
Algorithms for Conditioning on Events of Zero Lower Probability

Fabio G. Cozman ∗

Escola Politécnica, Universidade de São Paulo
Av. Prof. Mello Moraes, 2231 - Cidade Universitária, São Paulo, SP, Brazil

fgcozman@usp.br, http://www.cs.cmu.edu/˜fgcozman

Abstract

This paper presents techniques for computing conditional
lower expectations through sequences of pivoting operations,
for conditioning events with positive or zero lower/upper
probability. The algorithms depart from the sequences of lin-
ear programs currently employed in the literature.

Introduction
Suppose that an agent translates beliefs and preferences into
lower expectations. For a collection of variables X, a collec-
tion of functions {fi(X)} and a collection of events {Bi},
i ∈ {1, . . . , k}, the agent assesses the lower expectations
E[fi(X)|Bi]. These lower expectations must satisfy stan-
dards of coherence among each other (Coletti & Scozzafava
1999; Walley 1991). Coherence usually implies the exis-
tence of a set of probability measures, called a credal set
(Levi 1980). A credal set is such that E[fi(X)|Bi] is the
minimum of EP [fi(X)|Bi], the expected value of fi(X)
conditional on Bi, taken over all probabilities in the set.
Credal sets are often taken to be convex and assumed to be
either closed or open; we focus only on convex closed sets
in this paper. We do not deal with sets that have both closed
and open boundaries, as allowed by the general theory of
(Seidenfeld, Schervish, & Kadane 1995). The problem of
interest here is, given a credal set, to compute E[f(X)|B],
the smallest expected value for function f(X) conditional
on B.

This paper focuses on situations where at least one proba-
bility measure in the credal set assigns probability zero to the
conditioning event B. The results have considerable practi-
cal significance because an event with zero lower probabil-
ity may have non-zero upper probability — consequently
the event may actually obtain in practice. Currently, algo-
rithms that deal with zero probabilities employ sequences of
linear programs, while algorithms that do not deal with zero
probabilities require a single linear program.

The purpose of this paper is to explore computational
techniques that reduce the cost of inference in the presence

∗The author was partially supported by a grant from CNPq,
Brazil.
Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

of zero probabilities. The paper contains an “algorithmic-
minded” derivation of relevant results and an algorithm for
handling zero probabilities by sequences of pivoting opera-
tions, not sequences of linear programs.

Inferences that discard zero probabilities
Given a credal set and an event B, either P (B) > 0, or
P (B) = 0, or P (B) > P (B) = 0. Suppose first that
every probability measure in the credal set assigns positive
probability to B; that is, P (B) > 0. The posterior credal set
is then obtained by elementwise Bayes rule (Giron & Rios
1980; Levi 1980; Walley 1991):

E[f(X)|B] = min
P

EP [f(X)|B] = min
P

EP [IB(X)f(X)]
EP [IB(X)]

,

where IB(X) is the indicator function of B. If P (B) > 0,
E[f(X)|B] is the unique value of µ that satisfies the equa-
tion E[IB(X) (f(X) − µ)] = 0, called the generalized
Bayes rule (Walley 1991, Chapter 6).

Consider a collection of variables with finitely many
values. Every lower expectation E[fi(X)|Bi] is a lin-
ear constraint in the space of probability distributions:
EP [fi(X)IBi(X)] ≥ E[fi(X)|Bi]EP [IBi(X)]. The com-
putation of an unconditional lower expectation E[f(X)] is
then the minimization of EP [f(X)], a linear function, sub-
ject to a collection of linear constraints. This formulation
goes back to the work of Boole, as reviewed and gener-
alized in (Hailperin 1996), and stated in different contexts
by (Bruno & Gilio 1980) and (Nilsson 1986), among others
(Hansen et al. 2000).

Consider now the computation of a conditional lower ex-
pectation E[f(X)|B]. The Charnes-Cooper transformation
can be used to generate a linear program (Cozman 1999):

min
∑

XIB(x)f(x)Q(x); subject to (1)∑
X

IBi
(x) (fi(x) − E[fi(X)|Bi])Q(x) ≥ 0

for all fi(X), IBi(X); subject to
∑

X IB(x)Q(x) = 1; and
subject to Q(x) ≥ 0 for all values x of X (x refers to spe-
cific values of X).

