
Imitating Agent Game Strategies Using a Scalable Markov Model

Priyath Sandanayake and Diane J. Cook
Department of Computer Science and Engineering

Box 19015
University of Texas at Arlington

Arlington, TX 76019-0015
{sandanay, cook}@cse.uta.edu

Abstract
Humans exhibit regularities in almost everything they do.
We describe a Markov model derived from the behavior
patterns of an agent, which is used to determine strategies
by predicting which action a user is likely to execute next.
We evaluate the predictive accuracy of this approach on a
large dataset collected from sample Wumpus World
games. We demonstrate from this approach that, the
model can correctly predict the user’s next action with
minimal computation and memory resources. Such
predictions can then be used to imitate player strategies in
a variety of games and other strategic domains.

Introduction
Are we predictable enough to be imitated? We are all
unique in our own ways and most of the time this is a
good thing. But what about the times when we want to
train some other individual to do some task just like we
do it? Then we have to go through the process of training
that person step by step through the task. We use this
same approach when we want a computer to perform a
task the way we do it. What if tomorrow, to do the same
task the strategy is changed? We have to then program it
all over again to do the same task differently. What if we
also want to train an agent to perform some other task?
Training with all these changes and new tasks constitutes
a fair amount of work. Some of us, when training a
person, take the approach of training by imitation, like the
phrase we always hear “just watch and learn”. This
approach sounds like a more practical method in many
ways. Can we use the same approach to train a software
agent?

There are many applications that are developed which
use this methodology. For example, when using a word
processor such as Microsoft Word, if the user starts
creating a list with bullets, Word will take the user into its
list environment and help the user with the next bullet.
This methodology is even used in Operating Systems.
Windows Millennium uses this type of methodology by
watching the applications a user employs, then displaying
the recently used applications in the start up program bar
hiding others. Most of these applications keep only the

Copyright © 2002, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

recent information it learned about the user, and do not
take into consideration their past history and patterns
when making such decisions. Users’ history becomes very
important in determining a good pattern of the users’
strategy.

This paper investigates this problem. We design and
implement a game known as Wumpus World to learn
users’ strategies and imitate them. We investigate how
much of the history we need to incorporate to make the
best model of a user in order to make good decisions. The
following section describes our approach in more detail.

Related Work
Today there is a wide variety of computer applications
ranging from web browsers to database systems that
attempt to determine user patterns. Research has been
performed by the community on user modeling to
accomplish this task. Some researchers have used
Bayesian Networks to infer user future actions from past
behaviour (Horvitz et al., 1998) and (Albrecht et al.,
1998). Bayesian networks and influence diagrams, in
embedded applications allow them to make inferences
about the goals of users, and to take ideal actions based on
probability distributions over these goals. Horvitz et al.
(1998) determined from the users’ actions that the user is
likely trying to define a custom chart in Excel, and
Albrecht et al. (1997) determined from the users’ actions
that the user is likely trying to rescue a teddy bear. There
are also other approaches taken, such as applying
backpropagation neural networks to the real world
problem of sorting e-mail messages based upon the
sender’s address (Gorniak 1998). This approach becomes
a little problematic when trying to design the optimal
network structure because the outputs frequently vary
over time in real world settings. Both of these methods
use informed modeling strategies, which means there is
some prior knowledge of the model that is known. In
most cases this prior information includes the task goal.
Our approach requires no prior information about the
application’s purpose.

Other researchers have focused on independent user
modeling strategies that do not build a model at all
(Davison and Hirsh 1998) and (Korvemaker and Greiner
2000). They choose pairs of actions occurring in
sequences as a pattern and build a simple probability

FLAIRS 2002 349

From: FLAIRS-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

table. The table is built by, increasing the probability of
those action pairs that occurred recently and decreasing
the probability of all others. They make predictions by
selecting the action with the highest probability for the
current state. These kinds of selections make an implicit
Markov assumption, that the last action together with the
current values provided by the probability table contains
enough information to predict the next action. To
determine patterns we need to consider more than the last
action.

The motivation to our approach was based on the
following two approaches, which explicitly builds a
concept model. One approach predicts future actions by
matching patterns from historical data (Gorniak and Poole
2000). The other predicts future actions using a Markov
Model built from frequencies (Zukerman et al., 1999). In
Gorniak’s approach, the next action is predicted by
choosing the longest sequences in history that match the
current action sequence. This leads to problems of space
when we take a large dataset into consideration.
Zukerman’s approach is the opposite of Gorniak’s
approach. Instead of keeping all the actions and states in
history, they build a simple Markov Model that predicts
the next action based on the previous action.

