
A New XML-based Language for Neural Solution Interchange
Denis V. Rubtsov1, Sergei V. Butakov2

1Altai State University
30 – 4 Gebler st., Barnaul 656099, Russia

rubtsov@math.dcn-asu.ru

2Altai State Technical University
49 – 5 Lenina st., Barnaul 656099, Russia

swb@agtu.secna.ru

Abstract
This article introduces a framework for interchange of
trained neural network models. An XML-based language
(Neural Network Markup Language) for the neural network
model description is offered. It allows to write down all
components of neural network model, which are necessary
for its reproduction. We propose to use XML notation for
full description of neural models, including data dictionary,
properties of training sample, preprocessing methods, details
of network structure and parameters, method for network
output interpretation.

Introduction
Within the last decade artificial neural networks became a
widely used technique for solving a variety of data analysis
tasks. The number of neural-like models and schemas is
increasing permanently as well as the number of their
implementations in software and hardware simulators. But
in our opinion there are a number of barriers, which makes
practical application of neural networks quite problematic.
One of them is determined by the lack of common
approach to description and representation of neural
models. At the moment there is no convenient way to
distribute neural models between simulation systems.

As a possible solution of this problem we consider
applying of an interchange electronic format that allows
representing any neural models in a unified way. In this
case each specific model would be exactly described by its
creators in the terms of such a format for providing its
reusing by other systems.

In the current work we have made an attempt to bring
together most common ideas about neural network
description and to develop rational and flexible framework
for neural network exchanging format. The basic property
of an interchange format is that it must contain all
necessary information for unambiguous model
reconstruction and its proper applying. Another important

 Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

property is that it must be a portable and cross-platform
language. Some discussion on the electronic neural
network description may be found in (Kock and Serbedzija
1996, Smith 1996).

One of possible reasons for neural network interchange
is exchange of neural solutions. In this work we treat a
neural solution as a computational model, which is used for
practical prediction and classification. Mapping of input
signals to output ones in such a model is constructed
according to the methods of neural network simulation. It
is important that neural model doesn’t consist of neural
network only. It necessarily includes a set of input and
output variables, which represents network environment,
methods of its preprocessing and methods for sensible
interpretation of network output signals.

It is significant that a trained neural network model is
treated as an object for interchange. A neural net is
considered as a static object with the fixed structure and
parameters at the moment of interchange. In other words, a
complete computational scheme for obtaining target
(output) variables on the basis of independent (input)
variables is transferred. The main purpose of this format is
to represent all relevant information essential for
unambiguous and exact reproduction of such a
computational scheme by any neural simulator. That does
not exclude further improving of this model by a simulator
with its own training methods.

Our main goal is to develop a descriptive language that
can provide a comprehensible way to write down any
neural-like models with heterogeneous elements and
arbitrary topology. Developing this format we aimed to
make it extensible, easy to interpret and independent from
hardware platforms or programming languages. As a result
a language based on XML notation (World Wide Web
Consortium 1998) has been developed. It may be named as
Neural Network Markup Language (NNML). In further
statement terms “format” and “language” are used as
synonyms. In this article a following convention is
accepted: real names of NNML tags are printed by
courier font.

FLAIRS 2002 385

From: FLAIRS-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

Related works
The problem of interchange format development is

closely connected with neural network specification
languages and investigation of formalization and standards
for various neural network model components. Several
neural network specification languages have been
proposed, such as Aspirin (Leighton 1992), PlaNet v.5
(Miyata 1991), AXON (Hecht-Nilsen 1990), CuPit (Hopp
and Prechelt 1997), EpsiloNN (Strey 1999), CONNECT
(Kock and Serbedzija 1994), Nspec (Dorffner, Wiklicky
and Prem 1993). They are based on notations, which are
close to high level programming languages like C++ or
Pascal and use similar methodology for neural system
determination in terms of data structures, classes, variables
and functions. Such a description can be used for code
generation in programming languages or implemented on
specialized neural simulator (possible, with parallel
processing capabilities). These languages are aimed rather
at description of simulation process than at exchange of
networks. If one has intention to use such a language he
must apply appropriate compiler and reconstruct his
software to provide compatibility with underlying
programming environment. Most of these languages are
intended only for neural network definition with no taking
into account specification of data dictionary, pre- and post
processing etc.

