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Abstract

We look at the several sorts of semantics that have
been provided for “probability”, and explore the possi-
bilities of generalizing them to imprecise probabilities.
The Support Set of a statement is a useful auxiliary
construct, however probability is interpreted.

Introduction
Meaning is a many faceted thing. We may want to
understand the meaning of a term like “probability”
because we need to know it to evaluate the truth of
statements in which it occurs. We may want to know
the meaning of the term in order to get a handle on
computing the values of the function it represents. We
may want to know the meaning in order to relate it to
other parts of a technical vocabulary, or to explore its
relations to other terms such as “entailment” or “knowl-
edge.” In a formal context we may provide an interpre-
tation or meaning for an expression to establish the
consistency of a set of axioms containing it, or to es-
tablish the independence of some axioms from others,
in short to provide a model of probability for one pur-
pose or another. Or we may want to understand how
to use “probability” — what is its practical import to
us? What is it connection to the real world?

What follows is designed to address a number of these
questions, but is primarily focussed on this last ques-
tion. This is a question to which a relatively formal
answer, rather than informal discussion seems appro-
priate. It is all very well to say that probability is a
guide in life, or that we should make choices in confor-
mity with mathematical expectation, but without some
tie to the world it is unclear what the force of such ex-
hortations is.

The basic idea is that of a support set: A support
set of a probability statement is a set of models of
our language that renders that probability statement
true. This is so whether the probability statement is
real valued, interval valued, or set valued, and whether
the basic idea of the interpretation is frequency, logical
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measure, or degree of belief. Of course we will have to
construe “model” somewhat differently in these differ-
ent cases.

Frequency Semantics for Probability
The idea of providing a formal semantics for probability
is not new. Richard von Mises provided a formal model
or interpretation for probability. It has been said (I
have said it myself!) that his interpretation is that typ-
ically adopted by classical statisticians, but this isn’t
quite true. What von Mises did was to assuage the
consciences of those who wanted to associate “long run
frequency” with probability. In our terms, he provided
the basic idea of a formal model of an object — limit-
ing frequency in a collective — of which the axioms of
probability are true. A support model in this case is
an infinite sequence satisfying von Mises’ constraints.
There were difficulties concerning the irregularity re-
quirement, which led to important ideas in computa-
tional complexity (Church 1940; Martin-Lof 1966) but
basically the objects required were shown to exist as
mathematical objects by Copeland (Copeland 1937).

This is a nice bit of mathematics. But nobody sup-
posed there really were collectives in nature: infinite se-
quences with true randomness. Nobody ever supposed
that the probability of an American male in good health
of age 70 surviving to age 71 was the limiting value of
a relative frequency in an actual infinite collective. The
model of von Mises served to confirm the consistency
of the probability axioms under the limiting frequency
interpretation.

As Bertrand Russell, among others, observed, so
far as empirical probability goes, this idealization is
overkill. Relative frequency in a large finite actual pop-
ulation will do just fine as a model of the probability ax-
ioms. Furthermore, there is no doubt that these relative
frequencies exist. As an interpretation of “probability”
in some of its occurrences — for example those uses cor-
responding to what Pollock calls “indefinite probabili-
ties” (Pollock 1990), or the uses that typically employ
the indefinite article (the probability that a 70 year old
man will survive...) — this relative frequency inter-
pretation seems fine. A support model is just a finite
reference class.
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But this will not work for “definite” (Pollock 1990)
probability statements. The only relative frequency
that can apply directly to heads on the next toss of this
particular coin, or to the survival of a particular 70-
year-old man for a certain period, is 1 (the coin lands
heads; the man survives) or 0.

Probabilities for Sentences

Carnap, among others, (Carnap 1950; Hintikka 1966)
offered a very different semantics for probability. Car-
nap wanted to accommodate sentences like “The prob-
ability that the next toss of this coin will yield heads is
0.5,” or “The probability that Mr. Smith will survive
for a year is 0.912.”

