graph-
search extension of memory-bounded A*.

In the rest of this paper, we focus on how to handle the
discovery of a better path to a previously-expanded node.
If a better path to a node is found, its -value and back-
ward pointer are revised and this change is propagated to
any descendents. We have seen that A* does this in one of
two ways – by propagating the changes immediately, or by
ensuring that this is done eventually by moving the closed
node back to the open list. Instead of adopting either strat-
egy, Kaindl and Khorsand’s SMAG* algorithm performs no
propagation at all. It simply prunes all the descendents of a
node once a better path to it is found. These nodes can be
re-generated, and SMAG* still finds an optimal solution.
But throwing away the search information they contain can
decrease the efficiency of the search.

The contribution of this paper is to show how to preserve
this information by propagating revised -values to descen-
dents, instead of pruning the desdendents. But first, we un-
derscore the importance of this issue by showing that in
memory-bounded A*, use of a consistent heuristic cannot
prevent discovery of a better path to an already-expanded
node.

Heuristic inconsistency

A heuristic evaluation function is said to be consistent (or
equivalently, monotone) if, for every node and successor
node ,

where is the cost of the arc from to . For graph-
search problems, Hart, Nilsson and Raphael (1968) proved
that if a heuristic is consistent, it is never possible for A*
to find a better path to an already-expanded node. If this
results extends to memory-bounded search, it limits the sig-
nificance of any technique for improving the efficiency with
which SMAG* handles the case of finding a shorter path to
an already-expanded node, since most heuristics are consis-
tent. But we show this result does not extend to SMAG*.

In SMAG*, heuristic estimates are backed-up through
the search graph. This increases the value of (and thus)
for nodes on the closed list. When nodes are pruned from
the open list to free memory, their parent nodes are restored
from the closed list to the open list. Although the improved
heuristic estimates of the parent nodes are admissible, they
may no longer be consistent.

Figure ?? shows part of a search graph that illustrates

204 FLAIRS 2002

Figure 1: Backing up a consistent heuristic, followed by pruning,
can create an inconsistent heuristic.

this. Dark lines indicate nodes and arcs in the explicit
graph. Dashed lines indicate nodes and arcs in the implicit
graph only (that is, they have not been generated). All arcs
are assumed to have a cost of 1. The static heuristic evalu-
ation function is consistent. Because the -value of node
A is 1 and the -value of node B is 2, the best path to node
C is through node A. The first time node C is expanded, A*
has found the best path to it, through node A. Figure ??(i)
shows the situation after node C is expanded for the first
time. The heuristic estimates of nodes C and D are backed-
up to node A. Backed-up heuristics are represented by .
Panel (ii) shows the same portion of the search graph after
nodes C and D are pruned. Now, node B will be expanded
before node A, and, after node B is expanded, panel (iii)
shows that node C will be expanded, although the best path
to node C through node A has not yet been found. This
happens because the backed-up heuristic for node A is not
consistent with the heuristic for node C. When node A is
eventually re-expanded, a better path to node C is found.

When a heuristic is admissible but not consistent, Mero
(1984) introduced a technique called pathmax that restores
consistency. When a node is expanded, the -value of
each child is checked. If , then
the value is increased to . By improv-
ing the heuristic value of fringe nodes, pathmax can reduce
the number of node expansions needed to find an optimal
solution. Because pathmax restores the consistency of the
heuristic within the explicit graph, it is tempting to conclude
that its use means it is impossible to find a better path to an

already-expanded node. In fact, Chakrabarti et al. (1989)
mistakenly assumed this when they discussed the possibil-
ity of an extension of MA* to graph-search problems. In
their words: “Once pathmax is properly maintained, the
heuristic estimate effectively becomes monotone and there
is no need to bring a node from CLOSED to OPEN.” (p.
201) But this is not true. As Nilsson (1998, p. 153) ex-
plains: “When a heuristic function does not satisfy the con-
sistency condition, but is otherwise admissible, then (using
an idea proposed by Mero (1998)) we can adjust it (dur-
ing search) to one that does satisfy the consistency condi-
tion... But it is possible that a node on CLOSED that has
its -value adjusted in this way may have to be moved back
to OPEN.” Figure ??(iii) illustrates that pathmax does not
prevent an inconsistent heuristic from causing a node to be
expanded before the best path to it has been found. The
reason for this is that pathmax only restores the consistency
of the heuristic along arcs that have been explicitly gener-
ated. But in graph search, two nodes may occur in the open
list before all arcs between them have been generated, as
Figure ??(iii) shows. As a result, a node may be expanded
before the best path to it is found.

