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Abstract 
Database integration provides integrated access to multiple data 
sources.  Database integration has two main activities: schema 
integration (forming a global view of the data contents available 
in the sources) and data integration (transforming source data into 
a uniform format).  This paper focuses on automating the aspect 
of data integration known as entity identification using data 
mining techniques.  Once a global database is formed of all the 
transformed source data, there may be multiple instances of the 
same entity, with different values for the global attributes, and no 
global identifier to simplify the process of entity identification.  
We implement decision trees and k-NN as classification 
techniques, and we introduce a preprocessing step to cluster the 
data using conceptual hierarchies.  We conduct a performance 
study using a small testbed and varying parameters such as 
training set size and number of unique entities to study 
processing speed and accuracy tradeoffs.  We find that clustering 
is a promising technique for improving processing speed, and that 
decision trees generally have faster processing time but lower 
accuracy than k-NN in some cases. 

Introduction   
Organizations are increasingly experiencing the necessity 
and benefits of integrated access to multiple data sources.  
Database integration has two aspects: schema integration 
and data integration.  Schema integration arrives at a 
common schema representing the elements of the source 
schemas.  Data integration detects and merges multiple 
instances of the same real world entities from different 
databases.  Entity identification is necessary when there is 
no common means of identification such as primary keys, 
and it is usually solved manually.  This paper focuses on 
solving the entity identification problem in an automated 
way using data mining techniques.  We use automated 
learning techniques to identify characteristics or patterns 
found in entities and apply this knowledge to detect 
multiple instances of the same entity. 
 Ganesh et al. [GSR96] propose an automated framework 
for solving the entity identification problem.  We extend 
the framework (shown in shaded boxes) in Figure 1 and 
conduct performance studies to determine the accuracy and 
processing time resulting from the extensions.  The 
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cylinders in Figure 1 represent data, the rectangles 
represent processes, and the ellipses represent the 
intermediate results.  We assume that a global schema has 
been created by a schema integration phase, although the 
data has not yet been merged.  The global database may 
contain different instances of the same real world entity 
from different sources and without a common unique 
identifier.  Merging instances (database integration) 
requires entity identification, and that is the focus of our 
work.  In the framework, the module called Preprocessing 
clusters the data from the global database prior to 
performing entity identification.  After preprocessing, 
training sets are formed as subsets of the global database 
that are used in the learning module to form integration 
rules (i.e., to perform entity identification.)  The original 
framework [GSR96] uses a decision tree algorithm as the 
classification technique in the learning module, and we 
implement k-NN [FBF77] as an additional technique. 
 To study the performance of the proposed modifications, 
we use a small database and vary different parameters such 
as training set size and number of unique entities in our 
experiments.  Our experiments address the following 
questions: 

1. What is the impact of our preprocessing algorithm 
on a decision tree implementation of entity 
identification? 

2. What is the impact of using k-NN as the 
classification technique? 

We investigate comparative accuracy and processing 
speed. 
 We describe the preprocessing technique next, followed 
by our experimental setup, and then we offer discussion of 
the results.  Conclusions and related work comprise the 
final section. 

Preprocessing 
Our preprocessing module is based on a generalization 
process using conceptual hierarchies [HCC92].  A 
conceptual hierarchy on an attribute represents a 
taxonomy of concepts that are successively more general 
as the hierarchy is ascended, and the leaf level represents 
values of the attribute domain.  Conceptual hierarchies are 
either  provided  by  a  domain expert  or  can  be  derived  
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Figure 1. Framework for Entity Identification 
 
automatically for numeric domains [HF94].  An example 
conceptual hierarchy may generalize GPA values as “low” 
for values between 0.00 and 1.99 and “high” for values 
between 2.00 and 4.00. 
 We use conceptual hierarchies to rewrite attribute 
domain values as more generalized values, and we group 
records that have the same generalized values into the 
same clusters.  We form clusters in an attempt to reduce 
the processing time of classification without sacrificing 
accuracy.  Examples of conceptual hierarchies and 
resulting clusters are given in the next section. 
 