Other type of language is presented at (The Data Mining
Group 2000) as a part of Predictive Model Markup
Language (PMML). Description with PMML provides
extensive information about project, data dictionary and
sample statistics. But it supports only backpropagation
neural networks with few fixed types of neurons and uses a
limited set of simple preprocessing techniques.

A few articles are devoted to formalization and
standardization of neural systems. Fiesler et al (Fiesler and
Caulfield 1994) propose hierarchical specification of
known neural networks and introduce mathematical
notation for their description. Smith (Smith 1996), Atencia
et al (Atencia, Joya and Sandoval 2000) use more common
mathematical constructions for definition of neural
structures and dynamic. In (Strey 1999) an extended
analysis of neural structures including biological neural
networks is given. At great length all components of neural
network simulation system are described in (Mirkes 1998).
But analysis of those works has shown that the results they
presented cannot be directly applied to neural network
model exchanging.

Overview on NNML
The development of NNML is based on the following
suppositions. Firstly we consider that significant parts of
each neural model are:
- The problem and model purpose
- Data dictionary

- Data preprocessor
- Neural network
- Postprocessor
- Auxiliary information about model.
Information about all these components is significant for
correct reconstruction of computational model of neural
network. As shown in (Mirkes 1998), neural network can’t
be correctly reproduced without information about
environment, in which it was created. In other words, the
description of neural method for solving any practical
problem, along with definition of neural network, must
contain information about structure of data dictionary,
preprocessing methods for each input data field,
postprocessing methods for network output signals, extra
information about current model.

Secondly, we treat a neural network in a broad sense,
with minimum restrictions on topology and neuron’s
functionality. Suppose a neural network is a system of
interconnected processing units, which may be represented
as a directed graph. Nodes in such a graph designate
neurons and branches mark connections between neurons.
Directions of branches set signal transfer’s directions in the
net. Each unit performs a particular mathematical
transformation on its inputs and may have its own
parameters. It maps input vector of real numbers to output
scalar real number. Weights of connections we consider as
parameters of a neuron function.

Further we consider a preprocessor and a postprocessor
also as sets of processing units, which have descriptions
similar to neurons. The preprocessor receives input signals
from an input data vector. Each preprocessing unit
corresponds to particular neural net input. Each
postprocessor unit describes a single target parameter of
the problem neural model is purposed to. Thus the neural
model has a fully modular structure where each object
interacts with other objects only by passing his output
signals to them (Fig.1).

In essence, NNML description is a sufficiently structured
document formed by hierarchy of nested sections with the

Input
vector

Output
vector

Preprocessing
units Neuron

units Combination
function

Activation
function

Postprocessing
units

Figure 1: Representation of a neural model as a system of
interconnected processing units

Preprocessing
block

Neural
network

Postprocessing
block

386 FLAIRS 2002

root element named neuralmodel. Each of high-level
sections describes one basic aspect of neural solution.
Neural model description on NNML has following main
sections: Header, Data, Preprocessing, Neural Network,
Postprocessing, Training process description.

In terms of XML section is an element, which is a basic
unit of description. An element is formed by couple of
named tags and may contain any data or child elements.
Description of the element may be extended by a set of
attributes.

Structure and content for each of sections have been
developed on the basis of neural model decomposition with
taking into account existing works in this field, in
particular (Dorffner, Wiklicky and Prem 1993, Fiesler and
Caulfield 1994, Mirkes 1998, Sarle 2001).

Initially, NNML was intended to description of the
supervised learning neural networks. Now we work on its
applying to unsupervised networks like self-organization
maps. Further there is briefly describing content of the
main NNML sections.

