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Modifying Upstart for Use in Multiclass Numerical Domains

Ronnie Fanguy and Miroslav Kubat *

Abstract

One of the research topics pursued by scientists special-
izing in artificial neural networks deals with the ques-
tion of how to determine a neural network’s architec-
ture. In the work reported here, we resurrect Frean’s
Upstart (1990) that grows the network one neuron at
a time. This algorithm is known to have some useful
properties; however, it was originally developed only
for applications with two classes and with training ex-
amples described by boolean attributes. To extend the
usefulness of Upstart, we suggest modifications that fa-
cilitate the use of this paradigm in multiclass domains
with numeric examples.
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Introduction

The widespread use of artificial neural networks in pattern
recognition was made possible by algorithms capable of in-
ducing them from sets of pre-classified training examples
(Rumelhart & McClelland, 1986). Many practical and theo-
retical aspects of neural networks, and of the methods used
for their training, are now fairly well understood.

One of the research strands receiving attention in the last
decade explores methods for automatic design of a neural
network’s layout. The number of neurons, as well as the
number and interconnection of layers, is known to affect
the network’s learning behavior. Whereas small networks
may lack the requisite flexibility, large ones are expensive
to train and tend to overfit noisy training data. The con-
flicting nature of the involved trade-offs has motivated stud-
ies of methods to determine the architecture automatically.
Techniques developed so far involve logic-based strategies
that take advantage of prior knowledge expressed as produc-
tion rules or decision trees, search-based strategies that rely
on Al search (including genetic algorithms), and piecemeal
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techniques that create the network one neuron at a time. For
an overview, see Kubat (2000).

A good example of the “piecemeal” category is Frean’s
Upstart (1990) that capitalizes on the observation that a sin-
gle neuron is much cheaper to train than the whole network.
In his implementation, each neuron focuses on a somewhat
different aspect of the pattern to be learned by using a differ-
ent labeling of points. The training can be accomplished by
perceptron learning (Rosenblatt, 1958), by gradient descent
techniques (Widrow and Hoff, 1960), or by some more tra-
ditional statistical method (Duda and Hart, 1973).

For domains where training examples are described by
vectors of boolean attributes, recursively calling Upstart is
guaranteed to reach zero error rate on the training set, pro-
vided that this set contains only examples from two classes
and that they do not conflict (two examples with the same
description should not have different class labels). Unfor-
tunately, the restriction to boolean attributes and two-class
domains is too severe for many practical domains. This is
why we embarked on the search for possible modifications
and improvements that would broaden the scope of possible
applications of this approach.

To make the paper self-contained, the next section sum-
marizes Frean’s original algorithm and briefly dicusses its
limitations. After this, we describe our improved version of
this technique and report experiments illustrating its behav-
ior in benchmark domains. The final section concludes with
a brief discussion.

Frean’s Upstart
Description of Upstart

In the machine learning tasks addressed here, the input con-
sists of a set of training examples that have the form of pairs
[x, c(x)], where x = (21,2, ..., 2y,) is a vector describing
an example, and c(x) is this example’s class label. The vari-
ables x; are referred to as attributes. Some of these attributes
are boolean, others can be numeric. The space defined by
the n-dimensional vectors is called the instance space. The
training examples have been pre-classified using a function
¢(x) that acquires the form ¢ : R™ — L, where L is the
set of class labels. A machine learning algorithm takes the
training set and induces from it a classifier, h : R™ — L
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Figure 1: Upstart introduces two “consultant” nodes to rec-
tify the output of the previous node, z. Neuron x attempts
to correct “wrongly ON” states; neuron y attempts to correct
“wrongly OFF” states.

true z’s state label for | label for
label | output X y

0 0 correctly OFF 0 0

0 1 wrongly ON 1 0

1 0 wrongly OFF 0 1

1 1 correctly ON 0 0

Table 1: The possible states when z predicts the classifica-
tion of an example, and how this prediction determines the
training labels of the two consultant nodes.

with the goal of minimizing the probability of h(x) # c¢(x)
for a randomly drawn x.