Now suppose that B has zero lower probability and posi-
tive upper probability; that is, probability zero is acceptable
for B, but not sure. We must produce a value for E[f(X)|B]

248 FLAIRS 2002

From: FLAIRS-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

that is coherent with other assessments {E[fi(X)|Bi]}k
i=1.

One common approach is to focus only on the probability
measures that assign positive probability to B:

E[f(X)|B] = min
P :P(B)>0

EP [f(X)|B] . (2)

The idea is to discard models that assign zero probability to
conditioning events (Weichselberger 2000). We can follow
the same approach when P (B) = 0, declaring E[f(X)|B]
undefined in such cases because every probability measure
in the credal set assigns zero probability to B.

The minimizing Q(X) in (1) will be proportional to a
measure in the credal set that assigns non-zero probability
to B. Consequently, the linear program does discard any
model such that P (B) = 0. When P (B) = 0 there is no
Q(X) that satisfies

∑
X IB(x)Q(x) = 1, so the linear pro-

gram has no feasible solution. In such a case we can report
that the model must be revised.

The dual of linear program (1) is also of interest. To sim-
plify notation, it is convenient to drop the dependency on X
from all functions and to use the name of an event as the indi-
cator function for the event (de Finetti’s convention). Also, it
is convenient to denote by Gi the quantity Bi(fi−E[fi|Bi]),
understood as the “reward” from buying fi conditional on
Bi at rate E[fi|Bi] (Walley 1991). The dual of (1) is:

max µ; subject to (3)∑
i

λiGi ≤ B(f − µ), for all values x of X, and λi ≥ 0.

Natural extensions
There is a different point of view that incorporates zero prob-
abilities in a smoother fashion (de Finetti 1974). Suppose we
require that credal sets contain coherent measures satisfying
four conditions: 1. P (A) ≥ 0 for any event A; 2. the prob-
ability of the universal event is 1; 3. for disjoint A and B,
P (A ∪ B) = P (A)+P (B); and 4. P (A ∩ B) = P (A|B)×
P (B) (Coletti & Scozzafava 1999). Note that instead of
defining P (A|B) to be the ratio P (A ∩ B) /P (B), we re-
quire only that P (A ∩ B) be equal to P (A|B) × P (B). If
P (B) is detected to be zero, P (A ∩ B) and P (A|B)×P (B)
are always equal, regardless of P (A|B). All we require then
is that P (A|B) be chosen coherently, and so we may have a
definite value for P (A|B) even when P (B) = 0.

The value E[f(X)|B] obtained using the largest set of
coherent probability measures (that is, including coherent
probability measures when P (B) = 0) is called a natural
extension by (Walley 1991).1 The computation of natural
extensions is a non-linear problem, because the constraint
P (A ∩ B) = P (A|B) P (B) may have different effects de-
pending on P (B) being zero or not. To illustrate this, con-
sider that an assessment such as P (A|B) = 1/2, written
as 2P (A ∩ B) ≥ P (B), can be ignored if P (B) = 0,
but cannot be ignored if P (B) > 0. When checking co-
herency, we should look at the complete set of assessments

1An alternative approach is to adopt (2) when P (B) > 0 and
require that E[f(X)|B] be the minimum of EP [f(X)|B] among
coherent measures when P (B) = 0. This strategy defines a regu-
lar extension, in the terminology of (Walley 1991, Appendix J).

