
Requirements for Successful Verification in Practice

S. Spreeuwenberg, R. Gerrits

LibRT
Postbus 90359

1006 BJ AMSTERDAM, The Netherlands
info@LibRT.com

Abstract
Many large scale companies use knowledge-based systems
(KBS) to support their decision making processes. The
quality of the decisions made depend on the quality of the
underlying knowledge. It has been stated many times that
verification techniques can be used to improve decision
making and the quality of the knowledge rules in a
knowledge based system. Furthermore, verification is seen
as one of the key issues in system certification. After a short
introduction to the current state of the art of knowledge
verification this paper describes a verification technique
used in a commercial development environment for
knowledge intensive applications: VALENS. We will
describe the experiences with VALENS in some recently
finished experiments. Based on these results and an
overview of the literature we will discuss the discrepancies
between verification in practice and verification in
theoretical / scientific situations. This leads us to an
overview of the requirements for successful verification in
practice. Obeying these requirements will increase the
return on investment for knowledge based systems.

Introduction
Verification establishes the logical correctness of a KB i.e.
the rules in a KB are checked to see if they are logical
consistent, non-circular, complete, not redundant and not
obsolete (the taxonomy of anomalies from A. Preece [4] is
followed except that the term contradiction is used instead
of ambivalance). Verification should not be confused with
validation techniques, as stated by Gonzales[18] in an
excellent overview of the controversy between scientists in
defining these terms.
Validation tries to establish the correctness of a system
with respect to its use in a particular domain and
environment. In short the software community agrees that
validation is interpreted as "building the right product",
verification as "building the product right". It has been
argued that the latter is a pre-requisite and sub-task of the
former (Laurent[5]).
Until recently commercial development environments did
not offer verification techniques despite the fact that the
scientific world has stated the importance and offered
solutions for this issue. In short they stated that verification
techniques are important when:
KB components are embedded within safety critical or

business critical applications (Ed P. Andert Jr, [1]).
When people without a background in system
programming or system analysis define and maintain the
knowledge in a KBS, the support of a V&V tool helps
them to cope with the complexity. (Spreeuwenberg [2])
In all the main phases of the knowledge engineering life
cycle, V&V is an important aspect when it comes to
delivering a high quality KBS. (Anca Vermesan [3])
It has been concluded that "a uniform set of definitions
should encourage developers to begin to think seriously
about the need to perform formal V&V on their intelligent
systems, and will also provide the foundation for
researchers to develop tools that will be usable by others"
(Gonzales and Barr, 2000).
In this article we will describe the implementation of
verification techniques in a commercial development
environment for knowledge based systems. The result of
this work is implemented in a 'general' verification
component called VALENS. This component is 'general' in
the sense that you can integrate it in a development
environment or case tool. Once we implemented this tool
we have found some more reasons that make V&V a
commodity in the mainstream software development
industry. After discussion of the state of the art of
verification research, the VALENS tool and our
experiences with VALENS, we will transform these
findings into requirements for applying verification
techniques. Our final goal is to improve the quality of
knowledge based systems and optimally support experts by
formalizing their knowledge.

Overview of verification research
In the beginning of the ’90s, different universities devoted
much attention to V&V of KBS. There were some tools
developed to verify rule bases of which Preece [6] has
given an overview and comparison. An even more
extensive overview comes from Plant [7] who lists 35
V&V tools built in the period 1985–1995. Most of the
systems where developed at a university and it is hard to
find out what the current status of those systems is.

FLAIRS 2002 221

 Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

From: FLAIRS-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Verification tools

The verification tools can be compared on a number of
criteria. We have compared some of the widely known
systems on the following criteria:
• The anomalies that are detected by the tool
• The language that is supported by the tool
• The focus and behavior of the tool in the analyses or

development phase of a system
The first criterion is formed by the anomalies that are
detected by the tool. Some tools do not detect anomalies in
a chain of logic, for example the Rule Checker Program
(RCP) [8] and CHECK [9]. Others like RCP, CHECK and
EVA [10] do not detect missing rules and unused literals.
VALENS is complete with respect to the anomalies
defined by Preece [4].
Another criterion is the language that is supported by the
tool. Most verification and validation systems, which
verify a knowledge base, cope with a restricted language,
for example first order predicate logic (Nouira and Fouet
[12]) or formal specification language (van Harmelen [11])
as opposed to the rich language of a (fourth generation)
programming environment. There are also tools which
have their own internal language defined and which,
manually or automatically, translate diverse languages to
the internal language. EVA is an example of a system with
its own internal language and provides a set of translation
programs that translate the rule languages of some expert
system tools (for example, ART, OPS5 and LES) to an
internal canonical form, based on predicate calculus.
PROLOGA [13] works the other way around, it allows a
user to create and verify decision trees and then generate
code in diverse programming languages (for example,
Aion, Delphi and C++). COVER and VALENS work in
the programming language they where developed with,
which is respectively Prolog and Aion (see next
paragraph).
The last criterion for comparison of verification tools is
their respective behavior in the analysis and development
phase of a system. The work of Nouira and Fouet [11]
concentrates on the analysis phase of a system but results
in a valid and executable knowledge base. The work of van
Harmelen [12] also concentrates on the analysis phase and
validates formal specification language. The idea is that the
formal specification has to be translated to a programming
language to get an executable program. VALENS can be
used by a developer after or during construction of a KB or
can be integrated in a tool that allows users to write their
own business rules. The output of the tool is a document in
which all invalid rules (combinations) detected are
reported.