Let us, for the time being, focus on the binary task with
L = {0,1}, where 1 denotes positive examples of some
class and 0 denotes negative examples. To start with, Up-
start roughly approximates the class by a single neuron, z.
When used to classify examples, z can fail in two different
ways. If its output is 1 for a negative example, the neuron is
wrongly ON; if its output is O for a positive example, the neu-
ron is wrongly OFF. Frean’s idea is to reduce the frequency
of these errors by the use of “consultant” neurons (see Fig-
ure 1) that attempt to flip-flop z’s output whenever an error
would occcur.

More specifically, the task of x is to change z’s output in
the case of examples for which z is wrongly ONs and the
task of y is to change z’s output in the case of examples for
which z is wrongly OFF. Ideally, x outputs 1 for those and
only those examples where z is wrongly ON (outputting O
for all other examples). The link between x and z then has a
large negative weight to reduce z’s input accordingly. Like-
wise, y should output 1 for those and only those examples
where z was wrongly OFF and the link between y and z is
assigned a large positive weight.

The weights of x and y are induced by a learning algo-
rithm that employs the same training examples that were
used for the induction of z, but now with changed class
labels: when x is trained, all examples for which z was
wrongly ON will be labeled with 1 and the remaining exam-
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Figure 2: No linear function can separate the dark circles
from the light circles. Any attempt to do so will result in
more than two misclassifications.

ples will be labeled with 0. When y is trained, all examples
for which z was wrongly OFF will be labeled with 1 and the
remaining examples will be labeled with 0. This situation is
shown in Table 1.

For illustration, suppose that the neuron z outputs 1 when
presented with a negative example (the wrongly ON situa-
tion). When Xx is trained, the example will be labeled with
1; when y is trained, the same example will be labeled with
0. Conversely, if z outputs O for a positive example (the
wrongly OFF situation), then the example will be labeled
with O during the training of x and with 1 during the training
of y. Finally, the label of any example that has been correctly
classified by z will be O for the training of both consultants
(x and y).

If the consultant neurons do not manage to classify the
re-labeled examples correctly, Upstart calls the same routine
recursively, creating one pair of consultant neurons for x and
another pair for y. This time, the re-labeling will reflect the
wrongly ONs and wrongly OFFs of the neurons x and y, re-
spectively. As long as some wrongly ONs or wrongly OFFs
can be observed on the part of any consultant (with respect to
the re-labeled examples), Upstart keeps expanding the net-
work, attempting to reach a state where all training examples
are classified correctly.

Frean (1990) was able to prove that if all attributes ac-
quire only boolean values, then the procedure just described
will result in a neural network that has zero error rate on the
training set (unless two examples with the same description
have different class labels). This network is created in a fi-
nite number of recursive calls.

Upstart’s Limitations

From the perspective of real-world applications, Upstart suf-
fers from two major limitations. The first of them is that
Frean conceived his idea with only two-class domains in
mind, whereas many realistic domains require correct iden-
tification of examples from several different classes. There-
fore, modifications that would generalize the original algo-
rithm for use in multiclass domains are needed.

The second limitation is perhaps more severe: the algo-
rithm is guaranteed to converge only when all attributes are
boolean. In numeric domains, the consultant nodes often fail



to improve z’s performance. The reason for this deficiency is
easy to see. Consider the case from Figure 2 where several
training examples are described by two numeric attributes,
z; and 5. Most of the examples belong to the class de-
picted by light circles and only two examples belong to the
class depicted by dark circles. The reader can see that no
linear function can separate these classes without misclassi-
fying at least two examples.

