
Intelligent Architectures for Knowledge Sharing:
A Soar Example and General Issues

Dan Zhu

Department of Logistics, Operations and MIS
College of Business Administrations

Iowa State University, Ames IA 50011
dzhu@iastate.edu

MJ Prietula
Goizueta Business School

Emory University
Atlanta GA 30322-2710
prietula@bus.emory.edu

Abstract

In this talk we present a model of knowledge assessment
based on architecture-specific metrics and present a method
of knowledge sharing called Direct Knowledge eXchange
(DKX). Although embryonic from a knowledge
management perspective, the notion of DKX between
homogeneous knowledge engines and knowledge metric
assessment represents a small step to examining how
distribution of knowledge can lead to remote “knowledge
invocation on demand” types of distributed problem
solving systems and practical mechanisms to assess their
resource value.

Summary
Soar is a production system that characterizes all symbolic
goal-oriented behavior as search in problem spaces and
serves as an architecture for general intelligent behavior
(Laird, Rosenbloom & Newell 1987). A problem space
defines a set of states that can be reached within that
problem space, and an associated collection of operators.
Operator applications move Soar from state to state and,
consequently, define search in the problem space.

Decisions are the primitive acts of the system used for
search (i.e., generation and selection) of appropriate
problem spaces, states, and operators, as well as the
application of operators for new state configuration, in the
pursuit of goals specified in a goal hierarchy.

To achieve problem-solving goals, Soar operates in terms
of a two-phase decision cycle. Each cycle starts with an
elaboration phase followed by a decision phase. Together,
these phased mechanisms, coupled with an embedded set of
primitive preferences, allow for problem solving to ensue
through the specification of appropriate sequences of
operators.

Soar is impasse-driven. In situations where the operator
selection cannot unambiguously proceed (e.g., via
incomplete or inconsistent preferences), then an impasse
occurs, and a new subgoal is established with an associated
problem space, and the process recurses.
Copyright © 2002, American Association for Aritificial
Intelligence (www.aaai.org). All rights reserved.

The resolution of a subgoal in Soar is achieved by finding
knowledge that resolves higher-level impasses, allowing
problem solving to proceed. When this occurs, Soar learns.
Specifically, “chunks” are produced that are productions
that map working memory elements defining impasse
situations (as antecedent conditions) into the results of
subgoals (as consequent conditions). Chunking can be
viewed as a form of explanation-based learning, but it is at
a level articulated in specific and uniformly applied
cognitive mechanisms. Subsequent encounters with similar
impasse conditions can thus be resolved more directly (and
with less deliberation) with the newly acquired chunks.
Soar has learned.

Key to learning in general and generalized learning in
particular is the ability to transfer knowledge. Soar has
three basic forms of transfer: within-trial (chunks can be
used as soon as they are built), between-trial (chunks are
improved with repeated trials on a task), and across-task
(chunks can apply to similar problems).

We are exploring another form of transfer. Imagine a set of
distributed Soar knowledge engines. What would happen if
they could exchange chunks? In other words, what would
problem solving look like if a set of affiliated and
distributed Soar problem solving engines could directly
exchange their chunks – their intimate knowledge of a
task?

Base Task
The task selected was the 8-puzzle (see Figure 1).1 In this
task, there is a 3 x 3 matrix of eight randomly assigned
numbers (the ninth being a space) and the problem is to
find the series of operators (moves) that shuffle the set into
a properly ascending sequence, by moving the tiles, one-
by-one, to the open space. This task has 9! initial states
and, depending on how you define it, can generate an
uninformed search expansion of about 3.4 x 109.

1 Also called the N x N sliding tile problem, often
appearing as a hand-held game where tiles are adjacently
slid and interchanged until the right sequence/pattern is
achieved.

318 FLAIRS 2002

From: FLAIRS-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Figure 1

Twenty initial problems were run (with randomly assigned
initial states) twice. First, each problem was run with
learning inhibited, and then the problem was again run with
learning enabled (generating chunks). Figure 2 shows the
average decision cycles required over the 20 problems. The
first (0) trial reflects effort to solve the problem with no
learning. Subsequent numbers (trials 1 through 5) show
between-trial improvement in problem solving behavior.

Figure 2. Learning in 8-puzzle

Knowledge Metrics
Despite many efforts at “knowledge management,” it is
doubtful that knowledge can be defined independent of an
architecture to interpret it. Consequently, we used three
metrics to explore how the fundamental components of
knowledge in this architecture (chunks) could be viewed as
a resource and measured.

The metrics we used (noted in Figure 2) were original
proposed by Prietula et al. (1993) and are defined as
follows.

 [A(k)] =

2

1

Knowledge Efficiency (ηefcy) is defined for N chunks
produced on a trial and is the proportion of the produced
chunks that were eventually applied within-trial. This
ranges from 0 (none of the produced chunks were applied)
to 1 (all of the chunks were applied at least once within the
trial).

Knowledge Utility (ηutil) reflects the number of times a
chunk is applied within the trial, and can range from 0 to an
arbitrary upper limit (multiple chunks defined and applied
multiple times). The argument is that multiple applications
may reflect an increase in utility, given the “knowledge
production cost” is fixed and amortized over trials.

Knowledge Effectiveness (ηeff) attempts to relate the actual
contribution of chunks to the reduction of deliberation
effort (decision cycles), by dividing the effort saved
(expressed in decision cycles, Dc) by the number of unique
chunks produced and applied in the same trial (the
denominator of ηefcy). This yields Dc per chunk that reflects
the average within-trial contribution for the applied chunks.
It is a measure of knowledge value.

