
Contextual Knowledge Representation for Requirements Documents in Natural
Language

Beum-Seuk Lee Barrett R. Bryant
Department of Computer and Information Sciences

The University of Alabama at Birmingham
Birmingham, Alabama, U.S.A. 35294-1170

leebs, bryant @cis.uab.edu

Abstract

In software requirements engineering there have been very
few attempts to automate the translation from a requirements
document written in a natural language (NL) to one of the for-
mal specification languages. One of the major reasons for this
challenge comes from the ambiguity of the NL requirements
documentation because NL depends heavily on context. To
make a smooth transition from NL requirements to one of the
formal specification languages we need a precise yet expres-
sive knowledge representation that captures not only syntac-
tic but also contextual information of the requirements. We
propose the Contextual Natural Language Processing to over-
come the ambiguity in NL using this contextual knowledge
representation and Two-Level Grammar (TLG) to construct a
bridge between a NL requirements specification and a formal
specification to promote rapid prototyping and reusability of
requirements documents.

Problem Statement and Prior Research
When a complex system with heavy interactions among its
components is to be built, first the requirements of the sys-
tem are spelled out according to the desires of the stakehold-
ers. Several formal specification languages have been devel-
oped to formally describe the system (Alagar & Periyasamy
1998) based on decomposition and abstraction information
of the requirements. However still the natural language (NL)
has remained as the practical choice for the domain experts
to specify the system because those formal specification lan-
guages are not easy to master. In addition, the process of
the elicitation and negotiation of the requirements is car-
ried out usually in natural language. Therefore the require-
ments documentation written in NL has to be reinterpreted
into a formal specification language by software engineers.
Pohl rightly stated regarding this process that improving an
opaque system comprehension into a complete system spec-
ification and transforming informal knowledge into formal
representations are the major tasks in requirements engi-
neering (Pohl 1993). When the system is very complicated,
which is mostly the case when one chooses to use formal
specification, this conversion is both non-trivial and error-
prone, if not implausible. The challenge of formalizing the
requirements document results from many factors such as

Copyright c 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

miscommunication between domain experts and engineers.
However the major bottleneck of this conversion is from the
inborn characteristic of ambiguity of NL and the different
level of the formalism between the two domains of NL and
the formal specification. This is why there have been very
few attempts to automate the conversion from requirements
documentation to a formal specification language.

To handle the problem of ambiguity and different for-
malisms, some have argued that the requirements document
has to be written in a particular way to reduce ambiguity
in the document (Wilson 1999). Others have proposed con-
trolled natural languages (e.g., Attempto Controlled English
(ACE) (Fuchs & Schwitter 1996)) which limit the syntax
and semantics of NL to avoid the ambiguity problem. Even
though the former approach provides a better documentation
to work with, it hasn’t accomplished any automated conver-
sion from a natural language requirements document to a
formal specification language. The latter has similar goals
as ours to realize the automated conversion but restrictions
on the syntax and semantics of the language result in los-
ing the flexibility of NL. Also the user still has to remember
the restrictions. Moreover the target language of this con-
trolled language is PROLOG which is good for prototyping
but lacks important properties such as strong typing to be
used as a formal specification language. Another approach
to natural language requirements analysis is to search each
line of the requirements document for specific words and
phrases for the purpose of quality analysis (Wilson, Rosen-
berg, & Hyatt 1996). A similar project (Girardi 1996) fo-
cuses mainly on the automatic indexing and reuse of the
software components in the requirements documents.

In summary, the linguistic descriptions in the require-
ments document as the inputs for these systems have been
too restricted and controlled. Also the related research so far,
only focusing on the validation and verification of require-
ments, has not achieved a full conversion of the requirements
specifications into a formal specification and implementa-
tion of the specifications.

Project Approach
In our research project, Contextual Natural Language Pro-
cessing (CNLP) (McCarthy 1993) is used to handle the am-
biguity problem in NL and Two Level Grammar (TLG)
(van Wijngaarden 1965) is used to deal with the different

370 FLAIRS 2002

From: FLAIRS-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Figure 1: System Structure.

formalism level between NL and formal specification lan-
guages to achieve the automated conversion from NL re-
quirements documentation into a formal specification (in our
case VDM++, an object-oriented extension of the Vienna
Development Method (Dürr & van Katwijk 1992)).