A likely solution in this particular case is indicated by the
dotted line. It turns out that both dark circles find them-
selves on the same side as the light circles, and are thus mis-
classified by z. Suppose this means that z is wrongly ON
for these two examples. In an attempt to correct this error,
Upstart will train a consultant x to output 1 for the two ex-
amples and O for any other example. However, as any linear
function is likely to commit at least the same two errors,
adding x to the network will not help. As a matter of fact, it
can even increase the number of misclassifications. Fanguy
(2001) discusses at length the phenomenon of error-rate “os-
cillations”: one consultant neuron increases the error rate, a
subsequent consultant decreases it, yet another increases it,
and so on. In this event, the learning process does not bring
about any improvement, and the size of the neural network
may grow infinitely large. Even if the process is halted, the
same problem occurs when we attempt to train y to correct
wrongly OFF errors. This, again, severely limits Upstart’s
applicability in real-world domains.

Solution

Our solution rests on three simple modifications, described
separately in the following paragraphs. The whole algorithm
is summarized in Figure 3.

Restricting the training sets used for the induction
of consultant nodes

We will explain the principle on a two-class domain. Later
in this section, we will show how it generalizes to multiclass
domains.

Recall that the task of the consultant x is to prevent the
output neuron z from becoming wrongly ON. Obviously, z
can be wrongly ON only for an example labeled by z as posi-
tive, never for an example labeled as negative. The requested
behavior is thus achieved if x outputs a ’1” in response to ex-
amples for which z is wrongly ON and a ”0” otherwise. A
key prerequisite for an example to be wrongly ON is that z
classifies the example as positive. The learning algorithm
should take advantage of this fact when training consultant
nodes. It is pointless to include the examples z classifies as
OFF (negative) in the training set of X, as X is to special-
ize in correcting the wrongly ON errors of z. Following the
same logic, the consultant y should be trained only using
the examples for which z predicts OFF. Building on this ob-
servation, our first modification is to train each of Upstart’s
consultant neurons only on the training examples from a sin-
gle predicted class: x is induced from re-labeled examples
that z classifies as positive and y is induced from re-labeled
examples that z classifies as negative. The new label is 1"
if z misclassified the example and ”0” otherwise.

Restricting the training sets of the consultant neurons re-
duces computational costs because a smaller number of ex-
amples are used for the induction of each node. Moreover,
this modification leads to another simplification in using Up-
start networks. When z predicts that an example is positive,
it is only required to use the wrongly ON consultant. There
is little point in taking the computational effort to consult
with the wrongly OFF consultant when the example is clas-
sified as positive anyway. Similarly, z is only required to
use the wrongly OFF consultant when it predicts that an ex-
ample is negative. In this way, classifying examples with
an Upstart network is computationally less expensive, as we
only use a small portion of the overall network.

By using a subset of the training examples for each sub-
sequent consultant, we eliminate the danger of creating an
infinitely large network. Although Upstart is still not guar-
anteed to converge to zero error rate if the attributes are
numeric, our experiments indicate that learning approaches
zero error rate (on the training set) in a finite-sized network.

Introducing a stopping criterion

For reasons explained earlier, Frean’s original version of Up-
start can in numeric domain lead to very large (perhaps even
infinite) networks unless some reasonable stopping criterion
is used. The restriction of training sets to a great extent elim-
inates this need.

In our implementation, the network growth was stopped
either when no more consultants were needed (correct clas-
sification of all training examples) or when one of the fol-
lowing two conditions occurred: (1) the number of wrongly
ON or wrongly OFF errors is less than some threshold or (2)
when the depth of a branch is greater than some maximum
depth threshold.

Perhaps due to the nature of the benchmark data we
used, this simple approach turned out to be sufficient. Al-
though we did experiment with more sophisticated criteria,
we never observed any improvement in terms of classifica-
tion accuracy. We were able to improve “compactness” of
the created networks only at the cost of reduced classifica-
tion accuracy.