The foundation of our work is similar to the action
prediction performed by Zukerman et al., who use simple
Markov Models for web pre-caching. They describe
several Markov models derived from the behavior
patterns of many users, and present a hybrid model, which
combines the individual models. In this paper, we start
with a first-order Markov Model and work towards a
sequence matching approach, trying to find a middle
ground that will yield an optimal solution.

Wumpus World
We will test our approach using the Wumpus World
game. Wumpus World is a square grid of locations where
each location has the possibility of containing a pit, a pot
of gold, an obstacle, a Wumpus, an Agent, or a
combination of these elements. This grid world will
contain many pits, pots of gold, obstacles, and Wumpii.
Each location in the world is differed by a Cartesian
system, with the Agent’s initial location being the lower
left grid cell (1,1).

The object of the game is for the agent to traverse the
world collecting as many pots of gold as possible, return
to the initial start location, and exit without getting killed
by a pit or a Wumpus. The Agent gets killed if it moves to
a location that contains a Wumpus or a pit. The Agent
receives a reward only if it exits the world with one or
more pots of gold. The Agent can select an action to
execute from the following eleven possibilities: move up,
move down, move right, move left, shoot up, shoot down,
shoot right, shoot left, grab the gold, climb out of the
world, or sit and miss a turn. The Agent selects an action
based on its knowledge of the world, represented by the
following five percepts: stench, breeze, glitter, bump, and

scream. The Agent perceives a stench if there is a
Wumpus in one of the four adjacent (horizontal and
vertical) locations, a breeze if there is a pit in one of the
four adjacent locations, a glitter if there is pot of gold at
the current location, a bump if the Agent hits a wall or an
obstacle while executing an action, and a scream if the
Agent kills a Wumpus.

Data Preparation
In order to determine a sample software Agent’s
behaviors and actions in the Wumpus World application,
we collected a dataset that contains 2000 games. The
dataset was collected with one Agent playing the
Wumpus World using the same strategy for all of the
games. Our model has no information about the strategy
the Agent is employing. It also does not have a global
view of the environment, and does not store the history of
the Agent’s moves explicitly. It only tries to create a
Markov Decision Process (MDP) model based on the
Agent’s local information and actions. This local
information contains the Agent’s percepts (stench, breeze,
glitter, bump, scream), whether the agent is carrying gold
or not, and what knowledge the agent has about the
adjacent four locations (whether there is an obstacle and
whether the Agent has visited the location). The collected
dataset contains 19628 action state tuples.

The Models
We built a Markov Decision Process from the data that
was collected. Each state was represented by a node and
each action from a particular state was represented by an
arc or transition from the current state to the state
resulting from executing the action. The frequencies of
actions that the user makes were used to generate
transition probabilities. These probabilities were then
used to make predictions to determine the users’ next
action. Each node that represents a state contained the
following features. (1) Percepts – the percepts the agent
perceives, (2) HaveGold – whether the agent has gold or
not, and (3) AdjLocations – whether it was visited, and
whether it has an obstacle into which the agent bumped.
Each arc that represents an action contained a probability
frequency. To illustrate how the Markov Decision Process
was created from the data set, consider the following
action state sequence example:

{ (s1, a1), (s2, a1), (s3, a2), (s1, a1), (s2, a1), (s3, a2),
(s1, a2), (s4, a2), (s3, a2), (s1, a2) }

Each state and the previous action leading to that state

are represented by a tuple in this sequence. Figure 1
describes the model that was created for the above data
set. The states are connected with the actions. Each action
from state Si has an associated weight, w(Si, aj), which is
the normalized frequency of action aj. Thus, after

350 FLAIRS 2002

observing a state, the probability that the next action is
action ai can be computed as follows.

To illustrate the calculation of the probability of a
particular action from a particular state, let us reconsider
the dataset, and assume that we are in the last state S1 at
the current moment. The probability of each action will be
calculated as shown below.

Pr(a1 | S1) = 2 / (2 + 1) = 0.66,
Pr (a2 | S1) = 1 / (2 + 1) = 0.33

Figure 1. Initial Model

By the calculations, the probability of the next action

from the current state S1 would be a1. The MDP that we
created is a first-order Markov Model with no history
included in the state representation. In practice this kind
of model frequently does not perform well due to the fact
that most of the actions one makes are influenced by past
actions and results (not just the current state). Therefore
we needed a method to improve the performance of
predicting the next action. To improve this model, we
included the previous action into the state representation.
By including the previous action into a state description,
predictive accuracies improved. Table 1 shows the
improvement in prediction.

