
Prediction of Aerodynamic Coefficients using Neural Networks for
Sparse Data

T. Rajkumar
Computer Scientist, SAIC, NASA

and

Jorge Bardina
Computer Scientist, NASA

Mail Stop 269-2 Moffett Field, California, USA 94035
rajkumar, jbardina@mail.arc.nasa.gov

Abstract

A reliable and fast method of predicting complex
aerodynamic coefficients for flight simulation is
presented using neural networks. The training data for
the neural network is derived from numerical simulations
and wind-tunnel experiments. The aerodynamic
coefficients are modeled as functions of the flow
characteristics and the control surfaces of the vehicle.
The basic coefficients of lift, drag and pitching moment
are expressed as function of angles of attack and Mach
number. The modeled and training aerodynamic
coefficients show good agreement. This method shows
excellent potential for rapid development of aerodynamic
models for flight simulation.

Introduction

Wind tunnels use scaled models to characterize
aerodynamic coefficients. Wind tunnel data, in original
form, are unsuitable for use in piloted simulations because
data obtained in different wind tunnels with different scale
models of the same vehicle are not always consistent.
Fitting a smooth function through the wind tunnel data
results in smooth derivatives of the data. The smooth
derivatives are important in performing stability analyses.
Traditionally, the approach considered to describe the
aerodynamics of the vehicle included developing,
wherever possible, a polynomial description of each
aerodynamic function (Bruce J. and Christopher C. 1992).
This ensured a smooth continuous function and removed
some of the scatter in the wind tunnel data. Also,
measurements of the same coefficient from two different
wind tunnels are usually taken at dissimilar values of angle
of attack and sideslip, and some means of reconciling the
two dissimilar sets of raw data were needed. This curve
fitting procedure is unnecessary for few coefficients. The
curve fitting method used to generate the parameters for
each polynomial description is an unweighted least squares
algorithm. For the most part, the polynomial equations are
generated using sparse data from wind tunnel experiments.
Due to sparcity of data, mostly it will be defined as a linear
type of function. When more data are available, flight

control system designs will need to be revisited to allow
for minor nonlinearities in control effects.

Wind tunnel testing can be slow and costly due to high
personnel overhead and intensive power utilization.
Although manual curve fitting can be done, it is highly
efficient to use a neural network (Norgaard M, Jorgensen C
and Ross J 1997,.Rai M. M and Madavan N. K 2000 and
Ching F.Lo, Zhao J.L. and DeLoach R. 2000) to define
complex relationship between variables. Numerical
simulation of complex vehicles on the wide range of
conditions required for flight simulation requires static and
dynamic data. Static data at low Mach numbers and angles
of attack may be obtained with simpler Euler codes. Static
data of stalled vehicles where zones of flow separation are
present usually at higher angles of attack require Navier-
Stokes simulations which are costly due to the large
processing time required to attain convergence.
Preliminary dynamic data may be obtained with simpler
methods based on correlations and vortex methods
(Birckelbaw, L.G., McNeill, W.E., and Wardwell, D.A.,
1995); however, accurate prediction of the dynamic
coefficients requires complex and costly numerical
simulations (Park, M. A. and Green, L. L., 2000). This
paper is organized as follows: A short introduction to
neural network followed by a section that will introduce
the aerodynamic data set. Then results are discussed
finding an optimal solution to the various aerodynamic
coefficients. The final section concludes optimization of
the neural network and research directions.

Neural Network

A neural network is conceptually comprised of a collection
of nodes and connections (Rumelhart D.E., G.E. Hinton
and R.J. Williams 1986; Master T. 1993; Jondarr C. 1996).
Among the many neural network models, the
backpropagation algorithm is one of the better known and
frequently used. Back propagation (Rumelhart D.E. , G.E.
Hinton and R.J. Williams 1986) was created by
generalizing the Widrow-Hoff learning rule (Widrow B. et
al 1987) to multiple-layer networks and nonlinear

242 FLAIRS 2002

 Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

From: FLAIRS-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

differentiable transfer functions. Input - output pairs are
used to train a network until it can approximate a function.
Back propagation was the first practical method for
training a multiple layer feed forward network. A neural
network’s initial weights are simply random numbers,
which change during training. Training consists of
presenting actual experimental data to the neural network
and using a mathematical algorithm—–the back
propagation algorithm—to adjust the weights. Each pair of
patterns goes through two stages of activation: a forward
pass and a backward pass.