Recent developments
What happened with the described verification tools?
Some of them still have a research status and are used to
explore new research domains. For example, the COVER
tool of Preece is evolved in the COVERAGE tool for

verifying rule bases in a multi agent architecture [14]. And
the PROLOGA tool [13] is extended with intertabular
verification [15]. But perhaps the ‘boost’ for V&V tools
failed to occur because the promise of KBS failed in
commercial environments. Another factor might be that not
only business environments but also university research is
driven by ‘hypes’ like ‘knowledge mining’, ‘knowledge
management’ and ‘intelligent agents’ which follow each
other in such tempo that there is no time to pick the fruit of
planted trees. A third reason can be found in the fact that
the discrepancy between theory and practice is rather large
in this field. In this article we will gather some evidence
for this thesis.
The prospects for V&V tools is currently changing as the
traditional “inference engine” market becomes a "business
rule management" market. The business rules management
approach to knowledge based systems hold that the
business community should maintain the rules of the
business instead of a programmer from an IT department.
Verification is becoming more important in the light of this
approach because the business user's often lack knowledge
about logic to write valid rules. Recent evidence of this
change is seen in the incorporation of verification
techniques into different business rule management tools.
In the next section a description of the VALENS tool is
given. The description focuses on the aspects of the tool
that are important to understand the results for verification
requirements in practice.

Application description
VALENS (VALid ENgineering Support) is a verification
component that can be used by a developer after or during
construction of a KB or can be integrated in a (case)tool
that allows users to write their own business rules. The
input of the verification component is a set of rules and the
output of the verification component is a set of invalid
rules (combinations). The input / output of the component
is specified in XML.
The VALENS component is integrated in a tool for the
Aion development environment.

V&V in AION
VALENS tool is an add-on (additional installable feature)
of Aion9 (short: Aion). Aion is a widely used commercial
development environment for KBS and intelligent
components. Some characteristics are:
– The inference engine supports rule and decision table

processing in a backward, forward chaining or recursive
forward chaining mode.

– The programming language is object-oriented.
– Meta-programming features enable a programmer to

obtain information about the state of the inference
engine.

222 FLAIRS 2002

– The Callable Object Building System (COBS) feature
allows one to automate all the functions a developer can
use in Aion.

Several customers of Aion have expressed the need for
verification techniques to be better able to maintain their
large knowledge bases, which, in some case, contain
thousands of rules.

The VALENS tool
The V&V application consists of three components: a user
interface, the verification engine and a reporting
component.
The user opens the KB and after starting VALENS selects
the rule sets within that KB that need to be verified. When
there are potential ‘invalid rules’ detected during the
verification process, the KB is started in a forward
chaining mode to test the thesis. We than capture the
results of the inference engine for analysing whether a
thesis is satisfied, and to catch the chain of logic that has
caused a thesis to be satisfied.
Invalid rules are reported in a HTML document. Each fault
is classified and explained as shown in figure 2, which
shows the result-report for circular rules.

The result report shows a general explanation of the
anomaly and the conflict that is detected. A conflict is
defined in [16] as a minimal set of rules, eventually
associated to an input fact set, that is a sufficient condition
to prove an anomaly. Besides this information the report
shows also the rule chain (the set of rules that caused the
anomaly to occur) when applicable for the anomaly.

Verification algorithm
The verification algorithm that VALENS uses performs
three main steps:

1. Construction of meta model
In this step all rule constructs, necessary to reason about
the rules in the KB are instantiated. This step is performed
on a “when needed” basis to reduce performance overhead.

2. Select potential anomalies
Potential anomalies are selected with the use of heuristics.
These heuristics where designed as meta rules but are
implemented as procedures due to performance
considerations.

3. Proof anomalies
The theses (potentially invalid rules) are proved by running
the rules to be tested in a forward chaining mode, while
providing them with the right truth-values (input). We call
this process proof-by-processing.
Benefits of the proof-by-processing algorithm used in
VALENS compared to formal methods is that we are able
to cope with procedural logic (function calls) in the rules
and with rules in an object oriented environment.
For a more detailed description of the proof-by-processing
algorithm used in VALENS to detect anomalies the user is
referred to Spreeuwenberg [2].