Performance Studies 
In this section, we describe our sample global schema and 
how the corresponding database is populated.  A 
description of the goals and approaches of our experiments 
follows. 

Testbed 
The global schema in our study contains student records 
with string, numeric, and Boolean fields.  Some attributes 
have conceptual hierarchies (either user-provided or 
generated).  There are 16 attributes in our schema, 8 of 
which have a conceptual hierarchy.  The attribute names, 
types, whether they have a conceptual hierarchy, and size 
or range of the domain are shown in Table 1.  The schema 
is populated randomly from either the range given in the 
final column of the table or from a set of values of the 
given size. 
 Conceptual hierarchies for string attributes are user-
defined.  For example, a conceptual hierarchy for city 
generalizes cities to their respective countries, and 
countries are generalized to continents.  Numeric attributes 
are generalized by applying an algorithm proposed by Han 
et al. [HF94].  Attributes age, weight, height, and gpa are 
generalized into 12, 36, 2, and 2 divisions, respectively.  
To illustrate the clustering process, an example global 
database that contains multiple instances of the same entity 
is shown in Table 2.  The entity ID is known for this data 

set and appears in the second column.  The generalized 
database, where the attributes with conceptual hierarchies 
have been replaced with more general values, is shown in 
two clusters in Tables 3 and 4. The data sets used in our 
experiments are described in the next section. 

Experiments 
Our experiments are in two major categories: the impact of 
preprocessing the data into clusters, and the impact of 
using a different classification strategy than previously 
proposed in the literature.  To address the former, we 
examine the impact of clustering performance, in terms of 
speed and accuracy, using only decision trees as the 
classification technique.  Then we compare the 
performance of decision trees and k-NN; we examine the 
performance of decision trees both with clustering and 
without compared to k-NN with clustering.  The time 
required for experiments with unclustered data under k-
NN was not feasible according to preliminary 
investigation.  We compute the CPU time used to perform 
entity identification under various scenarios. 

The metric used in the experiments for accuracy 
considers both positive and negative errors.  Positive errors 
occur when instances that belong to the same entity are 
classified as instances of different entities.  Negative errors 
occur when instances that belong to different entities are 
classified as instances of the same entity.  The impact of 
total vectors misclassified on the actual number of records 
misclassified is difficult to find.  To illustrate the 
difficulty, consider an entity E with instances e1, e2, and 
e3.  Distance vectors are obtained by computing the 
distance of every instance with every other instance.  If the 
vector <e1, e2> is classified as belonging to the same 
entity, then instances e1 and e2 are grouped together.  If 
<e1, e3> is classified as different entities, but <e2, e3> is 
classified as the same entity, then there is a contradiction 
in determining to which entity the instances e2 and e3 
belong. Therefore, we perform analysis on 
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Table 1. Testbed Schema 
misclassification in distance vectors rather than actual data 
records.  In order to determine the accuracy of the results 
for clustered data compared to unclustered data, we 
compute confidence intervals on differences in error rates. 

Our experiments study the impact of variations in 
different parameters on the automated entity identification 
process described here.  We choose some parameters to 
vary where we expect the most important impact to be, and 
fix other parameter values for the sake of reducing the 
number of experiments where less impact is expected.  
Table 5 summarizes the values of parameters used in our 
experiments. 

There are three different data sets with 2500 records 
each.  The number of unique entities varies as 2%, 10%, 
and 50% of the total number of records.  A previous study 
[GSR96] considers only the number of unique entities as 
2% of the total number of records.  As the number of 
unique entities increases, the number of instances of each 
unique entity decreases, which may impact the entity 
identification process.  Each unique entity has at least one 
 

Table 2. Example Global Database 
 
 
 
 
instance and the remaining instances of the data set are 
distributed randomly among the entities. 

