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Abstract

Previously proposed qualitative probabilities do not satisfy the
requirements of temporal reasoning, and a new abstraction is
proposed here that represents probability changes over time
using four values: increasing, decreasing, constant, and
unknown. The qualitative temporal probability presented
satisfies the axioms of probability by obeying a set of
probabilistic constraints. Temporal constraints are imposed
through a set of causality, ordering and probabilistic
constraints.

1. Introduction

Qualitative imprecise probabilities accomplish many
reasoning tasks without exact numeric calculations.
Instead, these qualitative probabilities impose constraints
implied by the probability theory on symbolic abstractions
to guide the inference process towards a limited range of
possible and valid conclusions.

Qualitative abstractions of probabilities include: ranking
based on infinitesimal probabilities (or -semantics) where
order of magnitudes of a small quantity ( ) are used to rank
outcomes based on their likelihood (Goldszmidt & Pearl,
1996). Another approach is to assess the relative changes
in probabilities as either +, – , 0, or ? to indicate an
increase or a decrease, no change or unknown in a
posterior probability given some evidence (Parsons, 1995).
Other approaches are rooted in a probabilistic abstraction
of defaults as in (Neufeld, 1989). For a more complete
review refer to (Parsons, 2001) and  (Wellman, 1994).

These approaches to qualitative probabilities do not lend
themselves to temporal reasoning. The infinitesimal
probabilities assume shallow reasoning chains and would
not capture the accumulation of small changes over time
(Goldszmidt & Pearl, 1996). For example, if the
probability of death increases by a constant each time
unit that a given infection is left untreated, the order of

magnitude does not change and an imminent certain danger
would be missed.

Qualitative techniques based on relative change in
probabilities rely on expressing the direction of change in
posterior probabilities of a hypothesis given some
evidence. The type of question that such representation
answers is how an observation (e.g. fever) would change
belief in a hypothesis (e.g. flu)? Would it increase that
belief or decrease it? These changes are therefore
measured with respect to an assumed prior belief. In
temporal reasoning, it is important to express the change in
beliefs with respect to previous (or future) time units.
These beliefs change even in the absence of evidence. For
example, it is important to be able to represent the fact that
as time passes colors fade. It is also necessary to find a
concise representation for efficient acquisition. It is not
acceptable to represent the probability that color fades
given each possible period. Relative change techniques
also suffer from the spreading of unknown values when
used in long inference chains.

The following section introduces the qualitative
probability model. Inference using these qualitative
probabilities relies on enforcing probabilistic and temporal
constraints implied by the laws of probabilities and
temporal precedence ordering. Sections 3 and 4 introduce
these constraints. Section 5 discusses how to apply the
qualitative probability model to inference tasks.

2. The Qualitative Probabilities

To express change in probability over time, belief
increases (and decreases) ought to be measured with
respect to time. These changes are referred to, in this work,
as time-relative changes. Similarly, it is possible to
introduce time-infinitesimal probabilities because belief
increases (and decreases) correspond to infinitesimal
changes over infinitesimally short periods.

A combination of time-relative change and time-
infinitesimal probabilities is used. The value of a
qualitative probability can be increasing (i), decreasing (d),
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constant (c) or unknown (?). These values are defined in
terms of inequalities first, then presented in terms of
infinitesimal probabilities as follows:

P[t-t+ ] (x)=d , : < < , Pt+ (x)>Pt+ (x),
P[t-t+ ] (x)=i , : < < , Pt+ (x)<Pt+ (x),
P[t-t+ ] (x)=c , : < < , Pt+ (x)=Pt+ (x),
P[t-t+ ] (x)=? , : < < , Pt+ (x) Pt+ (x).

In the above, and are time points within the interval [t,
t+ ].