{E[fi(X)|Bi]}k
i=1 and also look at subsets of the assess-

ments (de Finetti 1974). Walley, Pelessoni and Vicig demon-
strate that the natural extension E[f(X)|B] is the solution of
a program (Walley, Pelessoni, & Vicig 1999, referred to as
WPV):

max µ; subject to
∑

i∈IλiGi ≤ B(f − µ) (4)

for all values of X; and subject to λi ≥ 0 for all i running
over a single subset I of {1, . . . , k}. The set I is the largest
subset of {1, . . . , k} for which P (B|B ∪ (∪i∈IBi)) > 0, or
alternatively, I is the largest subset of {1, . . . , k} such that

sup
x∈Bc∩(∪i∈IBi)

(∑
i∈I

λiGi(x)

)
< 0, where λi ≥ 0. (5)

WPV show that I can be constructed by a sequence of
linear programs as follows. Initialize I0 with {1, . . . , k}, j
with zero, and then maximize

∑
i∈Ij

τi subject to∑
i∈Ij

λiGi +
∑
i∈Ij

τiBi ≤ 0, (6)

for λi ≥ 0, τi ≥ 0, τi ≤ 1, and for all x ∈ Bc. If the
maximizing values of τi are 1 for all i ∈ Ij , stop and use Ij

in (4). Otherwise, form Ij+1 with the elements i of Ij such
that τi = 1, and repeat the process with Ij+1 (maximize∑

i∈Ij+1
τi, etc). This sequence of linear programs is at most

as long as the number of assessments.
WPV also demonstrate that the natural extension

E[f(X)|B] is the supremum value of µ for which there is
ε > 0 and λi ≥ 0 such that∑

i

λi(Gi + εBi) ≤ B(f − µ). (7)

This condition is quite intuitive, as it asks for the “price”
µ that can be paid for f , taking in consideration all other
“prices” (E[fi|Bi] − ε) (and linear combinations of them).
The supremum value of µ may be discontinuous at ε = 0, as
condition (7) for ε → 0 is not identical to (3).

There are several variations on “coherency conditions” in
the literature (Coletti 1994; Coletti & Scozzafava 1999). Us-
ing coherency, logical relationships among the Bi can be ac-
commodated and may actually reduce computational effort
(Capotorti & Vantaggi 2000). Such techniques can be added
to the algorithms presented in this paper.

The results just reviewed are quite elegant but still have a
few weaknesses:

• There is no simple way to detect when the natural exten-
sion can be directly computed by (3) — this may lead to
inefficiencies as conditioning events have positive proba-
bility more often than not. We must find algorithms that
solve the “non-zero” case efficiently and that gracefully
degrade when zero probabilities are present.

• There is a computational cost, both in time and in mem-
ory management, associated with setting up a sequence
of linear programs. In particular, there is time spent for
each linear program searching for an initial feasible so-
lution. There is also a cost associated with handling the
potentially many auxiliary variables τi.

FLAIRS 2002 249

As a way of avoiding sequences of linear programs, WPV
suggest that ε should be fixed at a small value, say 10−8.
Because µ∗(ε), the maximum µ as a function of ε, does not
increase with ε, it is possible to bound the natural extension
from above and below by solving two linear programs, first
taking a small ε and then taking ε equal to zero. As the the-
oretical complexity of linear programming depends on the
number of bits needed to store values (Bertsimas & Tsitsiklis
1997), small values of ε lead to larger computational effort
— at the very least, more sophisticated linear programming
techniques must be employed to prevent numerical instabil-
ity from dwarfing the effect of small ε. In fact, numerical
instability is certain to be present when µ∗(ε) is discontinu-
ous at zero ε.2

It seems that at least two linear programs must be solved
to produce a natural extension E[f |B] with some confi-
dence. One alternative is to first solve (3) (that is, take ε to
be zero) and then to solve the first step of (6) — if all τi = 1,
then the natural extension is ready. A second alternative is
to compute the unconditional P (B) and, if P (B) > 0, then
obtain the natural extension with an additional linear pro-
gram (3). If we have to compute a sequence of τi, we always
have to solve an additional linear program at the end of the
sequence, just to check that the natural extension has been
obtained.

The structure of natural extensions
WVP’s algorithms for natural extension explore both co-
herency conditions (4) and (7). The result is a theory of
considerable complexity. In this section, a simpler route is
pursued, starting from condition (7) alone. The purpose of
this effort is twofold: first, to simplify the results related to
zero probabilities; second, to obtain insights on algorithms
that can handle zero probabilities.