First of all, these probabilities should be construed
as conditioned on “what we know;” this was recognized
by Keynes (Keynes 1952). That’s easy enough to ac-
complish: they may be represented as the ratio of two
measures on propositions: the probability of h given e,
P (h, e), will be just m(h∧e)

m(e) , where e is everything we
know and m(e) > 0. It is thus easy enough to reduce
the problem of computing probabilities to that of find-
ing a logical measure m on propositions. In general and
modern terms the measure m was thought of as defined
on the models of the language. It is more convenient to
take the basic measure function m as part of the model.

A support set for the probability statement “P (h) =
c” is thus a set of pairs 〈M, m〉 such that M is a model
of (part of) our language, m a measure function, and
m(h) = c; a support set of “P (h|e) = d” is the set of
pairs 〈M, m〉 such that m(h ∧ e)/m(e) = d. In either
case there are a great many such pairs.

Carnap himself made several attempts to find a logi-
cal measure function m that would be compelling, that
could be thought of as providing a logical semantics for
probability, but he never achieved anything he regarded
as satisfactory. In our terms, he was seeking a singleton
support set. His initial idea was to suppose that each
model of the language should carry the same weight, as
suggested by an intuitive principle of indifference. This
didn’t work. Assigning equal measures first to statis-
tical structures, and then to the models that make up
those structures, was more intuitive. But both Carnap
and others who followed this approach have ended up
characterizing the function m by means of parameters
that have only intuitive justification.

An alternative is to take the measure function m to
be, not logical, but psychological — to reflect the ac-
tual degrees of belief of an idealized agent. (If this is
not an oxymoron!) This agent must be thought of as
idealized, of course, since it is unlikely that any actual
person is perfectly consistent in probabilistic terms, but
that degree of approximation may be something we can
live with. If we do this, we have a completely differ-
ent sort of semantics for probability: one in which the
meaning of a probability statement is to be cashed out
in psychological terms — in terms of degrees of belief,
rather than in terms of partial entailment.

The support sets will be similar in structure and mul-
tiplicity to those for logical probability. In particular
each ideal agent may have his own belief measure.

Interval Probability
Each of these interpretations of probability can easily be
extended to intervals, or, more generally, sets of prob-
abilities.

Frequencies
Just as we may say that the relative frequency of heads
among tosses is 0.48734, so we may say that the rela-
tive frequency of heads is between 0.450 and 0.550. Any
collection of frequency functions may be taken to char-
acterize relative frequencies in a set. Intervals are the
sorts of things we can plausibly take ourselves to know ,
but there are cases in which convexity does not hold:
the coin which is either biased 2:1 in favor of heads or
2:1 in favor of tails is certainly not fair .

If we interpret probabilities as class ratios, a model
of the first statement is one in which the ratio of the
cardinality of tosses that result in heads to the cardi-
nality of tosses in general is exactly 0.48734. Even if
we fix the domain of our models, there are many such
models, since there are many possible arrangements of
heads and tails among the individuals that make up this
set. This set of models is an example of a support set
of models for the statement that the relative frequency
of heads among tosses is 0.48734. Whatever interpre-
tation is given to the language, this relative frequency
will hold.

The support set of the second statement is the larger
set of models in which the relative frequency of heads
among tosses lies between 0.450 and 0.550.

Logical and Psychological Measures
In principle the generalization from one measure to a set
of measures seems elementary. C. A. B. Smith (Smith
1961; 1965), for example, took the natural path of dis-
tinguishing between the odds and agent would offer on
an event E and the odds he would offer against E. This
approach leads to upper and lower bounding measures
on each proposition. It can be argued that these upper
and lower odds must correspond to the envelop of a set
of probability functions. Rational belief, as evidenced
by behavior, is not convex on this model: If I will bet
at no more than 1:2 on heads, and at no more than 1:2
on tails, my probability of heads is [0.33,0.66]. But I
will not bet at even money.

In this case a support set for the probability of E is
the set of intended models (of our language, with given
empirical domain) compatible with our knowledge base,
together with a measure m on that set. The (interval)
value of the probability is derived from the models and
a set of measure functions M defined on the language:
the probability of E is the set of conditional probabil-
ities of E given K, where K is our background knowl-
edge: {m(S ∧ K)/m(K) : m ∈ M}. Behavior is or
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ought to be determined by the envelop of the set of
measures.