Propagating -values

When A* finds a better path to an already expanded node, it
propagates the node’s revised -value to its descendents. By
contrast, SMAG* simply prunes all of the node’s descen-
dents. The descendents can be regenerated, and SMAG*
still finds an optimal solution. But the decision to prune
seems unnecessary and crude. Propagating revised -values
to a node’s descendents is more in keeping with the original
A* algorithm, and also, more in keeping with the strategy
of memory-bounded A*. This strategy is to retain as many
nodes as possible in memory (to avoid re-expansions), and
when memory is full, to prune the least promising node(s).
But when SMAG* finds a better path to a node, its behavior
contradicts this strategy. Pruning all of a node’s descen-
dents contradicts the strategy of retaining as many nodes
as possible in memory, and also, it contradicts the strat-
egy of pruning the worst nodes. If the node’s descendents
have survived previous pruning and their -values can be
immediately improved, why prune them? Instead, we con-
sider how to adapt the propagation strategies used by A* to
memory-bounded A*.

Two propagation strategies are used with A* graph
search and both can be extended to memory-bounded A*,
with appropriate modification. The first strategy is to move
a node from the closed list back to the open list. In memory-
bounded A*, we must consider how this strategy general-
izes to partially-expanded nodes. If a partially-expanded
node is on the open list, it has descendents that have already

FLAIRS 2002 205

been generated and need to have their -values updated. To
allow partial node expansion, each node maintains a pointer
to the next successor node it will generate. (We call this
pointer the successor index.) When a node is first opened,
its successor index is initialized. If a shorter path is found
to a closed node, it is moved from the closed list back to the
open list and its successor index is re-initialized. If a shorter
path is found to a partially-expanded node, it remains on the
open list but its successor index is also re-initialized. Ini-
tializing the successor index means the next time the node
is expanded, it acts as a newly-opened node and attempts
to generate its first successor. This ensures that revised -
values are propagated to all descendents of the node.

The second strategy for propagating -values used by A*
is to invoke a recursive procedure that immediately propa-
gates the revised -value to all of the node’s descendents.
This strategy can also be adapted for memory-bounded A*
graph search, but it is more complex to implement. In the
original A* algorithm, this strategy requires each node to
store pointers to all of its successor nodes. (Otherwise,
such pointers are not necessary in the original A* algo-
rithm.) In memory-bounded search, it is not reasonable
to store pointers to all successor nodes in each node. Be-
sides requiring extra memory, forward pointers can become
corrupted when successor nodes are pruned from mem-
ory. (The book-keeping that would be necessary to prop-
erly maintain all pointers in the presence of pruning is pro-
hibitive.) However, it is still possible to extend this second
strategy for propagating -values to memory-bounded A*.
We do so by modifying the strategy so that it only propa-
gates revised -values to descendent nodes that occur along
a best path, since SMAG* must maintain forward pointers
to nodes that occur along a best path to allow pruning. Be-
cause descendent nodes that are not found on current best
paths are not considered, there is a danger that the best path
to some other node may change in a way that is not detected
by this method. To ensure that this does not cause a prob-
lem, we add an extra step. Whenever the -value of a node
is changed, we re-initialize its successor index, and, if it is
a closed node, we re-open it. This solution is admittedly
inelegant. Although revised -values are propagated im-
mediately, the strategy of re-opening nodes is still resorted
to. Nevertheless, there are some problems for which this
second strategy is useful, even in this modified form. We
describe one example in the experimental results section.

Because the complexity of propagating the improved -
value of a node to its descendents is not more than the
complexity of pruning the descendents, it cannot increase
the complexity of the algorithm. It can improve its per-
formance, however. Using either strategy for propagating
revised -values, it is possible to preserve search informa-

tion – especially backed-up heuristic estimates – that can
improve the direction of the search and reduce the time it
takes to find a solution.