The results shown in Figure 2 indicate that roughly 1/3 of
the chunks that were generated were applied (ηefcy), the
average chunk was applied 5.6 times within a trial (ηutil),
and the average contribution of a chunk was a reduction of
12.4 Dc (ηeff).

Also of interest is the relative change in these knowledge
metrics from the start to the end of trials. An analysis
revealed that the average ηefcy increased (Wilcoxon, z =
2.93, p < .001), the average ηutil decreased (Wilcoxon, z =
3.33, p < .001), and the average ηeff also decreased
(Wilcoxon, z = 1.98, p < .05). Therefore, it appears that
most of the value of learning in these tasks is derived from
the knowledge developed early in the process, with their
contribution increasing (knowledge utility) with decreasing
returns on generated knowledge over later trials. Much is
learned early in the task.

Direct Knowledge Exchange
Of interest is how direct knowledge exchange would
impact the three knowledge metrics. Five of the 20 initial
conditions were selected as new problems (problems 1, 10,
15, 16, 20). The chunks generated from five other
randomly selected runs were gathered (problems 2, 3, 4, 7,
12).

Figure 3 presents the results reflecting the change in
Knowledge Efficiency when supplying new Soar agents
with knowledge from the indicated source agent (DKX i).
The x-axis reflects the new problems addressed by the five
agents, each of which has imported the knowledge of the

0

10

20

30

40

50

60

1 2 3 4 5 6

Trial

A
ve

ra
ge

 D
ec

is
io

n
C

yc
le

s

 0 1 2 3 4 5

No Learning

 if chunk k is applied at least once within
 a trial

 if chunk k is not applied

ηefcy = .3
ηutil = 5.6
ηeff = 12.4

kA∑)]([

∑ ≤≤

=
Nk

applied
util kA

N

1
)]([

η

∑ ≤≤

−=
Nk

l
c

n
c

kA
DD

eff

1
)]([

η

N
Nk

efcy
≤≤= 1η
FLAIRS 2002 319

agent indicated in the graphed lines. Similarly, Figure 4
presents changes in Knowledge Efficiency and Figure 5
presents changes in Knowledge Utility.

Figure 3

Figure 4

Figure 5

These results are also represented in Table 1, where the
source agents (row titles) and receiving agents (column
titles) are listed. The entries in this table are bit-strings
where each bit represents whether there was a contribution
of the supplied knowledge to an improvement in

Knowledge Efficiency (1st bit), Utility (2nd bit), and
Effectiveness (3rd bit). If a bit is on, then a contribution for
that particular knowledge source (the row) has been made
for that particular metric (the bit) for that particular agent
problem (the column).

Table 1

T
n
p
b
E
E
im
th

T
b
c
v
a
c
(c
th
p
th
(g
a
le
a

L
a
3

L
in
M

P
A
sc
3

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

1 2 3 4 5

Agents Receiving Knowledge

C
ha

ng
e

in
 E

ffi
ci

en
cy

DKX 2

DKX 3

DKX 4

DKX 12

DKX 7

 1 10 15 16 20

-4

-2

0

2

4

6

8

10

1 2 3 4 5

Agents Receiving Knowledge

C
ha

ng
e

in
 U

til
ity

DKX 2

DKX 3

DKX 4

DKX 12

DKX 7

 1 10 15 16 20

-20

-10

0

10

20

30

40

50

1 2 3 4 5

Agents Receiving Knowledge

C
ha

ng
e

in
 E

ffe
ct

iv
en

es
s

DKX 2

DKX 3

DKX 4

DKX 12

DKX 7

 1 10 15 16 20

320 FLAIRS 2002

 1 10 15 16 20 Totals
2 010 010 001 111 110 242
3 011 011 010 010 011 053
4 000 000 000 100 100 200
7 000 011 000 111 111 233
12 011 011 000 010 111 143
Totals 032 043 011 332 443

he column totals are bit-sums in Table 1. For example,
ote that the knowledge contributed by agent 3 (row) to the
roblem solved by agent 20 (columns) is indicated by the
it-string entry 011, showing that it did not improve
fficiency for that problem, but did improve Utility and
ffectiveness. In fact, the knowledge supplied by agent 3
proved Utility scores across all agent problems (“5” in

e “053” row Totals).

he results show that DKX can improve all three metrics,
ut there is variance at both ends. From the source end, the
ontribution within and between sources to the metrics
aries. Agents 2 and 7 (rows) have broader contributions
cross problem sets (columns), while agent 4 has minimal
ontributions. From the receiving end, agents 16 and 20
olumns) have broader benefits than agent 15. Therefore,
is suggests that there exists a knowledge assignment

roblem that, in fact, could be considered a component of
e DKX architecture in that agents requesting knowledge
iven an impasse event) must be able to reconcile

lternative knowledge sources. But at what architectural
vel should this occur, without doing disservice to the

rchitecture?

References

aird, J., Newell, A. & Rosenbloom, P. (1987). Soar: An
rchitecture for general intelligence. Artificial Intelligence,
3(1), 1-64.

aird, J., Rosenbloom, P. & Newell, A. (1986). Chunking
 Soar: The anatomy of a general learning mechanism.
achine Learning, 1(1), 11-46.

rietula, M., Hsu, W-L., Steier, D. & Newell, A. (1993).
pplying an architecture for general intelligence to reduce
heduling effort. ORSA Journal on Computing, 3(3), 304-

20.