Content of the main NNML sections

Header
Element header mostly contains human-intended
information. It includes three subsections: problem,
creator and project. Subsection project describes
task, which solving current neural model is intended for.
Description fields are: name of domain, for example
“financial time series prediction”, name of specific task, for
example “$/Euro rating forecast” and task description with
explanation of essential detail. Subsection creator
contains information about neural simulator, which
produced current model (name and version), author’s
name, contact information, and copyright. Subsection
project includes name of current model, identification
field, date and time of model creation, comments of author.

Data
Section data contains a description of model’s data
dictionary. It is separated into data fields. A single data
field is determined with following attributes:
- id – unique identifier for every data field,
- name of data field that can be displayed in the dialog
with user, for example “$/DM rating twenty four hours
ago”,
- type of underlying variable: continuous, nominal,
ordered,
- way of data field usage in the current model: as an input,
an output or auxiliary field.

In addition to attributes data field contains
data_field_properties tag. This tag describes
underlying variable properties, for example permissible
range of variable’s values. For discrete (nominal or
ordered) variables there is a description for each of its

discrete states: id and name of discrete state, interval of
numeric values assigned to discrete state.

Preprocessing
Applying of preliminary transformations to data sample is
common practice for neural net training. Section
preprocessing is intended to definition of methods,
which are applied to raw input data to produce neural
network input signals. Most of used preprocessing
techniques are simple transformations of type “scalar-to-
scalar” (various normalization and scaling transformations)
or “scalar-to-vector” (various types of coding). In the latter
case, several preprocessing output signals are corresponded
to a single input data field. However more sophisticated
preprocessing techniques may be used (Mirkes 1998).

To provide flexibility of the preprocessing description,
we specify separate processing unit for each signal that
preprocessing block passes to a neural network. Each
preprocessing unit receives signals from one or more data
fields and generates an output signal, which is passed to the
neural network.

Neural network
Section neural_network contains description of neural
network and its properties. Main purpose of this
description is to simplify automatic recovering of
underlying mathematical procedures. Because of the lack
of standard terminology (and standard ways of
decomposition) for neural networks, we have decided do
not use terms like “synapse” or “axon”. On the contrary,
the network structure is recorded with common
mathematical operations.

Neural network is defined as an object consists of
connected processing units that exchange signals via links.
There is a tag layer , which groups neurons (a fully
connected network would have a one layer). Each neuron is
represented as a couple of serially connected functions.
First function combines inputs of neuron with the weights
to yield a single value to which the activation function is
applied. This is called a neuron combination function (in
terms of (Sarle 2001)). Second function represents a
neuron activation function and usually performs nonlinear
transformation of combination function output. They are
specified in the tags combination_function and
activation_function respectively.

There are no special constraints on the structure of these
functions. This means that a neuron may have any
functioning, which may be defined with the combination of
arithmetic operations or/and elementary classical functions.
Varying these functions we can get different types of
neurons. For example, using the scalar product of inputs
and weights as a combination function and varying an
activation function, we can describe some important types
of neuron units, used in multilayer perceptrons, e.g.
neurons with various sigmoid functions, with threshold,
linear and piecewise-linear transfer functions. Application
of various types of combination functions permits to

FLAIRS 2002 387

describe such kind of neurons, as radial basis functions
(Euclidean distance), neurons of high degrees (high order
polynomial) etc.

An output signal of the combination function is
automatically passed to the activation function of the same
neuron. Each neuron may be connected with other neurons
(and with itself), preprocessing units and data fields.
Weights and connections of neuron are set as arguments of
combination function. Thus network structure is
determined implicitly by references in combination
function descriptions. This approach lets to describe
networks with any topology. Neuron functioning may be
specified with predefined NNML functions or user defined
functions (see below). This clears the way to specification
of heterogeneous neural networks.

The length of the network description may be reduced.
If all neurons in a layer have the same type of combination
or activation function, its description may be placed as a
first tag within layer tag.

Along with neural network structure, tag
neural_network contains rules for network dynamic.

Subsection neural_network_properties
includes common information about current network: a
type of structure (feedforward, feedback), neural paradigm
(e.g. multilayer perceptron, radial basis function network),
and comments of creator.