Define f to be inf f(X). Because any value of µ∗(ε) must
be larger than or equal to f , we are interested in the program:

max µ; subject to
∑

i

λi(Gi + εBi) ≤ B
(
(f − f) − µ

)
,

(8)
where λi ≥ 0 for i in {1, . . . , k}, µ ≥ 0 and ε > 0. An
initial feasible solution can be easily found for program (8)
for any value of ε: just take µ = 0 and λi = 0 for i in
{1, . . . , k}. Consequently, program (8) is more attractive
than its dual for any value of ε.

The maximum of (8) is a piecewise rational function
µ∗(ε) of ε (Bertsimas & Tsitsiklis 1997). Even though µ∗(ε)
may have many discontinuities for ε close to zero, we are
only interested in a (continuous) piece of µ∗(ε) in a vicinity
of ε = 0. Consider then a symbolic solution of (8) where we
retain only the rational functions that are valid in the vicinity
of ε = 0 (the simplex method will produce a tableau with a
rational function in each entry). At the end, the exact value

2As an example, consider the linear program in WPV’s Exam-
ple 1. Solving this program with the semi-sophisticated algorithms
presented in (Press et al. 1992), implemented in the Java language
with 64-bit floating point arithmetic, produces a totally incorrect
solution: the simplex method halts with an unbounded region for µ.

of the natural extension can be read off of the tableau by
setting ε to zero. In this process, only one test for equality
is required for each pivoting operation, exactly the test that
detects whether or not the current basic solution is degener-
ate (Bertsimas & Tsitsiklis 1997). All other comparisons are
strict, and cannot be affected by ε > 0, as the elements of the
tableau are always rational functions of ε. We conclude that
degeneracy necessarily happens in the course of optimiza-
tion whenever the natural extension is different from µ∗(0).

The symbolic method is relatively easy to code and can
be valuable in small problems where exact solutions are re-
quired.3 In practice, the order of polynomials produced by
the method can become unmanageably large. We might look
at implementations that compute a few coefficients for each
polynomial, increasing the number of available coefficients
only when needed. Even then, the potential complexity of
the method reduces its practical value.

Instead of focusing on (8) as a symbolic linear program,
we can use this program to derive Expressions (4) and (5)
and to obtain insights on algorithmic development. Suppose
then that we solve (8) for ε = 0. Denote the maximizing
values by µ∗, λ∗. To investigate the properties of λ∗ and
µ∗, it is convenient to define a new concept. The constraint
associated with a particular value x is ε-active (with respect
to λ∗) if the constraint is satisfied with equality for ε = 0
and if

∑
i λ∗

i Bi(x) > 0.
Consider the constraints for x ∈ Bc, which can be written

as
∑

i λ∗
i Gi + ε

∑
i λ∗

i Bi ≤ 0. If such an inequality is not
ε-active, it can remain valid for small enough positive ε; oth-
erwise, the inequality is violated for any positive ε because∑

i

λ∗
i Gi + ε

∑
i

λ∗
i Bi = ε

∑
i

λ∗
i Bi > 0.

Consider the constraints for x ∈ B:∑
i

λ∗
i Gi + ε

∑
i

λ∗
i Bi + µ ≤ f − f.

Again, an inequality that is not ε-active can remain valid
for small enough positive ε. Now suppose there are ε-active
constraints for x ∈ B. We can maintain feasibility by taking
µ = (µ∗ − εkλ

∗
), as we get∑

i

λ∗
i Gi + ε

∑
i

λ∗
i Bi + (µ∗ − εkλ

∗
) < f − f,

where k is the total number of assessments and λ
∗

is the
largest value of λ∗

i for i in {1, . . . , k}. Because limε→0(µ∗−
εkλ

∗
) = µ∗, the value of the natural extension is µ∗ as long

as no ε-active constraint is present for x ∈ Bc. We conclude:

Remark 1 We obtain λ∗ and µ∗, and if no constraint for Bc

is ε-active, then µ∗ is the natural extension.

This verification step is simpler than the computation of
P (B) or the solution of a linear program in τi, but it is equiv-
alent to those schemes (as will be shown later).

3Code implementing the symbolic tableau method can be ob-
tained from the author.