In order to simulate realistic errors in the data, we 
induce errors in some cases for multiple instances of the 
same entity.  Different values for the attributes that do not 
have a conceptual hierarchy are generated.  We fix the 
non-conceptual hierarchy error rate at 30% of the total 
number of instances of the data set.  For 30% of the data 
set, 750 instances in our study, a number from 1 to a where 
a is the number of attributes that do not have conceptual 
hierarchies (8 here) is generated, say e.  Then e attributes 
are randomly chosen for a particular record, and error is 
induced in these fields.  String attributes are corrupted 
either by replacing the string entirely or adding, deleting, 
or modifying characters in the string.  Boolean values are 
corrupted by inverting their values. 

In order to study the impact of clustering errors on the 
accuracy of the entity identification process, we perform 
experiments with and without clustering errors.  Clustering 
errors can only occur if there are multiple instances of the 
same entity, not across different entities.   

 

Table 4. Generalized Values Resulting in Cluster 2 
 

attribute name type CH? domain 
first name string  5186 
last name string  5186 
age numeric yes 18..40 
street address string  5537 
city string yes 1356 
phone string  5000 
zipcode string  5000 
gpa numeric yes 0.0..4.0 
association string yes 92 
department string yes 13 
married boolean  2 
campus boolean  2 
scholarship boolean  2 
specialization string yes 57 
height numeric yes 4.0..7.0 
weight numeric yes 90..220 

recordID entityID first name zipcode gpa city 
1 1 Krishna 45219 3.5 Madras 
2 1 Krishnamoorthy 45220 3.6 Trichy 
3 1 Krish 45221 3.6 Trichy 
4 2 Rama 38203 1.5 Toronto 
5 2 Raman 38211 1.8 Hamilton 
6 2 Raman 37213 1.9 Toronto 
7 3 Joseph 51234 2.9 Bombay 
8 3 Joe 45220 2.8 Pune 
9 4 Shiela 45219 1.2 Vancouver 

10 4 Sheela 38211 0.9 Victoria 
11 5 Robert 37213 3.2 Delhi 
12 5 Rob 45220 3.4 Agra 

recordID entityI first name zip gpa city 
1 1 Krishna 45219 high India 
2 1 Krishnamoorth 45220 high India 
3 1 Krish 45221 high India 
7 3 Joseph 51234 high India 
8 3 Joe 45220 high India 
11 5 Robert 37213 high India 
12 5 Rob 45220 high India 

recordID entityI first zipcode gpa city 
4 2 Rama 38203 low Canada 
5 2 Raman 38211 low Canada 
6 2 Raman 37213 low Canada 
9 4 Shiela 45219 low Canada 
10 4 Sheela 38211 low Canada 

Table 3. Generalized Values Resulting in Cluster 1 
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parameter fixed varying 
number of records 2500 records  
number of unique entities  2%, 10%, 50% of total records 
non-conceptual hierarchy error 30% of total records  

conceptual hierarchy error rate  0%, 10% of total records 
classified data set 10% of total records  
test set size 30% of classified data set  
training set size  10%, 80% of the global training set 
application of decision tree with 
fixed training and test set sizes 

 randomly select the training and test set 3 
times 

values of k (k-NN) for a fixed 
training and test set 

  5 different values in the range 1 <= k <= 
2*L-1, where L is the minimum number of 
positive and negative vectors 

application of k-NN for a fixed 
training and test set size 

 3 different randomly selected training and 
test sets * 5 values of k = 15 

Table 5. Experiment Foundations 

 
For example, if there are two instances of the same 

student, both of their GPA values should generalize to the 
same value.  If one instance generalizes to “high” and the 
other to “low,” then this is a clustering error.  We vary the 
clustering errors as 0% (i.e., no clustering errors) and 10% 
of the number of instances in a data set.  For example, if 
there are 100 instances in a data set with a 10% clustering 
error rate, then 10 randomly chosen instances have 
attributes with clustering errors. 