Pseudocode

Pseudocode for our revised SMAG* algorithm is given in
an appendix. It can be compared to the pseudocode for
SMAG* given by Kaindl and Khorsand (1994). The princi-
pal difference is in the procedure GRAPH-CONTROL. In-
stead of pruning the descendents of a node, revised -values
are propagated by either the first strategy of re-opening the
node or by the second strategy of invoking a recursive pro-
cedure called PROPAGATE that updates the -values of de-
scendents immediately.

We note two other differences between our SMAG*
pseudocode and that of Kaindl and Khorsand. First,
we keep track of the depth, , of each node, as do
Chakrabarti et al. (1989) and Russell (1992). This is neces-
sary for tie-breaking when , since the deepest
among tied nodes must be expanded first. Although Kaindl
and Khorsand do not keep track of node depth in their pseu-
docode, it is harmless on their test problem, the Fifteen Puz-
zle, because for it and can be used as a
tie-breaker. In general, however, the depth of a node must
be maintained in addition to the -value. Moreover, when
revised -values are propagated after a better path to a node
is found, revised depth values should also be propagated.

A second difference is that we replace the blocking pro-
cedure of their algorithm with a simpler method for deleting
nodes from the closed list that cannot be part of an opti-
mal solution. This alternative, called cutting, is performed
by the procedure CUT. Both blocking and cutting detect
closed nodes that are not on an optimal path to any node
on the search fringe, so that they can be deleted from the
closed list. This is necessary because such nodes cannot
be pruned from memory in any other way. Blocking does
so by using an extra data structure that is unnecessary us-
ing our method. We believe that cutting is more intuitive
than blocking and simpler to implement. The behavior of
SMAG* is the same using either method.

Experimental results

To distinguish between the original version of SMAG*
and the two versions that correspond to the two strategies
for propagating -values, we refer to SMAG*-prune (the
original), SMAG*-reopen (the first strategy), and SMAG*-
propagate (the second strategy). We compare their perfor-
mance on a challenging graph-search problem: the multi-
ple sequence alignment problem. In computational biology,
this problem involves comparing several protein or DNA

206 FLAIRS 2002

Figure 2: Both SMAG*-reopen and SMAG*-propagate outper-
form SMAG*-prune when backups and pruning create an incon-
sistent heuristic.

sequences to determine their similarity – a comparison that
helps in predicting the function of the sequences or their
evolutionary relationships (Carrillo and Lipman 1988). We
note that this problem can be formulated as the problem
of finding the least-cost path from a start node to a goal
node in a -dimensional lattice, where is the number of
sequences compared. This formulation makes it possible
to use A* to solve the multiple sequence alignment prob-
lem, and the development of improved versions of A* that
can solve large instances of this problem is an active area
of research (Ikeda and Imai 1999; Miura and Ishida 1998;
Yoshizumi et al. 2000; Korf and Zhang 2000). Because the
search space is a lattice, there are combinatorially many dif-
ferent paths from the start node to any other node, creating
a challenging graph-search problem.

We tested SMAG*-prune, SMAG*-reopen and SMAG*-
propagate on a three-sequence alignment problem, with se-
quences of length 100. We used the same heuristic as
Yoshizumi et al. (2000), which is a consistent heuristic.
The results of our comparison (which are averaged over one
hundred random instances of the problem) are presented in
Figure ??. When memory is large enough, there is no dif-
ference in the behavior of the algorithms. The reason is that
if the heuristic is consistent, and if memory is large enough
to make pruning unnecessary (or infrequent), the heuristic
remains consistent and a better path to an already expanded
node is never (or rarely) found. Thus, there is no reason to
prune or propagate.

When the size of memory falls below some thresh-
old (2000 nodes for this problem), SMAG*-reopen and
SMAG*-propagate begin to have an advantage over
SMAG*-prune. Our results show that they run up to 66%
faster. The explanation is that when pruning is more fre-

quent, nodes with backed-up heuristic estimates are moved
from the closed list back to the open list, and the resulting
heuristic inconsistency causes SMAG* to begin to find bet-
ter paths to previously expanded nodes. When this happens,
propagating revised -values (either immediately or by re-
opening nodes) results in better performance than pruning
because it preserves backed-up heuristic estimates that can
improve the direction of search.