The  -semantic for d, i, c, and ? are defined as follows:
P[t-t+ ] (x)= d , : < < ,  such that

Pt+ (x)-Pt+ (x)=- ,
P[t-t+ ] (x)=i , : < < ,  such that Pt+ (x)-Pt+ (x)= ,
P[t-t+ ] (x)=c , : < < such that Pt+ (x)-Pt+ (x)|=0,
and P[t-t+ ] (x)=? , : < < , such that

Pt+ (x)-Pt+ (x) is in the interval {[- , ]}.
In the above definitions, both delta and epsilon are small
positive quantities.

Any probability P(x) (or probability density) can be
expressed as a function in and t. The sign of the of time-
slope (differential with respect to time) of this function at a
given t corresponds to the time-change probability at that
time.

To represent how a probability or a probability density
function (pdf) changes over time, a string of literals is used
such that each literal corresponds to a qualitative
probability.

These strings cannot have two adjacent identical literals.
Therefore a Gaussian distribution is "id", a uniform
distribution is "c", and so on. Subscripts can be added to a
literal to indicate the time interval for the literal. For
example, a Gaussian distribution of mean w can be
described as "i[-inf,w]d]w,inf]". It is preferable however to use
finite intervals in describing distributions for practical
reasons, therefore the string "i[0,w]d]w,2w]" approximates the
Gaussian distribution. The notation described in this
section is used throughout the paper to describe different
functions of time. The values , and 1- denote a low
probability value and a high probability value respectively.

3. Probabilistic Constraints

The constraints implied by the axioms of probabilities
include constraints on probability density functions and
constraints on probability values.
3.1 Constraints on Probability Densities

Lemma 1 Any probability density function ending with “i”
or “c” can only be defined on a finite interval. Formally, if
“x*i” or “x*c” is a probability density function and x*
represent zero or more literal in {d,c,?}, then there exist a
finite w< such that the density function is not defined
beyond w.
Proof. An increasing or constant density function1 should
be bound so that the probability does not exceed unity.

1 This result is not true for hazard functions representing
the rate of occurrence of an event.

Lemma 2 Chopping off the tail of any probability density
function ending with “d” introduces an arbitrarily small
error if the tail is chopped beyond w. Formally, if “x*d”
is a probability density function and x* represent zero or
more literal in {i,c,?}, then there exist a finite w< such
that any probability is affected by a finite amount if the
distribution beyond w is ignored.
Proof. The contribution of a decreasing density function
possibly extending till infinity decreases as it approaches
infinity such that the contribution of the tail can be bound
to an arbitrarily small error by choosing an appropriate
cutoff point w.
Proposition 1 There is a finite time approximation for any
probability density function that introduces a small error of
at most  in a probability evaluation.
Proof. This proposition follows from Lemma 1 and
Lemma 2 above assuming that all temporal probability
densities are defined over the positive time line and that
any such function must end with “c”, “i” or “d”.
3.2 Probabilistic Inference Rules

Proposition 2 The probability of the complement of x over
a given time interval, P(~x) can be evaluated based on the
probability of x. Let P(x) denote the change in the
probability of x over some interval and P(~x) denote the
change in ~x probability for the same interval. P(x) and
P(~x) are related by the following relation:

P(x) P(~x)
I d
d I
c c
? ?

Proof. The above table follows directly from the notion
that P(~x) = 1- P(x).
Proposition 3 The following table gives the product of two
probabilities:

* I d c ?
I I ? i ?
d ? d d ?
c I d c ?
? ? ? ? ?

Proof.  The above table preserves the slope of a probability
when multiplied by a constant or another probabilities of
the same slope. The product of two probabilities of
different slopes is unknown and so is the product involving
an unknown slope.

Bayes Rule: Applying the above product proposition, we
can calculate a joint probability. According to Bayes rule,
the joint probability is the product of a conditional
probability and a prior probability.
Assume that the joint probability P(A,B)= i. According to
Bayes Rule, P(A,B) = P(A|B) P(B) = P(B|A) P(A).
Therefore, having P(A,B)=i is inconsistent in the above
table with having P(B) =d and P(A|B) = d.
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Proposition 4 The table below represents the sum of two
probabilities.