250 FLAIRS 2002

Suppose we obtain λ∗ and µ∗, and we detect ε-active con-
straints for Bc. How should we proceed? Take as start-
ing point an ε-active constraint for some x ∈ Bc and λ∗.
Assume that there are feasible values λ′ and µ′ such that∑

i λ′
iGi(x) < 0. We can take the convex combinations

(1−α)λ∗
i + αλ′

i and (1−α)µ∗ + αµ′ for some α ∈ (0, 1),
and then (note the strict inequality):

(1−α)
∑

i

λ∗
i Gi(x)+α

∑
i

λ′
iGi(x) = α

∑
i

λ′
iGi(x) < 0.

In general, we can mix various values of λ with λ∗ so as
to force strict inequalities in all constraints for x ∈ Bc —
except those constraints that are ε-active for every feasible
λ. To guarantee feasibility for positive ε, we must at least
“remove” the constraints that are always-active for ε = 0:

Remark 2 Consider the constraints for x ∈ Bc that are
active when ε = 0 for all feasible λ. Because these con-
straints satisfy

∑
i λiGi = 0 for every feasible λ, we must

set some λi to zero to enforce that
∑

i λiBi = 0 for all such
constraints.

To “remove” the always-active constraints, we force some
of the λi to be zero — in effect we add new constraints of
the form λi = 0. We may lose optimality for µ, so we must
again solve this linear program with the added constraints on
λ. It is possible that the added constraints on λ cause some
of the original constraints for x ∈ Bc to become active for
all feasible values of λ. These new always-active constraints
must then be “removed” and the process must be repeated
until no always-active constraint remains. Denote by µ# the
maximum value of µ subject to the remaining constraints,
and by λ# the corresponding value of λ.

When we obtain µ#, it is possible that all remaining con-
straints for x ∈ Bc are strict inequalities for ε = 0. In this
case all constraints can be satisfied for small enough positive
ε, and the natural extension is obviously µ#. However in
some problems there may be remaining constraints for x ∈
Bc such that

∑
i λ#

i Gi(x) = 0. Note that, because always-
active constraints have been “removed,” we have reached a
situation where some convex combination of values of λ can
satisfy the remaining constraints with strict inequality. Take
a convex combination (1 − α0)λ# +

∑J
j=1 α0λ

j/J such

that
∑J

j=1 λj < 0. By using this convex combination, we
can find an α0 guarantee that all constraints are strict for pos-
itive ε. Just choose α0(ε) = minX − εB#

G′+ε(B′−B#)
, where

G′ =
∑

ij λj
iGi(X)/J , B′ =

∑
ij λj

iBi(X)/J , and B# =∑
i λ#

i Bi(X). Note that α0(ε) decreases when ε decreases,
is positive for small enough ε, and limε→0 α0(ε) = 0, so the
effect of the “mixing terms” λj vanishes as ε tends to 0 from
above. Consequently:

Remark 3 The natural extension is equal to µ#.

Thus we may have to focus on a subset of the constraints (7)
to compute the natural extension. The required constraints
must be indexed by a subset I of {1, . . . , k}, and I must be

such that
∑

i∈I λiGi(x) < 0 for all x ∈ Bc and for some λ.
So we obtain the set I in (5).

Note that if a problem contains ε-active constraints for
x ∈ Bc, then P (B) must be zero. That is because P (B) is
the maximum value of µ subject to

∑
i λiGi + µ ≤ B for

λ ≥ 0, µ ≥ 0. If we have an ε-active constraint for x ∈
Bc, we must have µ ≤ 0, and then we must have P (B) =
µ = 0. The opposite reasoning is valid also. Remark 1 just
describes a test for detecting when P (B) = 0 that is more
efficient than existing methods summarized at the end of last
section.