Evidential Probability

Evidential probability requires that probabilities be
based on known statistical facts; it is the imprecision of
our knowledge of statistical facts that renders evidential
probability imprecise. Before turning to the semantics,
I shall review the syntax.

Syntax

Probabilities are defined relative to a body of knowledge
— a set of sentences — K. First of all we consider
equivalence classes of statements of the language, where
the equivalence relation is factual equivalence given K.
If K � �T ≡ S�, then S and T belong to the same
equivalence class.1 (Note that we are not demanding
that S and T be logically equivalent.)

Second, in each equivalence class we look at the state-
ments of a particular form. We will write η for a se-
quence of variables ranging over empirical objects, α
and β for sequences of terms of any sort; all the terms
in �α� are also in �β�. We use the Greek letters τ and ρ
for formulas; τ is to suggest “target” and ρ is to suggest
“reference.” It is understood that the variables free in τ
and ρ are variables from the sequence η. Furthermore
�ρ(β)� is ρ with its variables replaced by terms from
the sequence β, and similarly for �τα)�.

A potential probability for a sentence S given K
arises when there is a target formula τ , a reference for-
mula ρ, and sequences of terms �α� and �β�, such that:

1. �τ(α) ≡ S� ∈ K.

2. �ρ(β)� ∈ K.

3. For some constants p and q, �%η(τ, ρ, p, q)� ∈ K.

The formula �%η(τ, ρ, p, q)� represents statistical
knowledge in K and is to be understood as meaning
that between p and q of the sequences of objects satis-
fying the formula ρ also satisfy τ .

For example, we could take the formula τ to be
“ . . . lands heads,” ρ to be “ . . . is tossed,” and p
and q to be 0.48 and 0.52: “%x(x lands heads,x is
tossed,0.48,0.52).” Or to say that the relation of being
longer than is almost always transitive we could write
“%x, y, z(L(x, z), L(x, y) ∧ L(y, z), 0.9, 1.0).”

We get from potential probability intervals to actual
ones with the help of three syntactic principles: rich-
ness, specificity and precision. These are essentially
principles for disregarding potential reference formulas
ρ. There may well be a number of distinct potential
probabilities left; the cover of these remaining intervals
is what we take to be the evidential probability associ-
ated with the equivalence class of S.

1We follow Quine (Quine 1041) in using corners to name
types of expressions.

Semantics
In view of the fact that our object language contains
statements mentioning real numbers, models are best
construed as having two components: a domain of
mathematical objects and a distinct domain of empiri-
cal objects De. We stipulate that the domain of empir-
ical objects be finite.

First we require semantics for statistical statements
— statements of the form �%η(τ, ρ, p, q)�. To this end
we introduce the notion of a satisfaction set of a formula
φ in a model m. Intuitively, this is the set of empirical
objects that satisfy the formula φ.

SSm(φ) = {〈a1, . . . , an〉 ∈ Dn
e : va1,... ,an

x1,... ,xn
satisfies φ},

where φ contains just the n free variables x1, . . . , xn,
and va1,... ,an

x1,... ,xn
is any variable assignment that assigns a1

to x1, . . . , an to xn.
With the help of this notion, we can define truth in

a model m for statistical statements:
�%η(τ, ρ, p, q)� is true in m if and only if |SSm(ρ)| > 0

and p ≤ |SSm(τ ∧ ρ)|/|SSm(ρ)| ≤ q.
The statistical information that underlies probabil-

ity intervals can be reflected in model theoretic rela-
tions concerning the ratios of satisfaction sets and the
structure of reference sets.

For the sentence S and the background K the i’th
support set of models, Λi, is the set of models in which
�S ≡ τi(αi)�, �ρi(αi)�, and �%η(τi, ρi, pi, qi)� are all
in K and ρi has survived the application of our three
principles. �Prob(S, K) = [p, q]� is true if [p,q] is the
cover of the intervals mentioned in the support set: p
and q bound the frequency of truth of S in the set of
support models.

General Support Sets

As we noticed earlier, almost any standard interpreta-
tion of probability can be generalized to allow for sets
of probabilities or for probability bounds, or both. Let
us see how the semantics for evidential probability can
reflect these interpretations.