+ i d c ?
i i ? i ?
d ? d d ?
c i d c ?
? ? ? ? ?

3.3  -Semantics Identities

Lemma 3 Both and (1- ) converge to zero when raised to
a sufficiently large exponent. Mathematically,

Lim n
n=0 , and  Lim n   (1- )n=0.

Lemma 4 The sum of powers of converges to a constant
that is less than or equal to 1.

i
i= c  1.

Proof. This follows directly from Lemma 3 and from the
fact that these values form a probability distribution, as the
added terms approach zero, the total approaches a constant.
This constant must be bound by 1 to be a probability.
Proposition 5 To achieve the desirable accumulation of
small effects, it is assumed that the sum of a sufficiently
large number of small probabilities may add up to 1.

Lim n n 1.
Proposition 6 It follows from proposition 5 that the sum
of a large number of m approaches m-1.

Lim n n m m-1

4. Temporal Constraints

It is useful to distinguish between hard temporal
constraints and soft temporal constraints. As usual hard
constraints must hold while soft constraints may be
violated. In a sense, soft constraints are similar to defaults
that could be assumed in the absence of contradictory
evidence. For example, statements like “I eat a light meal
before going to work” or “Students take data structures
before artificial intelligence” represent soft constraints.
Hard constraints on the other hand represent physical laws
that are not to be violated. As an example of hard
constraints, consider the statement “An object cannot be in
more than one location at the same time.” According to
multiple worlds semantics, a state is that is not reachable
from another state represent a hard constraint, while a soft
constraint represents a world state that is the not most
normal or preferred.

The distinction between hard and soft constraints has
implications on the representation. Soft constraints have a
probability associated with them indicating how likely they
are to be satisfied. Any scenario that violated hard
constraints is rejected. However, scenarios violating soft
constraints may be unlikely. Both hard and soft constraints
may be temporal or static. Temporal constraints impose a
precedence relation between two or more time points while
static constraints apply to a set of states at a particular time.
It is necessary to introduce the time model before showing
how to represent temporal constraints.

4.1 Time Model

A time state is described as a pair < t, S > where t is a time
point, duration or interval measured from an arbitrary
origin and S is a state. Any state S generally consists of a
conjunction of assignments of values to state variables.
Each time t has a set of possible states associated with it.
These states may share some values but any two states will
differ in at least one value assignment. Each possible state
occurs with a certain probability.

There are sound reasons to support the view that the past
is unique. However, this unique past is rarely known.
Instead of assuming a unique past, allowing for uncertainty
about states in the past would result in a set of possible
pasts as well as a set of possible presents and futures.

A chronicle is a self-consistent history with a past,
present and a future. Different chronicles may share states
and must share observed variable assignment (assuming
reliable observations). A chronicle is self-consistent if all
states do not violate hard constraints, and that all state
change implied are possible (i.e. may result from known
and possible events, actions, persistence or natural change).
4.2 Representing Temporal Constraints

Hard temporal ordering constraints: I and J are two
time-state structures, H is a hard ordering constraint in the
form HO: M(R(I, J)) where M is a temporal modal
operator, and R is a temporal relationship between I and J.
Therefore, any chronicle that does not satisfy R is not
acceptable at some or all times as specified by M. The use
of the modal operators (always, until, eventually and next)
in expressing constraints is useful in making distinction
between hard constraints that must eventually hold from
those that must hold always or within a certain time
horizon. The relationship R can be any of Allen’ s interval
relationships (Allen , 1984).

Hard constraints on temporal probabilities: These
constraints are expressed as HT:M(P(I)=p), where M is a
temporal modal operator, P(I) is the probability of time-
state I, and p is in {d, i , c}. This allows us to express
something like “eventually the probability of a valve
failure increases”.