Experience with VALENS
In practice, VALENS proves not only to ensure a valid (i.e.
verified) knowledge base, but also the validity of its
documented functional specifications, along with good
communication with the domain experts and good use of
knowledge engineering principles.

Experience with insurance company
Postbank Nederland BV
became interested in the
promise of a V&V tool for
their Aion assessment KB. In a
two months pilot project
VALENS was evaluated in a
real business situation.
We got the first version of the
customer’s KB to verify when
the developing team of the
Postbank had finished the rule
base and the testing phase was
at hand. Though VALENS can
be applied earlier in the
application development
lifecycle, it was perfect timing:

there would be a parallel verification and testing phase so
the results of both processes could be compared.
VALENS did not detect any real errors in the KB. Though
this might look disappointing, the testing phase neither did
reveal any error that could have been detected by
verification. VALENS did find many redundant and
obsolete constructs in the KB. Some of these constructs
were intentional, others were not, but everyone was
impressed with the fact that VALENS was able to
highlight these ‘points of interest’.
VALENS proved to be of good use in maintaining the
integrity of the functional specifications of the KB and the
realized (and revised!) KB.

Experience with legislation
VALENS is used to verify legal knowledge modeled with
the POWER method. This method is developed as part of
the POWER research program that aims to develop a
method and supporting tools for the whole chain of

Figure 2. Result report of VALENS

FLAIRS 2002 223

processes from legislation drafting to executing the law by
government employees. The goal of the POWER program
is to improve legislation quality by the use of formal
methods and verification techniques. The flexible nature of
the VALENS verification component, the completeness
and accuracy of the verification algorithms, and the
possibilities for integration of VALENS in a modeling
workbench has resulted in the decision to integrate
VALENS in the POWER program [17]
We had the opportunity to model the (concept version of
the) new Dutch income tax law. Since almost nothing of
the old law on income remains intact, we were asked to
look for anomalies.
The power method translates legislation into UML/OCL
models.

Figure 5 POWER model

The above POWER model is a translation of two articles of
the dutch income tax law. The first article specifies the
deduction type based on the tariff group a tax payer is
assigned. The second article specifies how a tariff group is
assigned to a tax payer.
The resulting OCL statements are generated into a rule-
based environment as follows:

rule deductionType
ifrule current._tariffGroup.GroupNr = 1
then
 current._deduction.type = "BovenBasisAftrek"
end

rule tariffGroup
ifrule current._deduction.type <> "BasisAftrek"
and current._deduction.type = "BovenBasisAftrek"
then
 current._tariffGroup.GroupNr = 1
end

VALENS will detect circularity and present this in an
HTML report from which an extract is shown in Figure 2.

We found more then 150 anomalies that were not detected
by the knowledge groups before. The anomalies were
reported to the drafters and repaired. The effectiveness of
the feedback process depends heavily on representation.
Therefore we have conducted some research on law-
representations that promote the communication between
legislative- and IT-experts (by means of a cognitive
ergonomic study).

Other experiences
Experiences with knowledge bases in the US have forced
us to make guidelines for the creation of 'verifiable'
knowledge bases. These guidelines are in fact well known
and standard knowledge engineering principles like:
– Separate user interface logic from business rules
– Separate control logic from business rules
– Separate data retrieval and data availability from

business rules
All these guidelines assure that the business rules, to be
verified, are specified in a declarative manner.
In a rich, object oriented, 3th or 4th generation programming
environment you can easily violate the above principles if
you are not aware of them. Although VALENS is able to
cope with a limited amount of procedural logic, violating
these principles not only undermines the maintainability of
the application but also undermines the verifiability of the
application.
In general VALENS is able to cope with functions in rules
when the function can be replaced by its contents without
violating the Aion rule syntax.

Example:

If theApplicant.GetAge > 25
Then theApplication.SetApproved(true)

In this example two functions are used. If the function calls
are replaced by their contents the rule could look like this:

If currentDate - theApplicant.BirthDate > 25
Then theApplication.approved = true

If the function GetAge is specified using procedural
control statements like "loop" or "while", the rule cannot
be verified because the Aion rule syntax does not allow
these statements in rules.

Requirements for successful verification
Given our experiences with verification in business
situations we have concluded that there are some
requirements for successfully applying verification
technology in practice.

Programming languages
Knowledge based systems that are used in business

224 FLAIRS 2002

environments are written in modern programming
languages that support, in general, a richer language than
propositional- and even predicate logic. A verification
technology should, therefore, be able to cope with the use
of functions in rules, the use of relations between objects
by means of pointers and inheritance.