First a knowledge base is built from the requirements doc-
umentation in NL using the contextual natural language pro-
cessing by parsing the documentation and storing the syn-
tax, semantics, and pragmatics information. In this phase,
the ambiguity is detected and resolved, if possible. Then
the knowledge base is converted into TLG by removing the
contextual dependency in the knowledge base. Finally the
TLG code is translated into VDM++ by data and function
mappings. Once VDM++ representation of the specifica-
tion is acquired we can convert this into programming lan-
guages such as Java or C++, using the code generator
that the VDM Toolkit provides and into a model in the
Unified Modeling Language (UML) (Quatrani 2000) using a
link with Rational Rose (IFAD 2000). The entire system
structure is shown in Figure 1.

This paper concentrates on how the knowledge base is
built from a requirements document and on how the knowl-
edge base is converted into TLG. The translation of TLG to
VDM++ has been fully developed and described in detail in
another publication.

The following simple specification of an Automatic Teller
Machine (ATM) will be used as the running example
throughout the paper to illustrate the system.
Bank keeps list of accounts. It ver-

ifies ID and PIN giving the balance and
updates the balance with ID. An account
has three data fields; ID, PIN, and
balance. ID and PIN are integers and
balance is a real number.
ATM has 3 service types; withdraw, de-
posit, and balance check. For each
service first it verifies ID and PIN
from the bank giving the balance. ATM
withdraws an amount with ID and PIN
giving the balance in the following se-
quence. If the amount is less than or
equal to the balance then it decreases

the balance by the amount. And then
it updates the balance in the bank with
ID. ATM deposits an amount with ID and
PIN giving the balance in the follow-
ing order. It increases the balance
by amount and then updates the bal-
ance in the bank with ID. ATM checks
the balance with ID and PIN giving the
balance.

Construction of Knowledge Base from
Requirements Document
The raw information of the requirements document in nat-
ural language is not proper to be used directly because
of the ambiguity and implicit semantics in the document.
Therefore an explicit and declarative representation (knowl-
edge base) is needed to represent, maintain, and manipu-
late knowledge about a system domain (Lakemeyer & Nebel
1994). Not only does the knowledge base have to be ex-
pressive enough to capture all the critical information but
also it has to be precise enough to clarify the meaning of
each knowledge entity (sentence). In addition, the knowl-
edge base has to reflect the structure of TLG into which the
knowledge base is translated later.

It is worthwhile to mention that our approach, different
from most of the other commonsense reasoning approaches
((Borgida & Etherington 1989), (Baral & Gelfond 1994),
and (Gogic et al. 1995) just to name a few), defers the
reasoning (inference) process of knowledge base until the
knowledge base is converted to a more formal representation
even though contradiction is handled at the time of knowl-
edge base construction. This logical (and even procedural)
process is carried out in the form of prototyping of specifi-
cations in VDM++.

The knowledge base isn’t a simple list of sentences in the
requirements document. The linguistic information of each
sentence such as lexical, syntactic, semantic, and most im-
portantly discourse level information has to be stored with
proper systematic structure.

Each sentence in the requirements document is read by the
system and tokenized into words. At the syntactical level,
the part of speech (e.g. noun, verb, adjective) of each word
is determined by bottom-up parsing, whereas the part of sen-
tence (e.g. subject and object) of each word is determined
by top-down parsing (Jurafsky & Martin 2000). Our parsing
algorithm is based on this approach, with slight modifica-
tion for better accuracy and control. Separating the pars-
ing process into these two different sub-processes makes
the algorithm simpler because the latter process is very
context-sensitive about the features like verb form and sub-
categorization whereas the former one is context-sensitive
about person and number features (Gazdar et al. 1985).
By using the predetermined part of speech for each word
from the part-of-speech parsing, the number of the rules for
the context free grammar for the part-of-sentence parsing is
reduced substantially. The corpora of statistically ordered
parts of speech (frequently used ones being listed first) of
about 85000 words from Moby Part-of-Speech II (Grady
1994) are used to resolve the syntactic ambiguity when there

FLAIRS 2002 371

is more than one valid parsing tree. Also elliptical com-
pound phrases, comparative phrases, compound nouns, and
relative phrases are handled in this phase as well.