HT: (P(valve_failure) =i) where denotes an
eventuality. Therefore, only chronicles where this
probability eventually increases are acceptable.
Note that it is possible to have combined temporal ordering
and temporal probability constraints or HOT constraints.
For example, stating that the probability of secondary
infection increases following a transplant would require
both a temporal ordering constraint (after) and a temporal
probability constraint (increasing probability of infection).

Soft temporal ordering constraints: Normal orderings
are expressed as soft ordering constraints. A chronicle that
satisfies these constraints is preferred. However, there is a
probability that these constraints will be violated. For
example, students normally take a data structures course
before taking an artificial intelligence course would be
represented by such a constraint. This statement is
represented as SO: before(data_structures, ai).
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Soft constraints on temporal probabilities: This class
of constraints captures normal changes in probabilities. To
state that the probability of precipitation usually increases
as we approach the rainy season would be represented by:
ST: PJ(precipitation) =i where J is the time interval from
now to the rainy season. Again chronicles consistent with
this statement are preferred to others.

In general, it is possible to combine soft ordering and
probability constraints. It is also possible to have some
hard constraints apply when soft constraints are holding (or
not holding). For example, if students who did not take the
data structures course before artificial intelligence are
required to take it as a co-requisite, we end up with a hard
constraint having to hold whenever the soft constraint is
violated.

5. Inference Mechanisms

The qualitative probability framework presented so far can
be applied in a variety of ways to carry out different
reasoning tasks. The qualitative probability model imposes
constraints that allow the reasoning engine to rule out a set
of inconsistent scenarios. The following subsections
illustrate how apply these constraints. The first subsection
shows how to rule out inconsistent probability
distributions. The second subsection gives a qualitative
formulation for persistence and convergence to a stationary
distribution. The third subsection overviews a technique
for causal reasoning without expanding all possible
chronicle trees.

5.1 Probabilistic Consistency

Survival analysis techniques have been used in
probabilistic temporal reasoning (Tawfik & Neufeld,
2000). In survival analysis, a failure density function
represents the pdf of failure as a function of time. Another
somewhat related function, the hazard function, represents
the instantaneous rate of occurrence of failure. In other
words, the hazard function at time T represents the portion
that failed at time T after surviving till then. The following
table from (Sibuya, 1996) shows that out of 36 hazard –
failure combinations, the 16 marked by * are impossible.

h/f I d id di idi did
I
d * * * * *
id * * *
di * * *
idi *
did * * * *

Proof
We have a hard constraint stating that h(t)= f(t) / S(t)
where S(t) = 1 - f(t) dt = d.
For f(t)=i, and S(t)=d. The ratio i/d =i necessarily.
Therefore, the only possible h(t) for f(t) =i is also i and
the other 5 options in the first column are impossible.

Given that f(t) = h(t) S(t), and that S(t)=d always, then if
f(t) = d then h(t) = c or d, according to Proposition 3.
Therefore, all the options in row 2 of the above table are
impossible except d. For h(t) = id, f(t) = id*d = ?d.
Therefore, it is impossible to have f(t) =di or idi. For
h(t)=di, f(t) = di*d= d?, therefore it is impossible to have
f(t) =id or idi. In the last row, we have h(t) = did, then
f(t)=did*d = d?d. Therefore, it is impossible to have
f(t)=id, di or idi.
Another useful result follows from Lemma 1, all the
density functions ending with i (i, di, and idi) are defined
over a finite time range.
5.2 Persistence and convergence

This subsection shows that the qualitative probabilities
presented capture many fundamental notions in
probabilistic temporal reasoning. The first of these notions
is persistence (i.e. the tendency of a fluent to remain
unchanged). The second is that of indigenous and
exogenous change. The third notion is convergence to a
particular state (absorption) or convergence to a particular
probability distribution.

A binary fluent is subject to its persistence, indigenous
and exogenous factors forcing it to become false, and
similar factors forcing it to become true.