Dealing with Multiclass domains

A single neuron can only separate two classes. To extend
the idea to domains with N¢ classes, we replaced this neu-
ron with an entire layer of N neurons, one for each class.
This change increases the number of possible types of er-
ror. Instead of just becoming wrongly ON (read: “wrongly
positive”) or wrongly OFF (read: “wrongly negative”), the
generalized output node z can now be wrongly-class-i for
any i € [1,N¢]. As a matter of fact, it can even wrongly
predict more than one class.

This means that, in multiclass domains, the information
about misclassification is not sufficient to correct the pre-
diction. To address this problem, we make the consultant a
“specialist” for the examples assigned to it (e.g., the exam-
ples sharing a particular class label prediction by the parent
node). Consultant nodes are thus specialists for the exam-
ples classified by their parent as class-:.
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Figure 3: Modified Upstart.

Input:

1. Set, T, of training examples from N classes
2. List, L, of class labels
3. Depth, D, of the current node in the network

z = Upstart(T,L,D).
1. Train N neurons on 7I'. These neurons constitute the
current node, z.
2. If D is below a user-set threshold:
For each class i:
If the number of wronglly-class-i examples exceeds
a user-set threshold then
i) Let T’ be all examples labeled by z as class-¢.
ii) Let I be the class labels associated with exam-
plesin T’
iii) x = Upstart (T", L’, D+1)
iv) x becomes the wrongly-class-¢ consultant of z.

Again, the algorithm is used recursively.

Using the Classifier

After making a prediction, a node may rely on its consul-
tants to overturn the prediction, if necessary. First, node z
decides that an example should be assigned class-i. Then,
the consultant responsible for class-i either concurs with the
decision or returns the corrected class label.

Experiments

The goal of the experiments is to demonstrate that the al-
gorithm described in the previous section can induce a finite
neural network that can achieve good classification accuracy
in domains with numeric attributes. Moreover, the algorithm
can now be used in multiclass domains.

As testbeds, we used benchmark data files from the Ma-
chine Learning Database Repository of the University of
California, Irvine (Blake and Merz, 1998). Due to the na-
ture of our research, we focused on domains with numeric
attributes. Table 2 briefly summarizes the characteristics of
the data.

Special attention was devoted to methodology. The
benchmark data files are not sufficiently large for statisti-
cally safe comparisons of classification accuracies on un-
seen data. Since the popular ¢-tests are unreliable in con-
nection with random subsampling of data files of this size,
and since N -fold cross-validation on some of the smaller do-
mains would entail very high variations, we opted for a com-
promise: we used 10-fold cross-validation, repeated 5 times
for different partitionings of the data, and then averaged the
results. This means that, in each run, 90% examples were
used for training and the remaining 10% for testing. The
methodology is sound as long as we are interested only in
general tendencies and not in precise evaluation of statisti-
cal significance.
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Table 2: Characteristics of the benchmark data sets used in
the experiments.

Dataset | #examples | #attrib. | #classes
BCW 699 9 2
Pima 768 8 2
Aba3 526 10 2
Aba4 594 10 2
Bal2 625 4 2
Becel 68 10 2
Derm2 96 34 2
Derm3 108 34 2
Ion 351 34 2
Kbt2 900 15 2
Wdbc 569 31 2
Wpbc2 194 34 2
Wine 178 13 2
700 101 17 7
bal 625 4 3
glass 214 10 6
wine 178 13 3
hayes 132 5 3
house 506 13 9
seg 210 19 7

Apart from classical neurons implemented as linear
threshold units (LTU), we experimented also with simplified
“neurons” that test only a single attribute (SA). In the case of
LTU, the neural weights were found using the technique of
a pseudoinverse matrix (Duda and Hart, 1973) followed by
one epoch of perceptron learning (Rosenblatt, 1958) adapted
so that it minimizes a geometric mean of errors committed
on individual classes. In the case of SA, we scanned for each
attribute all possible binary splits and selected the attribute-
split pair with the lowest value of the geometric means of
the error rates.