Also the anaphoric references (pronouns) in a sentence
are identified according to the current context history. A pro-
noun can represent a word, sentence, or even context. This
is done according to the recency constraints (the recent word
has a higher priority than less recent ones) and the discourse
focus (the co-referred one has a higher priority than ones that
aren’t) (Brennan, Friedman, & Pollard 1987) (Grosz, Joshi,
& Weinstein 1983).

Once the references of pronouns are determined, each
sentence is stored into the proper context in the knowledge
base. This involves the syntactic, semantic, and most impor-
tantly discourse level information. This part of the project is
the most challenging part because if a sentence is located in a
long context, the meaning of the sentence can totally change
than what is originally intended. A contextual knowledge
base is formalized as a tree-like data structure not only to
store each sentence in its right context but also to make a
smooth conversion from the knowledge base to TLG. Meta-
level context (context for context) determines where to put
each sentence in the tree according to the discourse level in-
formation.

The current context is created or switched dynamically
according to the discourse level information (sections, sub-
sections, and paragraphs) and semantics information in re-
lated sentences. For instance, in the ATM example the
phrase “in the following sequence” indicates that the follow-
ing sentences are likely to stay within the current context.
Therefore a sub-context to hold the following sentences has
to be created under the current context. Each context keeps
a list of keywords. For a sentence to belong to a context,
at least one significant word in the sentence has to be an
element of the keywords list of the context. This is simi-
lar to the frame problem (McCarthy & Hayes 1987) in the
sense that given a current situation (context) and a new ac-
tion (sentence) a new situation (context) is to be identified.
Contradictions are resolved by not allowing two contradic-
tory sentences under the same context.

The contextual structure of the knowledge base is shown
in the Figure 2. The black ovals indicate the contexts that
hold the data type information whereas the gray ovals in-
dicate the contexts that contain the functional information.
Note how the meaning of the sentence “It increases the bal-
ance by amount” can be clarified further by referring to its
outer contexts. Therefore we can tell from Figure 2 that this
decrement operation is a part of the deposit service and this
service in turn belongs to ATM.

In our research, a lexical database, WordNet (Miller
1990), is used in several places. To resolve anaphoric ref-
erences, categories of nouns (event, attribute, act, object, lo-
cation, etc.) and verbs (motion, possession, stative, etc.) are
used for a better judgement. For example, in the sentence “a
dog eats a cookie and it likes it” the word ‘dog’ is a noun in
animal category, the word ‘cookie’ is a noun in food cate-
gory, and the word ‘eats’ is a verb in consumption category.
Therefore the first ‘it’ refers to ‘dog’ which consumes the
second ‘it’ which refers to ‘cookie’. Also hypernym infor-

Figure 2: Knowledge base for ATM.

mation for nouns and verbs from WordNet are used for key-
word checking in the context construction and for similarity
checking of many-to-one mappings in the TLG translation
which will be discussed shortly in the next section. As an
example the word ‘computers’ is closer to the word ‘ma-
chines’ than the word ‘banks’ in the sentence “computers
are used in banks and the machines are efficient.”

In summary, a contextual knowledge representation is
constructed from a requirements document capturing not
only syntactic and semantic information but also structured
contextual information. Along with this process, linguistic
ambiguity is detected and resolved in parsing and construc-
tion of the contextual knowledge base.

Translation from Knowledge Base into Two-Level
Grammar
Two-Level Grammar (TLG) may be used to achieve transla-
tion from an informal NL specification into a formal speci-
fication. Even though TLG has NL-like syntax its notation
is formal enough to allow formal specifications to be con-
structed using the notation. It is able not only to capture the
abstraction of the requirements but also to preserve the de-
tailed information for implementation. The term “two level”
comes from the fact that a set of domains may be defined
using context-free grammar, which may then be used as ar-
guments in predicate functions defined using another gram-
mar. The combination of these two levels of grammar pro-
duces Turing equivalence (Sintzoff 1967) and so TLG may
be used to model any type of software specification. The ba-
sic functional/logic programming model of TLG is extended
to include object-oriented programming features suitable for
modern software specification. The syntax of the object-
oriented TLG is:

class Class_Name.
Data_Name {,Data_Name}::Data_Type {,Data_Type}.
Rule_Name : Rule_Body {, Rule_Body}.
end class [Class_Name].

where the term that is enclosed in the curly brackets is
optional and can be repeated many times, as in Extended
Backus-Naur Form (EBNF). The data types of TLG are
fairly standard, including both scalar and structured types,

372 FLAIRS 2002

as well as types defined by other class definitions. The rules
are expressed in NL with the data types used as variables.