Given the variations due to the number of unique 
entities and clustering error rates, we have 6 different data 
sets for conducting experiments.  Data sets with 50 unique 
entities and 0% and 10% clustering errors are denoted as 
50CE0 and 50CE10, respectively.  The other data sets are 
250CE0, 250CE10, 1250CE0, and 1250CE10. 

In order to study the effect of the training set size on the 
performance of classification techniques, the training set 
size is varied.  The training set is formed from a set of 
records that is already classified, i.e., it is known to which 
entity each instance belongs.  The size of the classified 
data set is fixed as 10% of the data set.  Distance vectors 
are formed by measuring the distance of every record with 
every other record using standard distance functions 
[GSR96].  The test set is fixed as 30% of the classified 
vector set.  In order to study the impact of large and small 
training sets, the training set size is varied as 10% and 80% 
of the subset of the classified vector set formed by 
excluding the test set from the classified vector set, 
denoted as the global training set.  Thus, for each of the 6 
data sets, there are 2 different variations of the training set 
sizes. 
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Figure 2. Processing Time for Decision Trees 

 
For unclustered data, 48 experiments are performed.  

For clustered data, 328 experiments are performed with the 
decision tree technique and 1312 for k-NN.  The entire 
suite is repeated 3 times for a total of 5064 experiments.  
Results are presented and discussed in the next section. 
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Results 
We present results here that investigate the performance 
impact (time and accuracy) of preprocessing the data as 
well as the impact of training set size, both large and small, 
on time and accuracy for both decision trees and k-NN.  
Representative results are given in the first two sections, 
followed by summaries of all results in the last two 
sections. 
Preprocessing Impact 
In order to assess the impact of preprocessing on 
performance, we perform experiments with clustered and 
unclustered data for the decision tree technique.  Figure 2 
shows processing time in seconds for clustered and 
unclustered data with a large training set size (80% of the 
global training set).  The times shown for clustered data 
include the time for preprocessing (not greater than 2.7 
seconds for any data set.)  The difference in processing 
time between the large training set (80%) and the small 
training set size (10%) ranges between 14 and 32 seconds; 
on average, the processing time for the larger training set is 
23 seconds more than the smaller training set size.  We 
observe that there is a savings of approximately 89% for 
clustered data compared to unclustered data.  The data sets 
not shown (with 1250 unique entities) did not form usable 
clusters due to an insufficient number of positive vectors.  
We use only clusters with two or more positive vectors so 
that the training set and test have at least one each. 

In order to determine the impact of preprocessing on 
accuracy, we examine the total number of misclassified 
vectors for processing clustered and unclustered data.  To 
compare the error rates, we construct 95% confidence 
intervals for the difference in error rates observed for 
clustered and unclustered data, shown in Table 6.  We 
observe that the accuracy for classifying clustered data is 
always lower than that of unclustered data; however, the 
clustered accuracy relative to the unclustered accuracy 
decreases as the number of unique entities increases.  For 
example, in the case of 50 unique entities (50CE0) with the 
larger training set (80%), the system misclassifies 
somewhere between 1.20% and 1.49% more records for 
clustered data than for unclustered data; however, when 
the number of unique entities is 250, the system 
misclassifies between 0.60% and 0.83% more records.  In 
other words, the differences in error rates are lower as the 
number of unique entities increases, possibly because it is 
equally difficult to distinguish entities in the unclustered 
data when there are fewer duplicate instances.  Although 
these results are not general since they are drawn over one 
testbed with a small number of data sets, they are 
encouraging for further investigation of preprocessing 
using conceptual hierarchies to speed up entity 
identification using decision trees. 

Error rates for processing unclustered data with decision 
trees are given in Figure 3. 