Remark 2 is essentially related to constraints that are al-
ways active. Because every constraint in (8) is an inequality,
the solution of the linear program involves the association
of slack variable y′ with the constraint for x′ (Bertsimas &
Tsitsiklis 1997). The dual constraint associated with y′ is
P (x′) ≥ 0. If the constraint for x′ ∈ Bc is always active,
the slack variable is always zero. Using the null variable the-
orem of linear programming (Bertsimas & Tsitsiklis 1997),
we obtain that y′ is a null variable if and only if there exists
a probability measure in the credal set such that P (B) = 0
and such that P (x′) �= 0. In other words, the constraint
for x′ ∈ Bc is always active if and only if there is a prob-
ability measure in the credal set such that P (B) = 0 and
P (x′) > 0.

Imagine a credal set living in a multi-dimensional region
of space; every point in this region has nonnegative compo-
nents, and points with zero components must live in the bor-
der of the region. Suppose we have a credal set with vertices
in the border for which P (B) = 0. Now, suppose we go
to every such vertex and mark the constraints corresponding
to x ∈ Bc such that P (x) > 0 for that vertex. These con-
straints are exactly the constraints that are removed as we
work towards µ#.

An additional conclusion can be derived by analyzing the
reduced cost vectors for program (1). Small positive val-
ues of ε can only affect the components of the reduced cost
vector that are zero. Now, an optimal basic solution is de-
generate if and only if the dual optimal basic solution has
a reduced cost equal to zero (Bertsimas & Tsitsiklis 1997).
So, we must have ε-active constraints when λ∗ and µ∗ are a
degenerate basic solution of (3), showing again the interplay
between zero probabilities and degeneracy.

A pivoting scheme for natural extensions
We can use the results developed so far to produce a new
algorithm for computing natural extensions. The algorithm
presented in this section attempts to eliminate as many inef-
ficiencies as possible from the computation of natural exten-
sions.

1) The starting point is to obtain λ∗ and µ∗ from (3). The so-
lution of (3) introduces a slack variable y for each constraint,
and we apply Remark 1 to decide whether we already have
the natural extension. If y′ is zero and

∑
i λ∗

i Bi(x′) > 0,
then the constraint for x′ is ε-active. If no ε-active constraint
for x ∈ Bc is detected, we stop and declare µ∗ to be the nat-
ural extension. Otherwise, we must verify which constraints
are always-active. Again, we resort to slack variables. Sup-

FLAIRS 2002 251

pose that the constraint for x′ is ε-active (that is, y′ is zero).
To detect whether this constraint is always-active, we max-
imize the associated slack variables and determine whether
each y′ can be larger than zero.
2) After we detect that the constraint for x′ is ε-active, we
must remove this constraint using Remark 2. We do so by
setting some λi to zero — each one of these operations can
be accomplished with a pivoting operation in the tableau for
(3). We can set λi to zero simply by making it a nonba-
sic variable in the tableau. Instead of first detecting all the
constraints that are ε-active and then removing them all, it
is more efficient to remove a constraint as soon as possible.
The very act of pivoting to remove a constraint may reveal
that some other slack variables, at zero level for λ∗, are non
null after all. And by setting some λi to zero, we may find
that other ε-active constraints are removed simultaneously.
3) After removing always-active constraints, we return to
(3), now enforcing that some of the λi must be zero. We then
maximize µ, and return to the same process: check for ε-
active constraints, pivot to maximize slack variables, pivot to
remove constraints, etc. Eventually we reach a point where
always-active constraints have been removed, and the sim-
plex method yields µ#. As stated by Remark 3, we then
have the natural extension.

At first sight it may seem that maximizing some slack
variables (end of step 1) incurs a large cost. There is no
need to maximize slack variables to optimality: as soon as a
pivoting operation leads to a positive value for y′, the asso-
ciated constraint cannot be always-active. And here we can
use another important insight: all the information necessary
to maximize the value of a slack variable y′ already is in the
tableau for (3). If y′ is basic at λ∗, then the cost associated
with y′ is available in the tableau, and a feasible solution is
already available. If y′ is non-basic, then a single pivoting
operation can bring y′ to the basis and then the same argu-
ment is valid. An additional computational gain can be ob-
tained by, after every pivoting operation, marking the slack
variables that have positive values. These slack variables
are associated with constraints that cannot be always-active.
With this simple bookkeeping, we speed up the detection of
always-active constraints.