Once the knowledge base is built from the requirements
document the knowledge base is converted into TLG. This
conversion from the knowledge base to TLG flows very
nicely because the knowledge base is built with the struc-
ture taking this translation into consideration. The tree-like
contextual structure of the knowledge base conveys the ab-
stracted representation of the requirements document and
this abstraction makes the conversion straightforward.

First identifying each class and then collecting its data
members and functions into the class from the knowledge
base is the major task of the conversion. The root of each
context tree becomes a class. Then the body of each class
is built up with the information in the sub-contexts of each
root. The knowledge base of the ATM specification would
be translated into the following ATM class in TLG.
class ATM.

Balance :: Float.
Amount :: Float.
ID :: Integer.
PIN :: Integer.

withdraw Amount with ID and PIN
giving Balance :

verify ID and PIN from Bank
giving Balance,

if Amount <= Balance then
Balance := (Balance - Amount),
update Balance in Bank with ID

endif.

deposit Amount with ID and PIN
giving Balance :

verify ID and PIN from Bank
giving Balance,

Balance := (Balance + Amount),
update Balance in Bank with ID.

check balance with ID and PIN
giving Balance :

verify ID and PIN from Bank
giving Balance.

end class.

Given a context with its sentences, first the types of the
sentences are determined. A sentence can be a data type
declaration, a rule, a statement for a rule, or a meta sen-
tence which contains information about the class itself or a
set of rules. For example the sentence “checks balance” is a
rule, the sentence “verifies ID and PIN for each service” is
a meta information (for each service rule in this class, the
verification statement has to be called first), and the sen-
tence “increases balance” is a statement of the rule “deposits
amount” in Figure 2. In addition, a statement for a rule can
be a function call statement, a logic statement, or language
specific statement(if-then-else statement, assign statement,
and etc.). In the withdraw rule, there are an assign statement
and a function call statement in an if-then statement. Usually
the main verb of a sentence determines the type of the sen-
tence whereas the objects of the sentence is used as param-
eters. Not only the linguistic information (parts of sentence,

hypernyms, and so forth) but also the contextual structure
of the knowledge base makes this classification of each sen-
tence possible.

When the system proceeds with the ATM knowledge
base, it detects the fact that the data type of ‘Amount’ hasn’t
been specified in any place of the requirements document.
So it asks for its manual input from the user. Also observe
that the sentence that increases or decreases the balance is
mapped into the TLG assign statement. NL has a fairly large
size of vocabularies whereas TLG uses specific words for the
language-defined operations. Therefore there is a many-to-
one mapping between a NL expression and a specific TLG
operation just like the assign operation example.

Once we have translated the knowledge base into TLG
and then the TLG specification into a VDM++ specification
(we refer the readers to (Bryant & Lee 2002) for more de-
tails on this translation) we can convert this into a high level
language such as Java or C++, using the code generator
that the VDM Toolkit provides. Not only is this code
quite efficient, but it may be executed, thereby allowing a
proxy execution of the requirements. This allows for a rapid
prototyping of the original requirements so that these may
be refined further in future iterations. Another advantage of
this approach is that the VDM Toolkit also provides for a
translation into a model in the Unified Modeling Language
(UML) using a link with Rational Rose .

Conclusion

This research project is developed as an application of for-
mal specification and linguistic techniques to automate the
conversion from a requirements document written in NL to a
formal specification language. The knowledge base is built
up from a NL requirements document in order to capture
the contextual information from the document while han-
dling the ambiguity problem and to optimize the process of
its translation into a TLG specification. Well structured and
formalized data representations especially for the context are
used to make smooth translations from NL requirements into
the knowledge base and then from the knowledge base into
a TLG specification. Due to its NL-like syntax and flexibil-
ity without losing its formalism, TLG is chosen as a formal
specification to fill the gap between the different level of for-
malisms of NL and formal specification language. With this
approach we can achieve an executable NL specification for
a rapid prototyping and reusability of requirements, as well
as development of a final implementation.

Acknowledgements. This material is based upon work
supported by, or in part by, the U. S. Army Research Lab-
oratory and the U. S. Army Research Office under con-
tract/grant number DAAD19-00-1-0350 and by the U. S. Of-
fice of Naval Research under award number N00014-01-1-
0746. The authors would like to thank IFAD for providing
an academic license to the IFAD VDM Toolbox in order to
conduct this research.