1. Feedforward - apply an input; evaluate the
activations aj and store the error deltaj at each
node j

aj = Sum i(Wij (t) Ip
i)

Ap
j = g (aj)

deltaj = Ap
j -Ip

j

After each training pattern Ip is presented, the
correction to apply to the weights is proportional
to the error. The correction is calculated before
the thresholding step, using errij (p)=Tp-Wij Ip

2. Backpropagation - compute the adjustments and
update the weights.

Wij (t+1) = Wij (t) - eta deltai Ip
j where

0 <= eta < 1 is a parameter that controls the
learning rate

• Wij = weight from input i to unit j in output layer;
Wj is the vector of all the weights of the j-th
neuron in the output layer.

• Ip = input vector (pattern p) = (I1
p, I2

p, ..., Ib
p).

• Tp = target output vector (pattern p) = (T1
p, T2

p, ...,
Tc

p).
• Ap = Actual output vector (pattern p) = (A1

p, A2
p,

..., Ac
p).

• g() = sigmoid activation function: g(a) = [1 + exp
(-a)]-1

The forward pass involves presenting a sample input to the
network and letting the activations flow until they reach
the output layer. During the backward pass, the network’s
actual output (from the forward pass) is compared with the
target output and errors are computed for the output units.
Adjustments of weights are based on the difference
between the correct and computed outputs. Once each
observation’s computed and actual outputs are within the
specified error tolerance, training stops and the neural
network is ready for use: given a new input observation, it
will estimate what the corresponding output values should
be. After extensive training, the network establishes the
input-output relationships through the adjusted weights on
the network.

Data Set for Aerodynamic Models

Aerodynamic control systems can be divided into two
categories viz., control surfaces and aerodynamics
controls. In this paper, aerodynamic controls and models
are the focus. The variables involved in aerodynamic
controls are angle of attack (α), sideslip angle (β), elevon
deflections (δe), aileron deflections (δa), rudder deflection
(δR), speed brake deflection (δSB), landing gear effects
and ground effects. The general equations of forces (lb)
and moments (ft-lb) for key parameters are listed in the
following tables 1 and 2 (Bruce J. and Christopher C.
1992).

Forces (lb) Model
Lift L=CL.q.S
Drag D=CD.q.S
Side-force FY=CY.q.S

Table 1. Aerodynamic forces

Moments (ft-lb) Model
Pitching PM=Cm.q.S.c+(L.cosα+D.sinα).XMRC+

(L.sinα-D.cosα).ZMRC

Rolling RM=Cl.q.S.b+FY.ZMRC

Yawing Cn.q.S.b+FY.XMRC

Table 2 Aerodynamic Moments

The aerodynamic coefficients involved in the above
equations are presented.

Longitudinal aerodynamic coefficients

Lift Coefficient CL:
CL = CLBAS(α, M)+∆CL,δFLAPS(δF). δF+∆CLSPEEDBRAKE(α,
δSB)+∆CLLG(δLG)+∆CLge(h/b)+)+∆CL,q(α, M).q.c/2U)+
∆CL,α

’(α, M).α’.c/2U

Drag Coefficient CD:
CD = CDBAS(α, M)+∆CD,δFLAPS(δF). δF
+∆CDSPEEDBRAKE(α,δSB)+∆CDLG(δLG)+∆CDge(h/b)+∆CD
,q(α).q.c/2U

Pitching Moment Coefficient Cm:
Cm = CmBAS(α, M)+∆Cm,δFLAPS(δF).
δF+∆CmSPEEDBRAKE(α,
δSB)+∆CmLG(δLG)+∆Cmge(h/b))+∆Cm,q(α, M).q.c/2U)+
∆Cm,α

’(α, M).α’.c/2U

Lateral aerodynamic coefficients

Side force coefficient CY:
CY=CYSB((α, M).. β+∆CYδRUDDER (δR). δR+∆CYδAILERON

(δA)δA+∆CYLG∆β(δLG)β+∆CYGE∆β(h/b)β+∆CYp(α).p.
b/2U+∆CYr(α).r.b/2U

FLAIRS 2002 243

Rolling Moment Coefficient Cl:
Cl=ClSB((α, M).. β+∆ClδRUDDER (δR). δR+∆ClδAILERON