 
 

Data Set Confidence Interval 
with 80% Training Set 
Size 
Low                      High 

Confidence Interval 
with 10% Training Set 
Size 
Low                      High 

50CE0 1.20 1.49 3.65   4.16 
50CE10 1.02 1.29 5.78 6.36 

 250CE0 0.60 0.83 0.82 1.07 
250CE10 0.62 0.87 0.82 1.09 

Table 6.  Preprocessing Accuracy for Decision Tree Classification 
 
Impact of k-NN as a Classification Technique 
In order to study the processing time for k-NN compared 
to decision trees for performing entity identification, we 
compare the processing time for large and small training 
sets using clustered data.  For both large and small training 
sets, decision trees outperform k-NN.  On average, for a 
larger training set size the difference is 201 seconds 
(ranging from 126 to 278 for k-NN); the difference is 
smaller for the small training set, on average 34 seconds 
(ranging from 19 to 52 seconds for k-NN). 
 The total vectors misclassified as a percentage of the 

total vectors is given in Figure 4 for decision trees with 
large and small training set sizes (Decision80 and 
Decision10, respectively) and for k-NN with large and 
small training set sizes (KNN80 and KNN10, 
respectively.)  We observe that k-NN with small and large 
training sets has better accuracy results than decision trees 
as the number of unique entities increases.  Additional 
studies are needed to determine whether the trend 
continues and whether the gain in accuracy is worthwhile 
Processing Speed Results 
The impact of preprocessing on entity identification 
processing speed under different scenarios is summarized 
in Table 7. 
Accuracy Results 
Table 8 summarizes the accuracy results of our study. 
When we cluster the data and apply entity identification on 
each cluster, the search region of the classification system 
is reduced when compared to non-clustering, making the 
classification system a local expert on that cluster. On the 
other hand, the number of training records in each cluster 
is fewer than the total training records without clustering, 
which might reduce the accuracy of entity identification 
when clustering is done. In the experiments, we find that 
clustering accuracy is always lower than non-clustering 
accuracy. 

We expect that all the techniques perform better with 
large training sets than with small training sets because as 
the training set size increases, the classification system is 
trained better. Our expectation matches the experiment 
results for decision trees. When k-NN is applied, for the 
data set with a small number of unique entities, we obtain 
the expected results, but for the data set with a larger 
number of unique entities, the accuracy is slightly better 
with the smaller training set size. Since this is unexpected, 
further study of the impact of the number of unique entities 
on accuracy could be investigated. 
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Discussion and Conclusions 
Automated approaches to database integration are 
reviewed here, followed by a discussion of our 
contributions and areas for future work.  Schema 
integration involves semantic integration, the process of 
determining which attributes are equivalent between 
databases.  Li et al. [LC94] employ neural networks to 
perform semantic integration in an automated manner.  
They extract metadata (attribute names and descriptions, 
for example) from databases automatically using neural 
networks.  Dao et al. [DP95] use the relationships between 
and among the entire sets of attributes to perform semantic 
integration.  They use data mining techniques devised by 
Han et al. [HCC92] to find the relationships between 
attributes.  Lu et al. [LFG97] have employed data mining 
techniques to solve the semantic conflicts that arise during 
schema integration.  All of these approaches employ data 
mining techniques to automate schema integration, the first 
phase of database integration.  In our work, we assume that 
schema integration has already taken place and focus on 
the application of data mining techniques to automate data 
integration. 
 Scheuermann et al. [SC94] propose an approach using 
role-sets for dynamic database integration in a 
multidatabase environment.  The role-set approach is based 
on the observation that many conflicting data values for 
the same real world entity are not inconsistencies, but 
values  that  correspond  to  the  same  entity  appearing in 
 

multiple roles.  Their approach performs dynamic data 
integration (on demand with no global schema) using a 
multidatabase key (global ID), either provided in the data 
or determined using an automated technique [LC4, 
SLC98].  Our approach to data integration assumes a 
global schema is known but no global ID is present. 
 We apply clustering in a framework for entity 
identification and study its performance; we implement k-
NN for entity identification and study its performance.  
Our conclusions are that a tremendous savings in 
processing time is indicated when clustering is done, 
however, the accuracy of techniques over non-clustered 
data is always better than over clustered data.  Clustering 
errors impact the results at the same rate and thus do not 
introduce any additional error other than the original 
clustering error.  For clustered data, we observe that the 
processing time is better for decision trees, but k-NN has 
better accuracy in all cases except when there is a small 
number of unique entities and a large training set size.  
This means there are a large number of copies of the same 
entity, and decision trees with a large training set gives 
higher accuracy than k-NN. 

