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Abstract 
Humans exhibit regularities in almost everything they do. 
We describe a Markov model derived from the behavior 
patterns of an agent, which is used to determine strategies 
by predicting which action a user is likely to execute next. 
We evaluate the predictive accuracy of this approach on a 
large dataset collected from sample Wumpus World 
games.  We demonstrate from this approach that, the 
model can correctly predict the user’s next action with 
minimal computation and memory resources. Such 
predictions can then be used to imitate player strategies in 
a variety of games and other strategic domains. 
 

Introduction 
Are we predictable enough to be imitated? We are all 
unique in our own ways and most of the time this is a 
good thing. But what about the times when we want to 
train some other individual to do some task just like we 
do it? Then we have to go through the process of training 
that person step by step through the task. We use this 
same approach when we want a computer to perform a 
task the way we do it. What if tomorrow, to do the same 
task the strategy is changed? We have to then program it 
all over again to do the same task differently. What if we 
also want to train an agent to perform some other task? 
Training with all these changes and new tasks constitutes 
a fair amount of work. Some of us, when training a 
person, take the approach of training by imitation, like the 
phrase we always hear “just watch and learn”. This 
approach sounds like a more practical method in many 
ways. Can we use the same approach to train a software 
agent? 

There are many applications that are developed which 
use this methodology. For example, when using a word 
processor such as Microsoft Word, if the user starts 
creating a list with bullets, Word will take the user into its 
list environment and help the user with the next bullet. 
This methodology is even used in Operating Systems. 
Windows Millennium uses this type of methodology by 
watching the applications a user employs, then displaying 
the recently used applications in the start up program bar 
hiding others. Most of these applications keep only the 
_________ 
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recent information it learned about the user, and do not 
take into consideration their past history and patterns 
when making such decisions. Users’ history becomes very 
important in determining a good pattern of the users’ 
strategy. 

This paper investigates this problem. We design and 
implement a game known as Wumpus World to learn 
users’ strategies and imitate them. We investigate how 
much of the history we need to incorporate to make the 
best model of a user in order to make good decisions. The 
following section describes our approach in more detail. 

 

Related Work 
Today there is a wide variety of computer applications 
ranging from web browsers to database systems that 
attempt to determine user patterns. Research has been 
performed by the community on user modeling to 
accomplish this task. Some researchers have used 
Bayesian Networks to infer user future actions from past 
behaviour (Horvitz et al., 1998) and (Albrecht et al., 
1998).  Bayesian networks and influence diagrams, in 
embedded applications allow them to make inferences 
about the goals of users, and to take ideal actions based on 
probability distributions over these goals. Horvitz et al. 
(1998) determined from the users’ actions that the user is 
likely trying to define a custom chart in Excel, and 
Albrecht et al. (1997) determined from the users’ actions 
that the user is likely trying to rescue a teddy bear. There 
are also other approaches taken, such as applying 
backpropagation neural networks to the real world 
problem of sorting e-mail messages based upon the 
sender’s address (Gorniak 1998). This approach becomes 
a little problematic when trying to design the optimal 
network structure because the outputs frequently vary 
over time in real world settings. Both of these methods 
use informed modeling strategies, which means there is 
some prior knowledge of the model that is known.  In 
most cases this prior information includes the task goal. 
Our approach requires no prior information about the 
application’s purpose. 

Other researchers have focused on independent user 
modeling strategies that do not build a model at all 
(Davison and Hirsh 1998) and (Korvemaker and Greiner 
2000). They choose pairs of actions occurring in 
sequences as a pattern and build a simple probability 
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table. The table is built by, increasing the probability of 
those action pairs that occurred recently and decreasing 
the probability of all others. They make predictions by 
selecting the action with the highest probability for the 
current state. These kinds of selections make an implicit 
Markov assumption, that the last action together with the 
current values provided by the probability table contains 
enough information to predict the next action. To 
determine patterns we need to consider more than the last 
action.   

The motivation to our approach was based on the 
following two approaches, which explicitly builds a 
concept model. One approach predicts future actions by 
matching patterns from historical data (Gorniak and Poole 
2000). The other predicts future actions using a Markov 
Model built from frequencies (Zukerman et al., 1999). In 
Gorniak’s approach, the next action is predicted by 
choosing the longest sequences in history that match the 
current action sequence. This leads to problems of space 
when we take a large dataset into consideration. 
Zukerman’s approach is the opposite of Gorniak’s 
approach. Instead of keeping all the actions and states in 
history, they build a simple Markov Model that predicts 
the next action based on the previous action.  

