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Abstract 

 
In this talk we present a model of knowledge assessment 
based on architecture-specific metrics and present a method 
of knowledge sharing called Direct Knowledge eXchange 
(DKX). Although embryonic from a knowledge 
management perspective, the notion of DKX between 
homogeneous knowledge engines and knowledge metric 
assessment represents a small step to examining how 
distribution of knowledge can lead to remote “knowledge 
invocation on demand” types of distributed problem 
solving systems and practical mechanisms to assess their 
resource value. 

Summary 
Soar is a production system that characterizes all symbolic 
goal-oriented behavior as search in problem spaces and 
serves as an architecture for general intelligent behavior 
(Laird, Rosenbloom & Newell 1987). A problem space 
defines a set of states that can be reached within that 
problem space, and an associated collection of operators. 
Operator applications move Soar from state to state and, 
consequently, define search in the problem space.  
 
Decisions are the primitive acts of the system used for 
search (i.e., generation and selection) of appropriate 
problem spaces, states, and operators, as well as the 
application of operators for new state configuration, in the 
pursuit of goals specified in a goal hierarchy.   
 
To achieve problem-solving goals, Soar operates in terms 
of a two-phase decision cycle. Each cycle starts with an 
elaboration phase followed by a decision phase. Together, 
these phased mechanisms, coupled with an embedded set of 
primitive preferences, allow for problem solving to ensue 
through the specification of appropriate sequences of 
operators. 
 
Soar is impasse-driven. In situations where the operator 
selection cannot unambiguously proceed (e.g., via 
incomplete or inconsistent preferences), then an impasse 
occurs, and a new subgoal is established with an associated 
problem space, and the process recurses.  
Copyright © 2002, American Association for Aritificial 
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The resolution of a subgoal in Soar is achieved by finding 
knowledge that resolves higher-level impasses, allowing 
problem solving to proceed. When this occurs, Soar learns. 
Specifically, “chunks” are produced that are productions 
that map working memory elements defining impasse 
situations (as antecedent conditions) into the results of 
subgoals (as consequent conditions). Chunking can be 
viewed as a form of explanation-based learning, but it is at 
a level articulated in specific and uniformly applied 
cognitive mechanisms. Subsequent encounters with similar 
impasse conditions can thus be resolved more directly (and 
with less deliberation) with the newly acquired chunks. 
Soar has learned. 
 
Key to learning in general and generalized learning in 
particular is the ability to transfer knowledge. Soar has 
three basic forms of transfer: within-trial (chunks can be 
used as soon as they are built), between-trial (chunks are 
improved with repeated trials on a task), and across-task 
(chunks can apply to similar problems).  
 
We are exploring another form of transfer. Imagine a set of 
distributed Soar knowledge engines. What would happen if 
they could exchange chunks?  In other words, what would 
problem solving look like if a set of affiliated and 
distributed Soar problem solving engines could directly 
exchange their chunks – their intimate knowledge of a 
task? 
 
Base Task 
The task selected was the 8-puzzle (see Figure 1).1 In this 
task, there is a 3 x 3 matrix of eight randomly assigned 
numbers (the ninth being a space) and the problem is to 
find the series of operators (moves) that shuffle the set into 
a properly ascending sequence, by moving the tiles, one-
by-one, to the open space. This task has 9! initial states 
and, depending on how you define it, can generate an 
uninformed search expansion of about 3.4 x 109. 
 
                                                 
1 Also called the N x N sliding tile problem, often 
appearing as a hand-held game where tiles are adjacently 
slid and interchanged until the right sequence/pattern is 
achieved.  
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Figure 1 

 
Twenty initial problems were run (with randomly assigned 
initial states) twice. First, each problem was run with 
learning inhibited, and then the problem was again run with 
learning enabled (generating chunks). Figure 2 shows the 
average decision cycles required over the 20 problems. The 
first (0) trial reflects effort to solve the problem with no 
learning. Subsequent numbers (trials 1 through 5) show 
between-trial improvement in problem solving behavior. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Learning in 8-puzzle 
 
Knowledge Metrics 
Despite many efforts at “knowledge management,” it is 
doubtful that knowledge can be defined independent of an 
architecture to interpret it. Consequently, we used three 
metrics to explore how the fundamental components of 
knowledge in this architecture (chunks) could be viewed as 
a resource and measured. 
 
The metrics we used (noted in Figure 2) were original 
proposed by Prietula et al. (1993) and are defined as 
follows. 