In our testbed, we vary the number of unique entities as 
a percentage of the total number of records in the data set. 
When the number of unique entities is equal to half the 
number of total records in the data set and when the data 
set is clustered, there are very few positive training vectors 
in some clusters and they are not sufficient to perform 
entity identification on the clusters. In future work, 
training sets from other clusters may be used to classify the 
unknown vectors in these clusters and the impact of this 
approach can be studied. 

There are two topics of future investigation concerned 
with making changes in the testbed. The first one is to 
study the performance of the classification techniques by 
varying the number of attributes in the schema. A second 
area varies the fixed parameter values. We fix the values of 
some parameters in our experiments for the sake of 
reducing the number of experiments. Varying the 
previously   fixed   parameters  (or  expanding  the  values  
 

Techniques  Processing Time  
Decision Trees: Clustered and 
Unclustered  

When clustered, 89.2% savings with larger and 89.1% savings with 
smaller training sets. 

Decision Trees on Unclustered Data 
Sets: Training Set Size 

Small savings with smaller training sets 

Decision Trees on Clustered Data 
Sets: Training Set Size 

No significant savings with smaller training sets 

k-NN on Clustered Data Sets: 
Training Set Size 

Considerable savings with smaller training sets 

Decision Trees and k-NN: Clustered   Decision trees: 76% savings with larger and 35.77% savings with 
smaller training set compared to k-NN  

Decision Trees Unclustered and k-
NN Clustered 

 k-NN: 55% savings with larger and 83% savings with smaller 
training sets compared to decision trees 

Table 7.  Processing Speed Results 
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Techniques Effect of Training Set Size Effect of Clustering 
Errors 

Effect of Increase in 
Unique Entities 

Decision Trees on 
Clustered and 
Unclustered Data 
Sets 

Better with larger training set No significant 
difference 

Clustering accuracy less 
than non- clustering 
accuracy, difference 
decreases with increase 
in unique entities  

Decision Trees on 
Unclustered Data 
Sets 

Better with larger training set No significant 
difference 

Accuracy increases with 
increase in unique 
entities 

Decision Trees on 
Clustered Data Sets 

Better with larger training set No significant 
difference 

Accuracy increases with 
increase in unique 
entities 

k-NN on Clustered 
Data Sets 

Better with larger training set for small 
unique entities, same for large unique 
entities 

No significant 
difference 

Accuracy increases with 
increase in unique 
entities 

Decision Trees and 
k-NN on Clustered 
Data Sets 

k-NN better than decision trees with 
smaller training set,  With large training 
set, decision trees give better accuracy 
than k-NN for small unique entities 

No significant 
difference 

k-NN accuracy better 
than decision trees with 
increase in unique 
entities 

Decision Trees 
Clustered and k-NN 
Unclustered Data 
Sets 

Better with large training set No significant 
difference 

Clustering accuracy less 
than non- clustering 
accuracy, difference 
decreases with increase 
in unique entities 

Table 8.  Accuracy Results 

 
considered for other parameters) to study the impact on the 
performance of the classification techniques could examine 
the impact of the size of the testbed, the training set size 
and the conceptual and non-conceptual hierarchy error 
rates, for example.  Future investigation with both more 
repetitions of the experiments and real databases could be 
done.  In addition, other data mining techniques could be 
investigated in the learning module to perform entity 
identification. 
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