The foundation of our work is similar to the action 
prediction performed by Zukerman et al., who use simple 
Markov Models for web pre-caching. They describe 
several Markov models derived from the behavior 
patterns of many users, and present a hybrid model, which 
combines the individual models. In this paper, we start 
with a first-order Markov Model and work towards a 
sequence matching approach, trying to find a middle 
ground that will yield an optimal solution. 
 

Wumpus World 
We will test our approach using the Wumpus World 
game.  Wumpus World is a square grid of locations where 
each location has the possibility of containing a pit, a pot 
of gold, an obstacle, a Wumpus, an Agent, or a 
combination of these elements. This grid world will 
contain many pits, pots of gold, obstacles, and Wumpii. 
Each location in the world is differed by a Cartesian 
system, with the Agent’s initial location being the lower 
left grid cell (1,1).  

The object of the game is for the agent to traverse the 
world collecting as many pots of gold as possible, return 
to the initial start location, and exit without getting killed 
by a pit or a Wumpus. The Agent gets killed if it moves to 
a location that contains a Wumpus or a pit. The Agent 
receives a reward only if it exits the world with one or 
more pots of gold. The Agent can select an action to 
execute from the following eleven possibilities: move up, 
move down, move right, move left, shoot up, shoot down, 
shoot right, shoot left, grab the gold, climb out of the 
world, or sit and miss a turn. The Agent selects an action 
based on its knowledge of the world, represented by the 
following five percepts: stench, breeze, glitter, bump, and 

scream. The Agent perceives a stench if there is a 
Wumpus in one of the four adjacent (horizontal and 
vertical) locations, a breeze if there is a pit in one of the 
four adjacent locations, a glitter if there is pot of gold at 
the current location, a bump if the Agent hits a wall or an 
obstacle while executing an action, and a scream if the 
Agent kills a Wumpus. 

  

Data Preparation 
In order to determine a sample software Agent’s 
behaviors and actions in the Wumpus World application, 
we collected a dataset that contains 2000 games. The 
dataset was collected with one Agent playing the 
Wumpus World using the same strategy for all of the 
games. Our model has no information about the strategy 
the Agent is employing. It also does not have a global 
view of the environment, and does not store the history of 
the Agent’s moves explicitly. It only tries to create a 
Markov Decision Process (MDP) model based on the 
Agent’s local information and actions. This local 
information contains the Agent’s percepts (stench, breeze, 
glitter, bump, scream), whether the agent is carrying gold 
or not, and what knowledge the agent has about the 
adjacent four locations (whether there is an obstacle and 
whether the Agent has visited the location). The collected 
dataset contains 19628 action state tuples. 
 

The Models 
We built a Markov Decision Process from the data that 
was collected. Each state was represented by a node and 
each action from a particular state was represented by an 
arc or transition from the current state to the state 
resulting from executing the action. The frequencies of 
actions that the user makes were used to generate 
transition probabilities. These probabilities were then 
used to make predictions to determine the users’ next 
action. Each node that represents a state contained the 
following features. (1) Percepts – the percepts the agent 
perceives, (2) HaveGold – whether the agent has gold or 
not, and (3) AdjLocations – whether it was visited, and 
whether it has an obstacle into which the agent bumped. 
Each arc that represents an action contained a probability 
frequency. To illustrate how the Markov Decision Process 
was created from the data set, consider the following 
action state sequence example: 
 

{ (s1, a1), (s2, a1), (s3, a2), (s1, a1), (s2, a1), (s3, a2), 
(s1, a2), (s4, a2), (s3, a2), (s1, a2) } 

 
Each state and the previous action leading to that state 

are represented by a tuple in this sequence. Figure 1 
describes the model that was created for the above data 
set. The states are connected with the actions. Each action 
from state Si has an associated weight, w( Si, aj ), which is 
the normalized frequency of action aj. Thus, after 
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observing a state, the probability that the next action is 
action ai can be computed as follows. 
 