Declarative programming
Unfortunately the third and fourth generation programming
languages that are used in business environments enable a
programmer to mix the declarative manner of rule based
programming with procedural code. Verification
technology can only be applied to declarative
specifications, which also improve the maintainability of
the system. Therefore we need to state the requirement that
some knowledge engineering guidelines have been
followed in the construction phase of the knowledge base.

Communication of the results
Successful knowledge representation requires the
communication of verification results in the terminology
of, and in an understandable format to, the domain expert.
So far the communication of the results have always been
in the same format as the knowledge representation format.
This is not a good representation when the people who
need to solve the anomalies are domain experts (and not
programmers or logicians).
In the case of the POWER method we can use the
tractability features of this methodology to communicate
the results in terms of the original law texts. This helps but
is not sufficient; we also have to find a (visual)
representation that reduces the complexity when an
anomaly only occurs in a reasoning chain. Defining this
representation requires some more research.

Conclusion
Until now knowledge verification has been a scientific
research subject that was rarely practiced on real life
knowledge based applications. When you start using and
integrating verification techniques in a commercial
development environment for knowledge based systems
you experience that you need to meet the following three
requirements to be successful:
The verification technique can cope with language
constructions common in 3th and 4th generation
programming languages.
The knowledge bases have been constructed without
violation of some basic knowledge engineering principles.
The results of the verification process are communicated in
terms of the domain so that business experts can repair the
anomalies in the source of the knowledge.
We feel that these requirements are not only applicable for
the development of verification systems but also for the
development of validation systems. We are planning to
extend our verification technology with validation
technology and we think the success of this extension is

guaranteed if we obey the requirements outlined in this
article.

References
[1] Ed P. Andert Jr., 1992, Automated Knowledge Base Validation, AAAI

Workshop on Verification and Validation of Expert Systems (July
1992)

[2] S. Spreeuwenberg, R. Gerrits, 1999, A Knowledge Based Tool to
Validate and Verify an Aion Knowledge Base, Validation and
Verification of Knowledge Based Systems, Theory, Tools and
Practice, 67 – 78, ISBN 0-7923-8645-0

[3] A. Vermesan, Jarle Sjøvaag, Per Martinsen and Keith Bell,
1999,Verification and Validation in Support for Software Certification
Methods, Validation and Verification of Knowledge Based Systems,
Theory, Tools and Practice, 67 – 78, ISBN 0-7923-8645-0

[4] A. Preece, Shingal, 1994, Foundation and Application of Knowledge
Base Verification, International Journal of Intelligent Systems, 9, 683
– 701

[5] J.P Laurent, 1992, Proposals for a valid terminology in KBS
Validation. ECAI 92. John Wiley & Sons, Ltd., 1992

[6] A. Preece, 1991, Methods for Verifying Expert System Knowledge
Bases.

[7] Robert T. Plant, 1995, Tools for Validation & Verification of
Knowledge-Based Systems 1985 – 1995 References, Internet Source

[8] M. Suwa, A.C. Scott, E.H. Shortliffe, 1982, An Approach to Verifying
Completeness and Consistency in a Rule-Based Expert System, AI
Magazine, Vol. 3, Nr. 4

[9] W.A. Perkins, T.J. Laffey, D. Pecora, T.Nguyen, 1989, Knowledge
Base Verification, Topics in Expert System Design, 353 – 376

[10] C.L. Chang, J.B. Combs, R.A. Stacowits, 1990, A Report on the
Expert Systems Validation Associate (EVA), Expert Systems with
Applications, Vol. 1, Nr. 3, 217 – 230

[11] F.V.Harmelen, 1995, Structure Preserving Specification Languages
for Knowledge Based Systems, International Journal of Human
Computer Studies, Vol. 44, 187-212

[12] Rym Nouira, Jean-Marc Fouet, 1996, A Knowledge Based Tool for
the Incremental Construction, Validation and Refinement of Large
Knowledge Bases, Workshop Proceedings ECAI96

[13] J. Vanthienen, 1991, Knowledge Acquisition and Validation Using a
Decision Table Engineering Workbench, World Congress of Expert
Systems, 1861 – 1868

[14] N. Lamb, A. Preece, Downloaded: 01-05-2000, Verification of
Multi-Agent Knowledge-Based Systems, Internet Source

[15] J. Vanthienen, C. Mues, G. Wets, 1997, Inter-Tabular Verification in
an Interactive Environment, Proceedings Eurovav 97, 155 – 165

[16] N. den Haan, Automated Legal Reasoning, University of
Amsterdam, Amsterdam, 1996 (diss)

[17] S. Spreeuwenberg, T. v. Engers, R. Gerrits, The role of verification
of legal knowledge in improving the quality of legal decision-making,
JURIX 2001.

[18] A.J. Gonzales, V. Barr, Validation and verification of intelligent
systems, Journal of Experimental and Theoretical AI, Oct. 2000.

FLAIRS 2002 225