(δA)δA+∆ClLG∆β(δLG)β+∆ClGE∆β(h/b)β+∆Clp(α).p.
b/2U+∆Clr(α).r.b/2U

Yawing Moment Coefficent Cn:
Cn=CnSB((α, M).. β+∆CnδRUDDER (δR). δR+∆CnδAILERON

(δA)δA+∆CnLG∆β(δLG)β+∆CnGE∆β(h/b)β+∆Cnp(α).p.
b/2U+∆Cnr(α).r.b/2U

Above equations depend basically on angle of attack and
Mach number with little increments of other factors. The
above equation can be expressed as a function of angle of
attack and Mach number and it resembles a simple
polynomial expression. Depending on the geometry and
mass properties of the vehicle, aerodynamics coefficients
will vary. The general parameters are tabulated in table 3.

Parameters Ranges of values
Angle of attack (degrees) -10 < α<50
Side angle (degrees) -20 < β < 20
Mach number M ≤ 0.9
Surface deflection (degrees) -15 < δelevons (flaps) < 15

-20 < δrudder < 20
-20 < δailerons < 20
0 < δspeedbrake < 80

Table 3 Range of values involved in aerodynamic coefficients

Inputs considered for determining base coefficients are
angle of attack and Mach number. The output of the neural
network is the coefficients of aerodynamic model. As a
good training data set for a particular vehicle type,
geometry and mass are selected from any wind tunnel test.
Some times if the data set is not available from
experiments for wind tunnels, a good training data set can
be derived from numerical computations from Euler or
Navier stokes or Vortex lattice method. This data set
consists of a comprehensive input and output tupple for an
entire parameter space. Once training data set is defined,
sparse data collected from experiments can be interpolated
and extended for the entire range of data using a trained
neural network (provided trained data range and sparse
data range are similar). This will avoid repeating the entire
experiments in the wind tunnel. Once training data set is
selected, one must determine the type of neural network
architecture and transfer functions that will be used to
interpolate the sparse data. The next section will discuss
the selection procedure of the neural network architecture
and transfer functions used in this work.

Neural Network Architecture

In this paper, interpolating for coefficient of lift is
discussed for sparse data set. The rest of the various

aerodynamic coefficients will be repeated with the same
architecture of neural network with respect to
corresponding data set. The problem of defining neural
network architectures (Hagan M.T., Demuth H.B and
Beale 1996) can be divided into the following categories:
(i) type of neural network (whether three layer or four
layer, etc.); (ii) number of hidden neurons; (iii) type of
transfer functions (Elliott D.L 1993); (iv) training
algorithm; and (v) over and under fitting of the results and
validation of neural network output. If the function
consists of a finite number of points, a three layer neural
network is capable of learning the function. Since the
availability of data is limited, the type of neural network
considered for this problem is a three layer neural network
with input layer, hidden layer and output layer. The input
layer will have two input neurons (alpha and Mach
number) and output layer will represent one neuron
(coefficient of lift). Domain data has specific definite
bounds, rather than having no limits. The number of
hidden neurons is defined based on the efficient fitting of
the data.

For determining an appropriate (hopefully optimal or near-
optimal) number of hidden units (Lawrence S, Lee G. and
Ah Chung T. 1996), we construct a sequence of networks
with increasing number of hidden neurons from 2 to 20.
More than 20 hidden neurons cause an over fitting of the
results (Lawrence S, Lee G. and Ah chung T. 1997). Each
neuron in the network is fully connected and uses all
available input variables. First, a network with a small
number of hidden units is trained using random initial
weights. Iteratively, a larger network is constructed (up to
the 20 hidden neurons) and the network results are
compared with the expected results. Activation functions
also play a key role in producing the best network results.
The transfer function is a nonlinear function that when
applied to the net input of a neuron, determines the output
of the neuron. The majority of neural networks use a
sigmoid function (S-shaped). A sigmoid function is
defined as a continuous real-valued function whose domain
is the reals, whose derivative is always positive, and whose
range is bounded. In this aerodynamic problem, a sigmoid
function can produce an efficient fit. To get a best fitting
and characterize physical characteristics of the problem, it
is suggested to use different kinds of transfer functions for
different layers of network. However, functions such as
“tanh” that produce both positive and negative values tend
to yield faster training than functions that produce only
positive values such as sigmoid, because of better
numerical conditioning. Numerical condition affects the
speed and accuracy of most numerical algorithms.
Numerical condition is especially important in the study of
neural networks because ill-conditioning is a common
cause of slow and inaccurate results from backprop-type
algorithms. Activation functions for the hidden units are
needed to introduce nonlinearity into the network. Without