 [A(k)] = 








2

1
 

 
Knowledge Efficiency (ηefcy) is defined for N chunks 
produced on a trial and is the proportion of the produced 
chunks that were eventually applied within-trial. This 
ranges from 0 (none of the produced chunks were applied) 
to 1 (all of the chunks were applied at least once within the 
trial).  
 

 
 
 
Knowledge Utility (ηutil) reflects the number of times a 
chunk is applied within the trial, and can range from 0 to an 
arbitrary upper limit (multiple chunks defined and applied 
multiple times). The argument is that multiple applications 
may reflect an increase in utility, given the “knowledge 
production cost” is fixed and amortized over trials. 
 
 
 
 
 
Knowledge Effectiveness (ηeff) attempts to relate the actual 
contribution of chunks to the reduction of deliberation 
effort (decision cycles), by dividing the effort saved 
(expressed in decision cycles, Dc) by the number of unique 
chunks produced and applied in the same trial (the 
denominator of ηefcy). This yields Dc per chunk that reflects 
the average within-trial contribution for the applied chunks. 
It is a measure of knowledge value.  
 
 
 
 
 
The results shown in Figure 2 indicate that roughly 1/3 of 
the chunks that were generated were applied (ηefcy), the 
average chunk was applied 5.6 times within a trial (ηutil), 
and the average contribution of a chunk was a reduction of 
12.4 Dc (ηeff).   
 
Also of interest is the relative change in these knowledge 
metrics from the start to the end of trials. An analysis 
revealed that the average ηefcy increased (Wilcoxon, z = 
2.93, p < .001), the average ηutil decreased (Wilcoxon, z = 
3.33, p < .001), and the average ηeff also decreased 
(Wilcoxon, z = 1.98, p < .05). Therefore, it appears that 
most of the value of learning in these tasks is derived from 
the knowledge developed early in the process, with their 
contribution increasing (knowledge utility) with decreasing 
returns on generated knowledge over later trials. Much is 
learned early in the task. 
 
Direct Knowledge Exchange 
Of interest is how direct knowledge exchange would 
impact the three knowledge metrics. Five of the 20 initial 
conditions were selected as new problems (problems 1, 10, 
15, 16, 20). The chunks generated from five other 
randomly selected runs were gathered (problems 2, 3, 4, 7, 
12). 
 
Figure 3 presents the results reflecting the change in 
Knowledge Efficiency when supplying new Soar agents 
with knowledge from the indicated source agent (DKX i). 
The x-axis reflects the new problems addressed by the five 
agents, each of which has imported the knowledge of the 
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agent indicated in the graphed lines. Similarly, Figure 4 
presents changes in Knowledge Efficiency and Figure 5 
presents changes in Knowledge Utility. 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 
Figure 3 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5 

 
These results are also represented in Table 1, where the 
source agents (row titles) and receiving agents (column 
titles) are listed. The entries in this table are bit-strings 
where each bit represents whether there was a contribution 
of the supplied knowledge to an improvement in 

Knowledge Efficiency (1st bit), Utility (2nd bit), and 
Effectiveness (3rd bit). If a bit is on, then a contribution for 
that particular knowledge source (the row) has been made 
for that particular metric (the bit) for that particular agent 
problem (the column). 

 
Table 1 
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 1 10 15 16 20 Totals
2 010 010 001 111 110 242 
3 011 011 010 010 011 053 
4 000 000 000 100 100 200 
7 000 011 000 111 111 233 
12 011 011 000 010 111 143 
Totals 032 043 011 332 443  
 

he column totals are bit-sums in Table 1. For example, 
ote that the knowledge contributed by agent 3 (row) to the 
roblem solved by agent 20 (columns) is indicated by the 
it-string entry 011, showing that it did not improve 
fficiency for that problem, but did improve Utility and 
ffectiveness. In fact, the knowledge supplied by agent 3 
proved Utility scores across all agent problems (“5” in 

e “053” row Totals). 

he results show that DKX can improve all three metrics, 
ut there is variance at both ends. From the source end, the 
ontribution within and between sources to the metrics 
aries. Agents 2 and 7 (rows) have broader contributions 
cross problem sets (columns), while agent 4 has minimal 
ontributions. From the receiving end, agents 16 and 20 
olumns) have broader benefits than agent 15. Therefore, 
is suggests that there exists a knowledge assignment 

roblem that, in fact, could be considered a component of 
e DKX architecture in that agents requesting knowledge 
iven an impasse event) must be able to reconcile 

lternative knowledge sources. But at what architectural 
vel should this occur, without doing disservice to the 

rchitecture? 
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