FLAIRS 2002 373

References
Alagar, V. S., and Periyasamy, K. 1998. Specification of
Software Systems. Springer-Verlag.

Baral, C., and Gelfond, M. 1994. Logic programming and
knowledge representation. The Journal of Logic Program-
ming 19 & 20:73–148.

Borgida, A., and Etherington, D. W. 1989. Hierarchical
knowledge bases and efficient disjunctive reasoning. In
Brachman, R. J.; Levesque, H. J.; and Reiter, R., eds.,
KR’89: Principles of Knowledge Representation and Rea-
soning. San Mateo, California: Morgan Kaufmann. 33–43.

Brennan, S.; Friedman, L.; and Pollard, C. 1987. A Center-
ing Approach to Pronouns. Proc. 25th ACL Annual Meet-
ing 155–162.

Bryant, B. R., and Lee, B.-S. 2002. Two-Level Grammar as
an Object-Oriented Requirements Specification Language.
Proc. 35th Hawaii Int. Conf. System Sciences (to appear).

Dürr, E. H., and van Katwijk, J. 1992. VDM++ - A
Formal Specification Language for Object-Oriented De-
signs. Proc. TOOLS USA ’92, 1992 Technology of Object-
Oriented Languages and Systems USA Conf. 63–278.

Fuchs, N. E., and Schwitter, R. 1996. Attempto Controlled
English (ACE). Proc. CLAW 96, 1st Int. Workshop Con-
trolled Language Applications.

Gazdar, G.; Klein, E.; Pullum, G. K.; and Sag, I. 1985.
Generalized Phrase Structure Grammar. Brasil Blackwell.

Girardi, M. R. 1996. Classification and Retrieval of
Software through their Description in Natural Language.
Ph.D. Dissertation, Computer Science Department Univer-
sity of Geneva, Switzerland.

Gogic, G.; Kautz, H. A.; Papidimitriou, C.; and Selman,
B. 1995. The comparative linguistics of knowledge rep-
resentation. In Mellish, C., ed., Proceedings of the Four-
teenth International Joint Conference on Artificial Intelli-
gence, 862–869. San Francisco: Morgan Kaufmann.

Grady, W. 1994. Moby Part-of-Speech II (data file).

Grosz, B. J.; Joshi, A. K.; and Weinstein, S. 1983. Pro-
viding a Unified Account of Definite Noun Phrases in Dis-
course. Proc. 25th ACL Annual Meeting 155-162:44–50.

IFAD. 2000. The VDM++ Toolbox User Manual. Techni-
cal report, IFAD (http://www.ifad.dk).

Jurafsky, D., and Martin, J. 2000. Speech and Language
Processing. Prentice Hall.

Lakemeyer, G., and Nebel, B. 1994. Foundations of knowl-
edge representation and reasoning, volume 810. Springer-
Verlag Inc.

McCarthy, J., and Hayes, P. J. 1987. Some Philosophical
Problems from the Standpoint of Artificial Intelligence. Los
Altos, CA: Kaufmann.

McCarthy, J. 1993. Notes On Formalizing Context. Tech-
nical report, Computer Science Department. Stanford Uni-
versity. Stanford, CA.

Miller, G. 1990. Wordnet: An On-line Lexical Database.
International Journal of Lexicography 4(3).

Pohl, K. 1993. The Three Dimensions of Requirements
Engineering.
Quatrani, T. 2000. Visual Modeling with Rational Rose
2000 and UML. Addison-Wesley.
Sintzoff, M. 1967. Existence of van Wijngaarden’s Syn-
tax for Every Recursively Enumerable Set. Ann. Soc. Sci.
Bruxelles 2 115–118.
van Wijngaarden, A. 1965. Orthogonal Design and De-
scription of a Formal Language. Mathematisch Centrum,
Amsterdam.
Wilson, W. M.; Rosenberg, L. H.; and Hyatt, L. E. 1996.
Automated Quality Analysis Of Natural Language Re-
quirement Specifications. Technical report, Naval Research
Laboratory.
Wilson, W. M. 1999. Writing Effective Natural Language
Requirements Specifications. Technical report, Naval Re-
search Laboratory.

374 FLAIRS 2002