244 FLAIRS 2002

nonlinearity, hidden units would not make nets more
powerful than just plain perceptrons (which do not have
any hidden units, just input and output units). The reason
is that a linear function of linear functions is again a linear
function. However, it is the nonlinearity (i.e., the
capability to represent nonlinear functions) that makes
multilayer networks so powerful. Three types of activation
functions are used in neural networks namely linear,
sigmoid and hyperbolic tangent.

The training epoch is restricted to 1000 cycles {present a
data set, measure error, update weights}. The learning rate
and momentum are selected appropriately to get faster
convergence of the network. The input and output values
are scaled to range [0.1, 0.9] to ensure that the output will
lie in the output region of the nonlinear sigmoid transfer
function. Presentable variable values lie in between 0.1
and 0.9 (0.1 and 0.9 inclusive). The scaling is performed
using the following equation

V – Observed Variable A – Presentable Variable
Once scaled training data set is prepared, it is ready for
neural network training. Levenberg-Marquardt method
(Hagan M.T. and Menhaj M.B. 1994)for solving the
optimization is selected for back propagation training. It is
selected due to its guaranteed convergence to a local
minima, and its numerical robustness.

Experiments

The training data set is divided into two sets viz., dataset
pairs which has Mach number less than 0.4, and those
greater than 0.41. The data set is presented to the neural
network architecture for the training. Initially a training
set, which has 233 pairs, is presented to the neural network
up to user-defined error of tolerance. The weights are
stored and sparse data set of 9 pairs is provided for the
same neural network architecture for further training. The
initial training data set represents the exhaustive
combination of data set in the particular parameter space.
The initial training data set represents the general pattern
of a particular aerodynamic coefficient. Based on the
general pattern, the second training data set is interpolated.
The initial data set is plotted in figure 1 and 2, and the data
in figure 1 can be represented by a linear type of function
whereas the data in figure 2 can be expressed as a
combination of linear and hyperbolic tangent or sigmoid
function. Numerous trials have been conducted with

1 Mach number < 0.4 then data expressed as a linear
function else a combination of linear and sigmoid function

different combinations of transfer functions, and we finally
concluded that the linear transfer function be adopted for
the input-to-hidden neurons and hyperbolic tangent or
sigmoid function be used for the hidden-to-output layer.
Figure 3 represents the sparse data set presented to the
neural network successively after the initial training data
set was presented. The figures 4 and 5 represent the neural
network predicted data from the sparse data set. A few
points are over fitted or under fitted in the results produced
by the network. Over or under fitting is due to the
sparseness of data. Overall the results produced by the
network are considered to be very good.

Alpha Vs CL

-2

-1

0

1

2

3

-1
0 15

Alpha
C

L Mac 0.4

Mac 0.25

Figure 1 Initial Training data for neural network (M ≤ 0.4)

Alpha Vs CL

-1

-0.5

0

0.5

1

1.5

-1
0 15 40

Alpha

C
L

Mac 0.6

Mac 0.8

Mac 0.85

Mac 0.9

Mac 0.92

Mac 0.95

Mac 0.98

Figure 2 Initial Training data for neural network (M > 0.4)

Alpha Vs CL

0

0.2

0.4

0.6

0.8

4 8 12

Alpha

C
L

Mac 0.3

Mac 0.6

Mac 0.9

Figure 3. Sparse data presented to the neural network

minmax

minmax

minmin)(

VV

AA
r

AVVrA

−
−

=

+−=

FLAIRS 2002 245

Alpha Vs CL

-1

0

1

2

-10 15

Alpha

C
L Mac 0.4

Mac 0.25

Figure 4 Neural network interpolated data for sparse data
(M ≤ 0.4)