T
ot

al

P
re

di
ct

io
n

P
re

di
ct

ed

C
or

re
ct

ly

T
ot

al

N
um

be
r

of

St
at

es

Initial
Model

19628 17462 373

N
ex

t A
ct

io
n

P
re

di
ct

ed

Augment.
Model

19628 18208 604

Table 1: Performance values of the two models before
merging

Augmenting our model by including the previous

action into the state made the model much bigger. The

number of states the model is able to contain became
much larger. Our initial decision was to determine a point
where we could include information into a state to make
the prediction more accurate, but also not to insert too
much information into each state that will create a huge
model. Inserting the previous action into the state makes
the model look different from the previous model, Figure
1. To illustrate how this new model that contains the
previous action into the state appears, Figure 2 was
created out of the example dataset. As seen, the number of
states grew from four states into five states in our example
dataset.

Figure 2: Augmented Model

We will illustrate the same example to see if we get the
same performance as the previous method. Let us assume
that we are in the same state as the previous example and
consider calculating the probability of each next action.

Pr(a2 | (S1 / a2)) = 1 / (1) = 1.0,

From current state S1 we predict action a2. As can be
seen from the example dataset, there is a pattern of action
a2 than action a1, occurring from state S1 after action a2
occurring from state S3. Therefore the Augmented Model
that includes the previous action in the state gives a more
accurate prediction than the Initial Model (in which the
previous action is not included in the state representation).
Table 1 shows the improvement that was obtained in
prediction by inserting the previous action into the state
representation.

Merging Process

Building a second-order Markov Model greatly increased
the number of states in the model. To compensate for this
cost, we selectively merged states. Merging states
reduced the resource costs of the approach and reduced
the amount of training data that was necessary to yield
accurate predictions. In our implementation, we merged
states if they were sufficiently similar and were rarely
visited. With the merging approach, we can give more
detailed information to states that are visited often, and
generalize states that are not visited very often.

FLAIRS 2002 351

Merging Algorithm
We used two criteria in selecting states to be merged. (1)
Merge states which are similar (states that have the same
features except for the previous action), and (2) Merge
states that are not visited that often (the minimum visit
threshold, T, can be specified by the user). We executed
��� ����� ���	�

 ����� �
����� �� ����
� ����� � �

the number of games it will play before starting the merge
���	�

� �
� ����� ��� �����
� ���
 	�
��
�� �
����� �

number of games before executing the merge process
again.

The states were merged as follows: first, the states that
did not have a next action (the leaf nodes) were extracted
from the model; next, the states that are visited below the
threshold were selected. By comparing the selected states,
all the states that contained a similar state representation
(considering the attributes percepts, have gold, and
adjacent location knowledge, and not the previous action)
were combined together into a new state that generalizes
the differing feature values by replacing them with a
disjunction of the represented values. All the arcs that
were linked to and from the merged states linked to and
from this merged state. The probabilities of the next
actions from this merged state were re-calculated after
merging the states.

Experimental Results
We collected data on 2000 games played by known-
strategy agents. The whole process was done on-line,
which means while data is read and the model is updated,
a prediction is made for the next action.

0

20

40

60

80

100

P
re

d
ic

ti
ve

 A
cc

u
ra

cy

States /
Total States
Possible

Predicted /
Total

Graph 1: Predictive Accuracy and Percentage of States Visited

for Different State Descriptions

In our first experiment, we evaluated the predictive
accuracy of the model as the state descriptions become
more detailed. The three initial features that were
considered for the state description included the percepts
the agent receives, whether the agent has gold or not, and
the deduced contents of adjacent locations. Graph 1
compares the results of various combinations of these
features. From these results, we saw that as we added

more features, the number of actions that were predicted
accurately compared to the total number of actions
increased. We also saw that as we added more features,
the percentage of the number of states visited to the
number of states possible was very low. This was due to
the fact that the states becoming more specific made the
model capable of obtaining more states.

After picking the features that described a good state,
we compared the initial three-feature model with an
augmented model where we included the previous action
in the state description. The results in Table 1 indicate
that the augmented model yields a better performance
than the initial model we implemented (without the
previous action). The predictive accuracy of our
augmented model using the 2000-game database was
91.8%.

Although the temptation is to include additional
features, an increasing state representation complexity
will ultimately result in a model that exceeds memory
resources. In addition, a larger model requires a larger
amount of training data to accurately represent the agent’s
strategy. State merging can be applied in this situation to
reduce the space and training requirements of the model.