The average classification accuracies (with standard de-
viations) are listed in Table 3. The classification accuracy
is defined as the percentage of correctly classified testing
examples (unseen during the training phase). The column
headed by “LTU” contains the results achieved by the im-
plementation with LTU neurons and the column headed by
“SA” contains the results achieved by the implementation
with single-attribute neurons. For reference, the table also
gives the results achieved by the Quinlan’s decision-tree
generator See5 run on the same data'. The reason we show
these results is to make sure that the induced neural network
is not inferior to other pattern recognition paradigms.

The modified version of Upstart generates finite neural
networks (although not really the classical feedforward neu-
ral networks). Moreover, the classification accuracy on un-
seen data appears to be acceptable. We want to avoid any
claims related to the comparisons with decision trees—these

'Unlike C4.5, this new version, See5, outputs only results from
pruned decision trees. The comparison is thus not totally fair be-
cause the Upstart networks have not been pruned.



Table 3: Experimental results of classification accuracy on
testing data. Averages and standard deviations are from 10-
fold cross validation repeated 5 times.

Dataset LTU SA Decision Tr.
BCW 94.4+0.4 96.6£0.2 94.0+0.6
Pima 66.0+0.9 65.44+2.3 74.3+£1.2
Aba3 90.9+0.8 89.7+1.2 92.8+0.4
Aba4d 89.3+0.7 86.8+0.9 91.6+0.5
Bal2 95.61+0.3 72.9+£2.0 84.2+1.0
Becel 95.0+£2.2 88.0+2.2 85.6+2.0
Derm2 | 100.0+0.0 | 100.0£0.0 100.0+0.0
Derm3 99.1+0.1 | 100.0£0.0 100.0+0.0
Ton 84.7+0.9 87.7£1.5 90.3+0.7
Kbt2 83.4+0.8 86.2+1.0 86.7+£0.9
Wdbc 95.0+0.8 93.1+0.5 94.1+0.6
Wpbc2 67.4£2.6 71.3+£2.7 73.7£2.0
Wine 99.3+0.3 93.0+0.6 94.4+1.3
Z00 92.7+1.9 93.94+0.9 94.1+1.4
bal 92.4+0.5 70.1£2.3 78.5£0.5
glass 93.1+1.7 95.0+0.3 97.6+0.6
wine 97.2+0.6 90.5+1.9 92.6+2.2
hayes 66.2+3.3 60.5£3.3 79.3+1.4
house 35.9+2.4 422414 55.5+14
seg 78.4+1.7 75.9+£2.0 89.0+1.6

are two different approaches and, after all, none of them is
expected to “beat” the other in all domains. Suffice to say
that in 6-7 domains, decision trees did clearly better, and in
5-6 domains, the modified Upstart did clearly better. This
means that the Upstart’s mechanism does not create neural
networks with poor classification performance.

Conclusion

The paper proposes a simple modification of Frean’s Up-
start algorithm for creating neural networks one neuron at a
time. The modification facilitates the use of this algorithm in
domains where training examples are described by numeric
attributes and also in multiclass domains. Upstart addresses
the problem of how to automate the design of a neural net-
work’s architecture. We believe that the broader use of this
paradigm has so far been precluded mainly by its limitation
to purely boolean domains. With the extensions presented
in this paper, the approach can be easily employed by more
realistic applications. The experimental results reported in
the previous section are encouraging.

Having shown that the essence of the technique is viable,
we hope to have persuaded the reader that Frean’s idea in-
deed deserves more attention. For one thing, it can easily be
extended to self-organization of more sophisticated entities.
For instance, instead of mere neurons, one can think of net-
works of more powerful classifiers, such as decision trees.
Studies of methods to combine several classifiers into one
voting structure have received considerable attention during
the last decade. The approach studied here can be under-
stood as an alternative to such approaches as the popular

“boosting” (Schapire, 1990).

Development of more advanced mechanisms for stopping
the search and for pruning the resulting structure is likely
to reveal further advantages of this simple and intuitive ap-
proach.
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