Frequencies
It follows from the fact that reference classes are finite,
that there is exactly one true relative frequency of τ ’s
among ρ’s in any model. The formula �%η(τ, ρ, p, q)�
will be true in a model just in case this relative fre-
quency falls between p and q in that model.

We may be interested not only in the general sta-
tistical statement, but also in its, shall we say, instan-
tiations. Thus not only do we want to specify truth
conditions for �%η(τ, ρ, p, q)�, but also for “the proba-
bility of �τ(α)� is [p, q]” for certain sequences of terms
α.

Typical cases in which we want such expressions to
inherit the intervals underlying the general case arise
in physics (particularly statistical mechanics, if we are
content to let the number of particles be finite), in well
regulated gambling apparatus (provided that α refers to
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a future event), and similar cases in which the events
are, or are assumed to be, outside of human control.

But demographic cases are also often taken to fall into
this class. The insurance company assumes that the
probability that Mr. Smith will survive the coming year
is the (approximate) frequency in the reference class
into which his characteristics place him. It is not that
his survival is beyond human control; in a rather grim
sense it is well within human control to determine that
he does not survive the year.

In each case, however, the probability is the relative
frequency of truth of �τ(α)� in the support set of rele-
vant models, where the support set of relevant models
is determined by ρ (the reference class is always men-
tioned or implicit in cases amenable to frequency in-
terpretation), τ , and α. In effect, the set of models is
generated by allowing η to range over the entire inter-
pretation of ρ. The interval probability of �τ(α)� is just
the range of ratios of SSm�(τ(η)∧ρ(η))� to SSm�ρ(η)�
in models m.

Example: “The probability of survival for another
year of a 40 year old man is [0.92,0.95].” Let D
be the domain of our model. In each model the
satisfaction set of “x is a 40 year old man” has a
certain cardinality, as does the satisfaction set of
“x is a 40 year old man who survives for another
year.” In order to make the probability statement
true, the ratio of these two cardinalities must lie
in [0.92,0.95]. The support set of models for this
statement, construed in terms of frequencies, is just
the set of models in which the corresponding sta-
tistical statement is true.
More interesting is the fact that “the probability of
survival for another year of Charles, a 40 year old
man, is [0.92,0.95]” has exactly the same support
set on the frequency interpretation, when what we
suppose ourselves to know about Charles is exactly
that he is a 40 year old man.

Logical Width
Let us follow the trail blazed by Carnap (Carnap 1950)
and Jaynes (Jaynes 1958) and suppose that there is a
syntactically determined measure defined for each (pos-
sible) sentence in our formal language, at least within a
context. This approach generalizes naturally to indeter-
minate probabilities: we suppose that there is a set of
distributions or logical measures, rather than one. How
can we spell out the truth conditions of “the probability
of S is the interval [p, q]?”

In the simple case, the probability of S will be the
sum of the measures on the intended models in which S
is true. When there is a set of measures on these models,
this no longer holds. For example, if we are modelling
the rolls of a die, and the measures we assign to the
six models of the outcome are 0.1,0.1,0.1,0.1,p,0.6-p, for
0.0 ≤ p ≤ 0.6, and S is “lands five or six” the looseness
of the logical measure for “lands five” is irrelevant.

The support set of models for S consists of intended

models paired with measures. In this case it is the set
of intended models of S, paired with the singleton set
of measures that assigns measure 0.6 to S.

Coonditional Probability is more interesting. For any
S there will always be a pair of statements of the form
τ(α) and ρ(β) where τ(α) is known to be equivalent
to S and ρ(β) is part of our data. (We assume the
full power of first order logic.) Any such ρ(β) may be
taken to determine a potential support set Λ consisting
of the set of models in which ρ(β) is true, paired with a
set of measures M determining the truth frequency of
�τ(α)� in Λ. (In evidential probability the set of mod-
els is constrained also by the truth of some statistical
statement.)

We may thus make a connection between evidential
and logical-measure probability. The support set of a
logical measure probability will always be a subset of
each of the support sets of evidential probability. The
connection does us little good, however, since the mea-
sure on the truth of S in a set of models need not at all
constrain the measure on the truth of S in a subset of
those models.