Persistence is the probability that a fluent maintains its
truth for a period of time. Persistence depends on the
probabilities of change (Tawfik & Neufeld, 2000). For a
fluent (f) to persist for any short duration , the probability
P(ft+ |ft) must be greater than . By doubling the duration,
P(ft+2 |ft)= P(ft+2 |ft+ ) P(ft+ |ft)+ P(ft+2 |~ft+ )P(~ft+ |ft).
However, the second term does not represent persistence
but rather two opposite changes. Therefore the persistence
is given by iP(ft+i |ft+(i-1) ). As the duration grows longer,
the probability of persistence approaches 0 according to
Lemma 3 (if P(ft+ |ft) 1). In general, persistence is limited.

The remaining probability mass (1- P(ft+ |ft)) represents
the probability of change during a duration . A binary
fluent can change from true to false and from false to true.
First, consider a fluent that can only change from true to
false. The probability P(~ft+ |ft) = 1- P(ft+ |ft), and after 2

, P(ft+2 |ft) =1- P(ft+2 |ft+ ) P(ft+ |ft), and as the probability
of persistence approaches 0, this probability approaches 1.
This represents a case of absorption because, f cannot
become true again.

In the general case, both transitions from true to false
and from false to true are allowed. In such cases, by
solving a recurrence relation as presented in (Tawfik &
Neufeld, 2000), it is possible to obtain an expression for
the probability P(ft+n |ft) that depends on the transition
probabilities P(ft+  |~ft)=a  and P(~ft+  |ft)=b.

P(ft+n  |ft) = a(1- a - b)n-1[(1/(a + b)) - 1]+ b / (a + b).
The term (1- a - b)n-1 represents the probability of
persistence. This probability decreases over time and for a
sufficiently large n, as n approaches infinity, and the above
expression converges to a constant b/(a + b) that reflect the
relative forces of change.
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5.3 Deducing the Effects of Events

A rather inefficient way for temporal uncertain reasoning is
based on chronicle trees. The idea is to expand chronicle
trees such that all evidence states are common to all
chronicles. Each chronicle is checked for consistency with
hard constraints. Chronicles that are not consistent with
these constraints are rejected. Chronicles are ranked based
on how well they satisfy the soft constraints. The
expansion of the chronicle trees should be exhaustive to
allow all possible times, events, and actions. This is the
main source of inefficiency.

However, a careful examination of the chronicle trees
reveals that to a large extent temporal projections carried
out using numeric convolution provide a concise way for
evaluating ranges of event or action intervals and their
consequences. In fact a convolution examines all possible
effect times following each possible event time. The use of
convolution in temporal reasoning has been introduced in
(Dean & Kanazawa, 1989) and re-examined in (Tawfik &
Neufeld, 2000). In using convolution, one has to assume
that the probability distribution of the time of occurrence
of the event (or action) is given as well as an distribution
representing the time required for the effect to materialize,
and that these two distributions are independent. The
convolution gives the distribution of the effect. Using the
time-change qualitative probabilities presented here in
performing convolutions gave some interesting and
promising results. The first result is that the distribution of
the effect of an event took the shape icd or id for many
event and effect distributions. The reason for these shapes
is that for two finite continuous distributions, the value of
the integral increases gradually as the two distributions
meet, it reaches a maximum, then decreases. The second
result is that duration of the resulting distribution is equal
to the sum of the two distributions. These two results
simplify the exercise of evaluating effects considerably.
Temporal ordering consistency tests is done using temporal
constraint satisfaction.

6. Conclusions

The qualitative probabilities presented here provide a
promising alternative particularly attractive for temporal
reasoning. The relative change abstraction differs in other
change-based qualitative probabilities in that the changes
are expressed over time rather than relative to a prior. The
infinitesimal approximation presented does not use order
of magnitude ranking and allows the accumulation of
effects over time. This work has also presented a number
of useful and important results that proved to be rather easy
within this framework. Some of the main results are:
• A finite time probability can always be used to

approximate an infinite distribution.
• It is possible to use qualitative probabilities to impose

probabilistic and temporal constraints.
• Efficient evaluation of effect distribution can be done

using geometric convolution.
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