Postprocessing
Typically, a neural net produces a set of real numbers,
which needs to be correctly interpreted. The
postprocessing section is intended to provide
information about methods of the substantial answer
delivering on the basis of the network target signals. The
methods of network output signal transformation are
defined in the same way as preprocessing methods.
Usually, denormalization (for regression), or rule “winner
takes all” (for classification) are used, but more complex
methods are also allowable.

A neural network could return several answers.
Therefore methods of postprocessing are grouped by
output_field tags, each of which corresponds to one
of the model target parameters (not to one of the network
output neurons!). The tag output_field contains the
reference to appropriate target data field described in the
data section. As input signals for postprocessing blocks,
signals of network output neurons are used.

Each target field may include tag verbalization. It
is intended for association text information with certain
values (groups of values) of target parameter, for example:
if target parameter is in [2.5,3.5] then the network answer
is “satisfactorily”.

A Framework for Description of Processing
Units

Basic components of model – preprocessor, neural
network, postprocessor – are described by processing units

and representation of their underlying mathematical
transformations is a key for NNML.

A proposed framework for representation of processing
units consists of following. There are basic operands of two
types: scalar number (constant) and reference (connection)
to output of one of model objects. All transformations are
applied to them.
1. The number is set by number tag, which has attribute
name to designate argument semantic, for example
“weight” or “bias”. In general this tag contains a real
number. All numerical parameters of model – weights of
neurons, parameters of activation functions, parameters of
pre- and postprocessing blocks – are written down by this
tag.
2. The connection is set by empty connect tag. It has
following attributes: object – contains the name of
signal source type (a name of one of next tags:
preprocessing_field, neuron, data_field), id –
identification number of the particular object of specified
type, layer – id of layer – for object of neuron type.
connect tag serves for description of connections
between processing units, which contain in pre- and
postprocessing blocks and neural network.

There are three levels of function specification:
- Using basic functions. The set of elementary functions is
introduced to define various mathematical transformations.
It includes unary and n-ary arithmetic operations (sum,
multiplication, raising to power, division, capture of
absolute value etc.), trigonometric operations, logarithmic
operations (logarithm, exponent), relations (more, less,
equally etc), if-then condition, matrix operations (addition,
scalar product etc) and piecewise function. The expression
that has been written down by basic functions is contained
in explicit_record tag. The basic operations may be
performed on the elementary operands as well as on the
results of basic operations. It means, that the tags of basic
functions can contain other basic functions or elementary
operands. The analysis of such expressions is carried out
by construction of a computational tree. Terminal nodes of
this tree always should contain one of elementary
operands. Hierarchy of nesting tags determines priority of
operations: all “internal” functions are calculated first
without taking into account their type.
- Using the predefined functions. The set of predefined
functions is intended to decrease the length of description.
It includes most popular in neural simulation preprocessing
functions (normalization, coding), neuron’ combination
functions (adaptive summator, square summator, euclidean
distance etc.), activation functions (various kinds of
sigmoids, the threshold function, linear and piecewise-
linear function, exponent etc), methods of postprocessing
(denormalization, winner takes all). Description of all the
predefined functions may be found on the NNML site
(Rubtsov 2001).
- Functions defined by user. User can introduce his own
functions. In the body of the model description
user_function tag is used with parameters: name –
the name of user function, source – the Internet address,

388 FLAIRS 2002

which provides information about content of
transformation. Within this tag only special tags arg is
allowed. arg tags have attribute id and could contain
basic operand tags as a number or connect. Semantics
of transformations given by user is not determined in any
way.

Applications of NNML
Now we suppose following applications of NNML:
- Use it as an interchange format in the large information
systems. The technological approach to usage of neural
network in applied information systems is preferred
(Rubtsov 2000). We suppose that NNML allows
specialization of the neural network simulation programs:
separation of neural networks generators, interpreters, tools
for visualization and knowledge extraction. It could
facilitate effective documenting and storing models as well
as introduction of neural network facilities into existing
information systems.
- Exchange of neural models via Internet. NNML can be
applied to distribution of neural network models on
WWW. It is possible to implement usage of remote
machines for producing of neural network models “by
request”, maintaining global archives to share neural
network solutions for various problems. As an XML-based
language, NNML could be easily used for introduction of
neural network facilities on Web applications.