Example:
The probability that Lightening will win the 2:00
race, given our total knowledge base K is the set of
conditional probabilities obtained by conditioning
that event on K, using each of the set of initial
measures with which we start.
But K includes many facts that I regard as ir-
relevant. Let K∗ be a minimal set of evidence
statements such that we obtain the same condi-
tional probabilities for Lightening’s success, and
such that the deletion of any subset of K∗ would
alter the conditional probability. The models and
measures of each such set of statements is also a
support set for that probability. Note that each
supports the same probability range. But also note
that there is no automatic way in which to take ac-
count of a new item of evidence.

Subjective Belief
The value of a logical probability, whether definite or
indefinite, is intended to be legislative or normative for
rational belief; the truth or falsity of probability asser-
tions is taken to be a matter of logic, and not a matter
of psychology. The difficulty raised by Frank Ramsey
(Ramsey 1931) for the system of Keynes (Keynes 1952)
was the difficult of knowing when the logical system
was being obeyed. But then Ramsey went on to argue
that all we can ask of a person is that his degrees of
belief conform to the probability calculus, not that they
be oterwise constrained, where “degrees of belief” are
taken to be revealed behaviorally.

If probabilities are idealized degrees of belief, then
the semantics must refer to an idealized psychological
domain. Part of the idealization is that the objects of
belief are taken to be represented by the sentences of a
formal language. We may also abandon the idea that
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beliefs are real-valued. We retain the idea of logical
omniscience.

An idealized state of mind can then be represented
by the intended models of the language, together with a
degree-of-belief function B taking real values. Since we
have finitized and sanitized things, we are in the same
position we were in the case of logical measures. Despite
the fact that we interpret probabilities as psychological
rather than logical, the support sets of P (S) = [p, q]
are still ordered pairs, consisting of intended models
M(S) paired with a set of “degree” of belief functions
B defined over that set. In this case there may be good
arguments for regarding B as a convex set.

Example:
I think the probability that Samuels will be elected
mayor is the interval [0.30,0.40]. This interval
is the result of conditioning on everything in my
background knowledge K. But it may well be that
I don’t regard anything but E1 and E2 as relevant.
Thus the support set for this probability may be
simplified to the much larger set of models making
E1 and E2 true, together with the set of measures
{B(S ∧ E2 ∧ E1)/B(E2 ∧ E1) : B ∈ B}.
Again, there is no built in procedure for taking
account of a new item of relevant evidence E3.

Discussion
Since each support set is a superset of K, our knowledge
base, we know that the intersection of these support
sets is nonempty. However, just as we know that in the
“real” world, S is true, or in the “real” world S is false,
so too in the collection of models that render our total
knowledge base true, the relative frequency of models in
which S is true has some determinate value (of course);
but we don’t know what it is.

There are two responses. One is to make some
“assumptions”— to suppose that we know things that
in fact we don’t know. This is what happens when we
take subjective probability as an “estimate” of relative
frequency, or adopt a lotical measure function. The
other response is to disregard some of the things we
do know. This is what happens when we regard the
next toss of a coin as “merely” a toss, and not a toss
performed by Jane on Tuesday.

Evidential probabilities are based on frequencies that
are known to hold in the real world — it is objective.
The semantics we have just outlined illustrate how that
comes to pass. What allows this to happen is that in
the interest of objectivity we ignore some of the data
we have. We are not “assuming” extra knowledge, but
rather disregarding irrelevant knowledge; thus the set of
models in which the relevant frequency is calculated is
a superset of the models of our background knowledge.

Note that in many cases there is essentially only one
support set Λi in the sense that if Λj is another sup-
port set, then the intervals mentioned in the component
statistical statements are the same. This is true, for ex-
ample, for the outcomes of well constructing gambling

apparatus, for measurement error, etc. In these well
regulated and well understood cases, there is essentially
only one reference class, and the known limits on the
relative frequency in that reference class determine the
probability.

Conclusion
The semantics we have generated for evidential prob-
ability, in which probabilities are intervals, admits of
variations corresponding to frequency interpretations
of probability, logical measure interpretations, and per-
sonalistic degree of belief interpretations. The general
form of the semantics, expressed in terms of support
sets, seems quite useful.
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