Note that the algorithm runs through a sequence of pivot-
ing operations. A single tableau is used, and the algorithm
never spends any time looking for feasible solutions or ini-
tializing tableaus; there are no “small values” to set up, and
no auxiliary variables τi to introduce.

Conclusion
This paper shows how to obtain an algorithmic understand-
ing of natural extensions from the relatively simple and in-
tuitive condition (7), and how to create a pivoting algorithm
for computing natural extensions. The symbolic simplex
method and the interplay between zero probability and ac-
tive constraints/zero reduced costs can clarify subtle aspects
of natural extensions.

A complete algorithmic understanding of natural exten-
sions still requires empirical solution of practical problems
and comparison of algorithms. From a theoretical point of

view, it would be important to determine the average number
of pivoting operations for the algorithm presented. This av-
erage number should be compared to the average complexity
of existing algorithms (which use a sequence of linear pro-
grams) and to the average complexity of program (1). Fi-
nally, it would be useful to look at interior methods for the
computation of natural extensions.

References
Bertsimas, D., and Tsitsiklis, J. N. 1997. Introduction to Linear
Optimization. Belmont, Massachusetts: Athena Scientific.

Bruno, G., and Gilio, A. 1980. Applicazione del metodo del simp-
lesso al teorema fondamentale per le probabilità nella concezione
soggettivistica. Statistica 40:337–344.

Capotorti, A., and Vantaggi, B. 2000. A computational strategy
for inference by strong local coherency. In Proc. of the Eighth Int.
Conf. on Information Processing and Management of Uncertainty
in Knowledge-based Systems (IPMU), volume 3.

Coletti, G., and Scozzafava, R. 1999. Coherent upper and lower
Bayesian updating. Proc. of the First Int. Symp. on Imprecise
Probabilities and Their Applications, 101–110. Ghent, Belgium:
Imprecise Probabilities Project, Universiteit Gent.

Coletti, G. 1994. Coherent numerical and ordinal probabilistic as-
sessments. IEEE Transactions on Systems, Man and Cybernetics
24(12):1747–1753.

Cozman, F. G. 1999. Calculation of posterior bounds given con-
vex sets of prior probability measures and likelihood functions.
Journal of Computational and Graphical Statistics 8(4):824–838.

de Finetti, B. 1974. Theory of probability, vol. 1-2. New York:
Wiley.

Giron, F. J., and Rios, S. 1980. Quasi-Bayesian behaviour:
A more realistic approach to decision making? In Bernardo,
J. M.; DeGroot, J. H.; Lindley, D. V.; and Smith, A. F. M., eds.,
Bayesian Statistics. Valencia, Spain: University Press. 17–38.

Hailperin, T. 1996. Sentential Probability Logic. Bethlehem,
United States: Lehigh University Press.

Hansen, P.; Jaumard, B.; de Aragão, M. P.; Chauny, F.; and Per-
ron, S. 2000. Probabilistic satisfiability with imprecise probabil-
ities. Int. Journal of Approximate Reasoning 24(2-3):171–189.

Levi, I. 1980. The Enterprise of Knowledge. Cambridge, Mas-
sachusetts: MIT Press.

Nilsson, N. J. 1986. Probabilistic logic. Artificial Intelligence
28:71–87.

Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; and Flannery,
B. P. 1992. Numerical Recipes in C. Cambridgeshire: Cambridge
University Press.

Seidenfeld, T.; Schervish, M. J.; and Kadane, J. B. 1995. A rep-
resentation of partially ordered preferences. Annals of Statistics
23(6):2168–2217.

Walley, P.; Pelessoni, R.; and Vicig, P. 1999. Direct algo-
rithms for checking coherence and making inferences from condi-
tional probability assessments. Technical report, Dipartimento di
Matematica Applicata B. de Finetti, Università di Trieste, Trieste,
Italy.

Walley, P. 1991. Statistical Reasoning with Imprecise Probabili-
ties. London: Chapman and Hall.

Weichselberger, K. 2000. The theory of interval-probability as
a unifying concept for uncertainty. Int. Journal of Approximate
Reasoning 24(2-3):149–170.

252 FLAIRS 2002