 
 

To illustrate the calculation of the probability of a 
particular action from a particular state, let us reconsider 
the dataset, and assume that we are in the last state S1 at 
the current moment. The probability of each action will be 
calculated as shown below. 

 
Pr( a1 | S1 ) = 2 / ( 2 + 1 ) = 0.66,  
Pr ( a2 | S1 ) = 1 / ( 2 + 1 ) = 0.33 

  

 
Figure 1. Initial Model 

 
By the calculations, the probability of the next action 

from the current state S1 would be a1. The MDP that we 
created is a first-order Markov Model with no history 
included in the state representation. In practice this kind 
of model frequently does not perform well due to the fact 
that most of the actions one makes are influenced by past 
actions and results (not just the current state). Therefore 
we needed a method to improve the performance of 
predicting the next action. To improve this model, we 
included the previous action into the state representation. 
By including the previous action into a state description, 
predictive accuracies improved. Table 1 shows the 
improvement in prediction. 
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Table 1: Performance values of the two models before 
merging 

 
Augmenting our model by including the previous 

action into the state made the model much bigger. The 

number of states the model is able to contain became 
much larger. Our initial decision was to determine a point 
where we could include information into a state to make 
the prediction more accurate, but also not to insert too 
much information into each state that will create a huge 
model. Inserting the previous action into the state makes 
the model look different from the previous model, Figure 
1. To illustrate how this new model that contains the 
previous action into the state appears, Figure 2 was 
created out of the example dataset. As seen, the number of 
states grew from four states into five states in our example 
dataset.  
 

 
 

Figure 2: Augmented Model 
 

We will illustrate the same example to see if we get the 
same performance as the previous method. Let us assume 
that we are in the same state as the previous example and 
consider calculating the probability of each next action.   

Pr( a2 | (S1 / a2) ) = 1 / ( 1 ) = 1.0,  
  

From current state S1 we predict action a2. As can be 
seen from the example dataset, there is a pattern of action 
a2 than action a1, occurring from state S1 after action a2 
occurring from state S3. Therefore the Augmented Model 
that includes the previous action in the state gives a more 
accurate prediction than the Initial Model (in which the 
previous action is not included in the state representation). 
Table 1 shows the improvement that was obtained in 
prediction by inserting the previous action into the state 
representation. 
 

Merging Process 

Building a second-order Markov Model greatly increased 
the number of states in the model. To compensate for this 
cost, we selectively merged states.  Merging states 
reduced the resource costs of the approach and reduced 
the amount of training data that was necessary to yield 
accurate predictions.  In our implementation, we merged 
states if they were sufficiently similar and were rarely 
visited. With the merging approach, we can give more 
detailed information to states that are visited often, and 
generalize states that are not visited very often. 
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Merging Algorithm 
We used two criteria in selecting states to be merged. (1) 
Merge states which are similar (states that have the same 
features except for the previous action), and (2) Merge 
states that are not visited that often (the minimum visit 
threshold, T, can be specified by the user). We executed 
��� ����� ���	�

 ����� � 
����� �� ����
� ����� � �

the number of games it will play before starting the merge 
���	�

� �
� ����� ��� �����
� ���
 	�
��
�� �
����� �

number of games before executing the merge process 
again. 

The states were merged as follows: first, the states that 
did not have a next action (the leaf nodes) were extracted 
from the model; next, the states that are visited below the 
threshold were selected. By comparing the selected states, 
all the states that contained a similar state representation 
(considering the attributes percepts, have gold, and 
adjacent location knowledge, and not the previous action) 
were combined together into a new state that generalizes 
the differing feature values by replacing them with a 
disjunction of the represented values. All the arcs that 
were linked to and from the merged states linked to and 
from this merged state. The probabilities of the next 
actions from this merged state were re-calculated after 
merging the states. 
 

Experimental Results 
We collected data on 2000 games played by known-
strategy agents. The whole process was done on-line, 
which means while data is read and the model is updated, 
a prediction is made for the next action. 
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Graph 1: Predictive Accuracy and Percentage of States Visited 

for Different State Descriptions 
 

In our first experiment, we evaluated the predictive 
accuracy of the model as the state descriptions become 
more detailed.  The three initial features that were 
considered for the state description included the percepts 
the agent receives, whether the agent has gold or not, and 
the deduced contents of adjacent locations. Graph 1 
compares the results of various combinations of these 
features. From these results, we saw that as we added 

more features, the number of actions that were predicted 
accurately compared to the total number of actions 
increased. We also saw that as we added more features, 
the percentage of the number of states visited to the 
number of states possible was very low. This was due to 
the fact that the states becoming more specific made the 
model capable of obtaining more states.  