�

10
0

20
0

25
0

50
0

10
00

1 15.56 14.90 14.07 12.25 9.93
2 21.02 19.04 18.38 17.05 15.89
3 24.01 22.18 21.19 19.20 17.38
4 25.99 24.34 24.34 21.52 20.03

T

5 27.32 26.16 25.33 22.51 21.19

Table 2: Decrease in Percentage of States Visited

To determine the effect that state merging had on
resource requirements and predictive accuracy, we
calculated the performance when we apply the merging
process to our augmented model. To generate the values
shown in Tables 2 and 3, we collected results for five
v����
 �� � �
� ���� �����
 �� T.

�

10
0

20
0

25
0

50
0

10
00

1 1.120 0.730 0.632 0.132 0.066
2 2.285 0.884 0.780 0.280 0.170
3 3.207 1.988 1.285 0.341 0.192
4 3.279 2.060 1.812 0.368 0.231

T

5 3.438 2.416 1.944 0.395 0.247

Table 3: Decrease in Predictive Accuracy

352 FLAIRS 2002

As seen in Table 2, the more often we merged the more
the number of states decreased, and the bigger the value
of T, the more the number of states decreased. Table 3
gives us the values of the predictive accuracy when
performed the merging process. As we can see, there is
always a drop in the predictive accuracy when we merge
states. This is due to the fact that the merged states are
more generalized than the rest. The data in Table 3 shows
that the less often we merged and the smaller the value of
T, we got the least prediction performance drop. Note
that, overall when we applied the merge process every
100 games merging all the states that were visited one
time or less, we got a huge drop of 15.56% in the number
of states, costing only a 1.120% in predictive accuracy.

Conclusions
In this paper we have described an approach to imitating
agent strategies by modeling the agent using a scalable
Markov model. We first built a simple Markov Decision
Process to create a user model for prediction that would
not have the memory requirements of a sequence
matching approach. Then we systematically determined
how much information to include in the state description
that would balance predictive accuracy with size
limitations. We then considered how to incorporate the
history benefits found in the sequence matching approach
by adding the previous action to the state description. We
have shown that adding history into the state description
yields greater prediction accuracy than just using the
current state knowledge. Further, to preserve scalability,
we applied a state merging technique and evaluated the
results. By doing so, we showed that although prediction
accuracy decreased, it decreased by a small percentage
compared to the gain in decreasing the model size. The
decrement of the accuracy could have been due to the
features selected for the merging. Selecting different
features of the state that will meet the best merge, could
have improved the accuracy. After building a MDP and
applying a state merging technique, we conclude that the
overall success of this approach has been positive, which
is building a simple Markov Model on-line that will also
include enough history to get a (90.1 ± 1.7)% accuracy.

Future Work
We are refining our approach to imitating agent strategies
in the Wumpus World game by trying to include more
information in the state description, without losing too
much of the prediction accuracy. Since the enhancement
of adding history (like the previous action) improved our
predictive power, we plan to build a higher-order Markov
Model such as a second-order Markov Model. Another
consideration for future work is, applying a different
merging technique such as ‘Best-first model merging’, or
Decision Trees, which will give an increase in the
predictive accuracy.

We are also considering a state splitting method to
improve the prediction, such that we could split states that
are frequently visited in order to generate more detailed
predictions that incorporate a longer action history.

References
Albrecht, D. W.; Zukerman, I.; and Nicholson, A. E.
1998, Bayesian Models for Keyhole Plan Recognition in
an Adventure Game, User Modeling and User-Adapted
Interaction.

Davison, B.D.; and Hirsh, H. 1998, Predicting sequences
of user actions, Technical report, Rutgers, The State
University of New York.

Gorniak, P.J. 1998, Sorting email messages by topic,
Project Report, University of British Columbia.

Gorniak, P.J. 2000, Keyhole State Space Construction
with Applications to User Modeling, Masters thesis,
University of British Columbia.

Horvitz, E.; Breese, J.; Heckerman, D.; Hovel, D.; and
Rommelse, K. 1998, The lumiere project: Bayesian user
modeling for inferring the goals and needs of software
users, Uncertainty in Artificial Intelligence, Proceedings
of the Fourteenth Conference.

Korvemaker, B.; and Greiner, R. 2000, Predicting UNIX
Command Lines: Adjusting to User Patterns, Proceedings
of the 17th National Conference on Artificial Intelligence.

Zukerman, I.; Albrecht, D.W.; and Nicholson, A.E. 1999,
Predicting Users’ Requests on the WWW, User Modeling:
Proceedings of the 7th International Conference, UM99.

FLAIRS 2002 353