The first strategy of re-opening nodes is much simpler
to implement, and, as Figure ?? shows, somewhat faster.
Thus, it is preferred. However, there is one case in which
the second strategy of propagating -values immediately is
unavoidable. If a graph-search problem contains zero-cost
edges, it is possible for a node and its child to have the same

-value and the same -value. The SMAG* algorithm will
not perform correctly unless the child is expanded before
its parent in a tie-breaking situation, and the -value cannot
serve as a tie-breaker in this case. To ensure correct tie-
breaking, the depth information for each node must be kept
up to date, and therefore, revised depth information must
be propagated immediately when a better path to a node is
found. Because revised -values can be propagated at the
same time as revised depth information, the second strat-
egy is adopted in this situation. In multiple sequence align-
ment, the cost function sometimes allows zero-cost edges,
and that is why we mention this complication. For most
other search problems, zero-cost edges do not occur and
the simpler strategy of re-opening nodes can be adopted.

We qualify our experimental results by making three ad-
ditional observations. First, the improvement of SMAG*-
reopen and SMAG*-propagate over SMAG*-prune is pro-
portional to the quality of the heuristic. Using a strong
heuristic, the improvement can be significant. Improvement
is slight or negligible using a very weak heuristic. The rea-
son is that when a weak heuristic is used, backed-up heuris-
tic estimates are also weak, and preserving them (instead of
pruning them) provides little benefit.

Our second observation is that if the size of memory is
reduced far enough, and if nodes are pruned one at a time, a
phenomenon called “thrashing” sometimes occurs in which
the progress of search is slowed by repeated pruning and
regeneration of the same few nodes. Because pruning sev-
eral nodes at once can alleviate thrashing, SMAG*-prune
can sometimes have an advantage over SMAG*-propagate
when the size of memory is very small. But this advan-
tage only occurs in the presence of thrashing, and thrash-
ing can be avoided by other means. The topic of thrashing
in memory-bounded search is beyond the scope of this pa-
per. We simply note that when thrashing is not present,
SMAG*-reopen and SMAG*-propagate consistently out-
perform SMAG*-prune.

FLAIRS 2002 207

Our third observation is that SMAG*-reopen
and SMAG*-propagate perform significantly better than
SMAG*-prune only on very challenging graph-search
problems with combinatorially many paths between the
start node and any other node, such as the sequence align-
ment problem. Although the Fifteen Puzzle is also a graph-
search problem, the number of duplicate paths from the
start node to any other node is relatively small. Backing-up
heuristic estimates and pruning nodes can create an incon-
sistent heuristic that makes it possible to find better paths
to already-expanded nodes. But this occurs infrequently
enough in the Fifteen Puzzle that SMAG*-reopen and
SMAG*-propagate enjoys no significant advantage over
SMAG*-prune.

Conclusion

Kaindl and Khorsand (1994) describe a graph-search ex-
tension of memory-bounded A*, called SMAG*. In this
paper, we show how to improve its performance on chal-
lenging graph-search problems with combinatorially many
paths from the start node to any other node. We focus on
the problem of how to handle the discovery of a better path
to a previously-expanded node. First, we show that even
when a consistent heuristic is used, this possibility can-
not be avoided. Then we argue that instead of pruning all
the descendents of a node after a shorter path is found, as
SMAG* does, it is better to propagate the revised -value
to its descendents, as the original A* algorithm does. We
consider both methods for propagating -values used by
the original A* algorithm and show how to extend them to
memory-bounded A*. We demonstrate the improved per-
formance that results experimentally.

Our work on memory-bounded A* is motivated by our
interest in using it to solve large instances of the multiple
sequence alignment problem. Linear-space algorithms such
as IDA* and RBFS perform poorly on this problem due to
excessive node regenerations. The algorithm that currently
performs best is A* with Partial Expansion (Yoshizumi et
al. 2000). This algorithm is the same as SMAG*, except
it does not prune the open list when memory is full. (It
is not a memory-bounded algorithm.) Therefore, it seems
likely that an efficient implementation of SMAG* could
solve larger instances of the multiple sequence alignment
problem. In this paper, we make a modest contribution to-
ward improving the efficiency of SMAG*. We are continu-
ing to study other ways to improve its performance.