Conclusion
In this article we have presented an XML-based language
for the description of neural network models – NNML. It
allows to describe neural network model completely,
including data dictionary, pre- and postprocessing, details
of structure and parameters of neural network, and
auxiliary information. Proposed framework provides
features to write down a wide range of pre- and
postprocessing procedures, and describe neural network of
any topology with heterogeneous elements. Most
widespread neural networks (such as multilayer
perceptrons and radial basis function networks) can be
described in a compact way. A user has an ability to use
any functions for designing of neurons. NNML provides
open and extensible description of neural models.

It is possible to find out the last version of NNML
Document Type Definition and other related materials on
the NNML site (Rubtsov 2001).

Acknowledgments. This research was partially
supported by the Russian Foundation for Basic Research
grant 01-01-01046

References
Kock, G. and Serbedzija, N.B. 1996. Simulation of
Artificial Neural Networks, Systems Analysis – Modelling
– Simulation (SAMS), 27(1):15–59

Smith, L. 1996. Using a framework to specify a network of
temporal neurons, Technical Report, University of Stirling,
Leighton, R.R. 1992. The Aspirin/MIGRANES neural
network software, Users manual, MITRE Corp.
Miyata, Y. 1991. A User's Guide to PlaNet Version 5.6 – A
Tool for Constructing, Running, and Looking in to a PDP
Network, Computer Science Department, University of
Colorado, Boulder
Hecht-Nilsen, R., 1990. Neurocomputing.: Addison-
Wesley
Hopp H. and Prechelt, L. 1997. CuPit-2: A portable
parallel programming language for artificial neural
networks, In Proc. 15th IMACS World Congress on
Scientific Computation, Modelling, and Applied
Mathematics, 6:493–498, Wissenschaft & Technik Verlag,
Berlin
Strey, A. 1999. EpsiloNN – A Tool for the Abstract
Specification and Parallel Simulation of Neural Networks,
Systems Analysis – Modelling – Simulation (SAMS), 34-40,
Gordon & Breach
Kock, G. and Serbedzija, N.B. 1994. Artificial neural
networks: from compact descriptions to C++, In M .
Marinaro and P.G. Morasso, editors, Proc. of the
International Conference on Artificial Neural Networks,
1372–1375, Springer-Verlag
Dorffner, G., Wiklicky, H. and Prem, E. 1993. Formal
neural network specification and its implications on
standardization, Technical Report OFAI TR-93-24,
Austrian Research Institute for Artificial Intelligence
The Data Mining Group, 2000. PMML 1.1 Neural Network
www.dmg.org/html/neuralnetwork.html
Fiesler, E. and Caulfield, H.J. 1994. Neural network
formalization, Computer Standards and Interfaces, 16(3):
231–239
Atencia, M. A., Joya, G. and Sandoval, F. 2000. A formal
model for definition and simulation of generic neural
networks, Neural Processing Letters, 11: 87–105 Kluwer
Academic Publishers
Strey, A. 1999. A Unified Model for the Simulation of
Artificial and Biology-Oriented Neural Networks, In Proc.
of the International Workshop on Artificial Neural
Networks 2:1–10
Mirkes, _._. 1998. Neurocomputer. Project of standard.:
Nauka (in Russian)
World Wide Web Consortium 1998. Extensible Markup
Language (XML) 1.0, W3C Recommendation,
www.w3.org/TR/1998/REC-xml-19980210
Sarle, W. 2001. Frequent asked question on neural
network, ftp.sas.com/pub/neural/FAQ.html
Rubtsov, D. 2000. Development of technology of artificial
neural networks application in applied information
systems, Ph.D. diss., Dept. of Computer Science, Altai
State University (in Russian)
Rubtsov, D. 2001. Neural Network Markup Language
Home Page, www.nnml.alt.ru

FLAIRS 2002 389