After picking the features that described a good state, 
we compared the initial three-feature model with an 
augmented model where we included the previous action 
in the state description. The results in Table 1 indicate 
that the augmented model yields a better performance 
than the initial model we implemented (without the 
previous action).  The predictive accuracy of our 
augmented model using the 2000-game database was 
91.8%. 

Although the temptation is to include additional 
features, an increasing state representation complexity 
will ultimately result in a model that exceeds memory 
resources.  In addition, a larger model requires a larger 
amount of training data to accurately represent the agent’s 
strategy.  State merging can be applied in this situation to 
reduce the space and training requirements of the model. 
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1 15.56 14.90 14.07 12.25 9.93 
2 21.02 19.04 18.38 17.05 15.89 
3 24.01 22.18 21.19 19.20 17.38 
4 25.99 24.34 24.34 21.52 20.03 

T
 

5 27.32 26.16 25.33 22.51 21.19 
 

Table 2: Decrease in Percentage of States Visited 
 

To determine the effect that state merging had on 
resource requirements and predictive accuracy, we 
calculated the performance when we apply the merging 
process to our augmented model. To generate the values 
shown in Tables 2 and 3, we collected results for five 
v����
 �� � �
� ���� �����
 �� T. 
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1 1.120 0.730 0.632 0.132 0.066 
2 2.285 0.884 0.780 0.280 0.170 
3 3.207 1.988 1.285 0.341 0.192 
4 3.279 2.060 1.812 0.368 0.231 

T
 

5 3.438 2.416 1.944 0.395 0.247 
 

Table 3: Decrease in Predictive Accuracy 
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As seen in Table 2, the more often we merged the more 
the number of states decreased, and the bigger the value 
of T, the more the number of states decreased. Table 3 
gives us the values of the predictive accuracy when 
performed the merging process. As we can see, there is 
always a drop in the predictive accuracy when we merge 
states. This is due to the fact that the merged states are 
more generalized than the rest. The data in Table 3 shows 
that the less often we merged and the smaller the value of 
T, we got the least prediction performance drop. Note 
that, overall when we applied the merge process every 
100 games merging all the states that were visited one 
time or less, we got a huge drop of 15.56% in the number 
of states, costing only a 1.120% in predictive accuracy.  
 

Conclusions 
In this paper we have described an approach to imitating 
agent strategies by modeling the agent using a scalable 
Markov model. We first built a simple Markov Decision 
Process to create a user model for prediction that would 
not have the memory requirements of a sequence 
matching approach. Then we systematically determined 
how much information to include in the state description 
that would balance predictive accuracy with size 
limitations. We then considered how to incorporate the 
history benefits found in the sequence matching approach 
by adding the previous action to the state description. We 
have shown that adding history into the state description 
yields greater prediction accuracy than just using the 
current state knowledge. Further, to preserve scalability, 
we applied a state merging technique and evaluated the 
results. By doing so, we showed that although prediction 
accuracy decreased, it decreased by a small percentage 
compared to the gain in decreasing the model size. The 
decrement of the accuracy could have been due to the 
features selected for the merging. Selecting different 
features of the state that will meet the best merge, could 
have improved the accuracy. After building a MDP and 
applying a state merging technique, we conclude that the 
overall success of this approach has been positive, which 
is building a simple Markov Model on-line that will also 
include enough history to get a (90.1 ± 1.7)% accuracy. 
 

Future Work 
We are refining our approach to imitating agent strategies 
in the Wumpus World game by trying to include more 
information in the state description, without losing too 
much of the prediction accuracy. Since the enhancement 
of adding history (like the previous action) improved our 
predictive power, we plan to build a higher-order Markov 
Model such as a second-order Markov Model. Another 
consideration for future work is, applying a different 
merging technique such as ‘Best-first model merging’, or 
Decision Trees, which will give an increase in the 
predictive accuracy.  

We are also considering a state splitting method to 
improve the prediction, such that we could split states that 
are frequently visited in order to generate more detailed 
predictions that incorporate a longer action history. 
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