Alpha Vs CL

-1

-0.5

0

0.5

1

1.5

-10 15 40

Alpha

C
L

Mac 0.6

Mac 0.8

Mac 0.85

Mac 0.9

Mac 0.92

Mac 0.95

Mac 0.98

Figure 5 Neural network interpolated data for sparse data (Mach
number > 0.4)

Conclusion

Neural networks will become an important tool in future
NASA Ames efforts to move directly from wind tunnel
tests to virtual flight simulations. Many errors can be
eliminated, and implementing a neural network can
considerably reduce cost. Preliminary results have proved
that neural network is an efficient tool to interpolate across
sparse data. The prediction for the lower end and upper
end of Mach number by the neural network is considerably
deviated. The deviation is caused due to the non-
availability of data in the sparse data. Initially neural
network has been trained by the original data which
enables network to understand overall pattern. Successive
training by the sparse data alters the weights of the neural
network which causes this deviation. This deviation is
well within 10 %, which is acceptable in aerodynamic
modeling. Further research is focused to overcome this
deviation in predicting sparse data. It is also directed to
optimize number of hidden neurons and will be integrated
into web-enabled application. Hybrid system using
evolutionary theory and neural network is planned to build
an efficient model to predict aerodynamic variables. The
neural network will be an integral tool of data mining suite
in an existing collaborative system in NASA.

Acknowledgements

We would like to acknowledge useful comments,
suggestions and discussions from Dr. David Thompson
and Ms. Joan Walton NASA Ames.

References

Birckelbaw, L.G., McNeill, W.E., and Wardwell, D.A.,
1995 “Aerodynamics Model for a Generic STOVL LIFT-
FAN AIRCRAFT,” NASA TM 110347.
Bruce, J., and Christopher C., 1992, Preliminary subsonic
aerodynamic model for simulation studies of the HL-20
lifting body, NASA technical memorandum 4302.
Ching F.Lo, Zhao, J.L., and DeLoach R., 2000.
Application of neural networks to wind tunnel data
response surface methods. In procd. of 21st AIAA
aerodynamic measurement technology and ground testing
conference, Denver, Colorado.
Elliott, D.L., 1993 A better activation function for artificial
neural networks ISR technical report TR93-8.
Hagan M. T., Demuth H.B. and Beale M. H. 1996. Neural
Network Design. Boston, MA. PWS Publishing, USA.
Hagan, M.T., and Menhaj, M.B., 1994. Training Feed
forward networks with the Marquardt Algorithm. IEEE
Transactions on neural networks, Vol 5 No 6 989-993.
Jondarr. C. 1996. Backpropagation Family. Technical
Report C/TR96-05. Macquarrie University.
Lawrence S, Lee, G., and Ah Chung, T.,. 1996. What size
neural network gives optimal generalization? Convergence
properties of Backpropagation. Technical report
UMIACS-TR-96-22 and CS-TR-3617.
Lawrence S, Lee., G and Ah Chung, T., 1997 Lessons in
neural network training: overfitting may be harder than
expected In proceedings of the fourteenth national
conference on aritificial intelligence, AAAI-97.
Master T. 1993. Practical neural network recipes in C++.
Academic Press Inc.
Norgaard, M., Jorgensen, C., and Ross, J., 1997, Neural
network prediction of new aircraft design coefficients,
NASA Technical memorandum 112197.

Park, M. A., and Green, L. L., 2000, “Steady-State
Compuattion of Constant Rotational Rate Dynamic
Stability Derivatives,” AIAA Paper 2000-4321.
Rai, M.M and Madavan, N.K., 2000, Aerodynamic design
using neural networks AIAA Vol 38. No 1pp 173-182.
Rumelhart D.E., G.E.Hinton and R.J. Williams. 1986.
“Learning internal representations by error propagation”,
in D.E. Rumelhart and J.L. McClelland, eds. Parallel Data
Processing. Vol 1, Cambridge, MA: The MIT Press, 318-
362.
Widrow B., Winter and Baxter. 1987. Learning
Phenomena in layered neural networks. In first
international conference on neural nets San Diego Vol 2
pp. 411-429.

246 FLAIRS 2002