Acknowledgments

Support for this work was provided in part by the National
Science Foundation under grant IIS-9984952.

Appendix

Notation
Start and goal node respectively
The graph search space of the problem
The explicit search graph kept in memory
Successors of node
Successors of node
Successors of node along best path in
Parent of node n
Cost of edge from to
Depth of node
Cost from the start node to node
Estimated cost from node to the goal node

Pseudocode

procedure SMAG* ()
,

, ,
while do

Select
if then return

next-successor(best)

if and then

else

if then
MEM-CONTROL

else
GRAPH-CONTROL()

if completed(best) then
BACKUP(best)

if then

if then
CUT(best)
Delete best

procedure MEM-CONTROL
if then

Select

if then

Delete

208 FLAIRS 2002

procedure BACKUP(n)

if then

Reorder OPEN according to the new
if nil and completed() then

BACKUP()

procedure GRAPH-CONTROL()
’s equivalent node

if then
CUT()

PROPAGATE() /* used by SMAG*-prop only */
Reopen /* used by SMAG*-reopen only */

if then
Reorder according to new

else

Delete

procedure CUT(n)

if then
if and nil then

CUT()

Delete

else if completed() then
BACKUP()

else if completed() then
BACKUP()

procedure PROPAGATE(n)
Reset the next successor index of
for each successor node do

if then
Reorder according to new

else

UPDATE()

References
Carillo, H. and Lipman, D. 1988. The multiple sequence align-
ment problem in biology. SIAM Journal of Applied Mathematics
48:1073–1082.

Chakrabarti, P.; Ghosh, S.; Acharya, A.; & DeSarkar, S. 1989.
Heuristic search in restricted memory. Artificial Intelligence
47:197–221.

Hart, P; Nilsson, N.; and Raphael, B. 1968. A formal basis for
the heuristic determination of minimum cost paths. IEEE Trans-
actions of Systems Science and Cybernetics, SSC-4(2):100–107.

Kaindl, H. and Khorsand, A. 1994. Memory-bounded bidirec-
tional search. In Proc. of the Twelth National Conference on
Artificial Intelligence (AAAI-94), 1359–1364.

Korf, R. 1985. Depth-first iterative deepening: An optimal ad-
missible tree search. Artificial Intelligence 27:97–109.

Korf, R. 1993. Linear-space best-first search. Artificial Intelli-
gence 62:41–78.

Korf, R. and Zhang, W. 2000. Divide-and-conquer frontier
search applied to optimal sequence alignment. Proc. of the Eigh-
teenth National Conference on Artificial Intelligence (AAAI-
00), 910–916.

Ikeda, T. and Imai, H. 1999. Enhanced A* algorithms for mul-
tiple alignments: Optimal alignments for several sequences and

-opt approximate alignments for large cases. Theoretical Com-
puter Science 210:341–374.

Mero, L. 1984. A heuristic search algorithm with modifiable
estimate. Artificial Intelligence 23:13–27.

Miura, T. and Ishida, T. 1998. Stochastic node caching for
memory-bounded search. In Proc. of the 16th National Con-
ference on Artificial Intelligence (AAAI-98), 450–456.

Nilsson, N. 1980. Principles of Artificial Intelligence. Tioga:
Palo Alto, CA.

Nilsson, N. 1998. Artificial Intelligence: A New Synthesis. Mor-
gan Kaufman: San Francisco, CA.

Reinefeld, A. and Marsland, T. 1994. Enhanced iterative-
deepening search. IEEE Trans. on Pattern Analysis and Machine
Intelligence 16:701–710.

Russell, S. 1992. Efficient memory-bounded search methods.
In Proceedings of the Tenth European Conference on Artificial
Intelligence (ECAI-92), 1–5.

Yoshizumi, T.;1 Miura, T.; and Ishida, T. 2000. A* with par-
tial expansion for large branching factor problems. In Proc.
of the Eighteenth National Conference on Artificial Intelligence
(AAAI-00), 923–929.

FLAIRS 2002 209

