
An Approach for Semantic Search by Matching RDF Graphs1

Haiping Zhu, Jiwei Zhong, Jianming Li and Yong Yu

Department of Computer Science and Engineering
Shanghai JiaoTong University
Shanghai, 200030, P.R.China

{zhp036, zjw035, ljm038}@mail1.sjtu.edu.cn, yyu@mail.sjtu.edu.cn

Abstract
The World Wide Web is developing rapidly, but neither
recall nor precision of traditional search engines can satisfy
the increasing demands of users. Presently, RDF is widely
accepted as a standard for semantic representation of
information on the Web, which makes possible the
advanced search among web resources. In this paper, we
introduce an approach for semantic search by matching
RDF graphs. New similarity between RDF graphs is defined
and ontologies on arcs as well as on nodes are employed.
The implementation of a demonstration system on our
method is currently in progress.

1 Introduction
With the exponential growth of the Web, information
retrieval and resource discovery is getting more and more
challenging. However, traditional search engines, the
majority of which are based on keyword matching
techniques, have inherent defects. They seem more
competent to perform full-text analysis and search for user-
specified keywords, but fail to exploit and consequently
retrieve the content of web documents. As a result, neither
recall nor precision can satisfy the increasing demands of
users despite their persistent efforts on technique
development. For better performance, we need radically
more intelligent search techniques.
 Recently, semantic search has become a research hotspot.
As shown in OntoSeek (Guarino, Masolo, and Vetere
1999), the combined use of linguistic ontologies and
structured semantic matching can improve markedly both
recall and precision. Designing such a system, we always
need to first extract semantic information from online
documents to make it understandable by machines ahead of
performing semantic matching. Since RDF (Lassila and
Swick 1999) has been widely accepted as a standard for
semantic representation for the next generation of the Web,
we propose our semantic search approach based on
matching RDF graphs. In our method, first we collect
information of a certain domain from the Web and build up

Copyright © 2002, American Association for Artificial Intelligence
(http://www.aaai.org). All rights reserved.

our resource RDF graph repository. Afterwards, when the
user enquiry sentence is entered, it is interpreted into a
query RDF graph. Then we come to the key step of
computing the similarity between the query graph and each
candidate resource graph. The similarity definition is based
upon the ontology which consists of type hierarchies on
nodes and arcs. Finally, the matching results are ranked and
orderly returned to the user.
 The rest of the paper is organized as follows. Section 2
introduces some basic concepts that ground our research on
semantic matching. Section 3 formally defines the semantic
similarity and describes in detail our graph matching
algorithm with a running example. Section 4 gives
evaluation and discussions on our algorithm. Section 5
concludes our approach through a comparison with some
related work.

2 Basic Concepts

2.1 Semantic Representation
Before semantic search can be fulfilled, semantic structures
from unstructured information sources should be acquired
first. We know that most web documents are described in
natural language and users also prefer to enter natural
language queries to retrieve them. Therefore, the ultimate
task amounts to generate structured semantic representation
from natural language sentences.
 To achieve automatic generation, we restrict the field
into a specific domain, say clothes descriptions, so that we
can benefit from distinct domain characteristics. Zhang
(Zhang and Yu 2001) has proposed a machine-learning
based approach that can be trained for different domains
and requires almost no manual rules. In his method,
Conceptual Graph (Sowa 1984) serves as the tool for
semantic representation while WordNet (Miller 1990)
version 1.6 together with the manually constructed relation
hierarchy acts as the domain ontology in the whole process
of semantic analysis and extraction. Since some other
researches have shown that there exist direct mapping and

 1 This work is supported by IBM China Research Lab.

450 FLAIRS 2002

From: FLAIRS-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

lossless conversion between Conceptual Graph and RDF
graph (Berners-Lee 2001; Corby, Dieng, and Hébert 2000),
Zhang�s method is considered transferable to the generation
of RDF graphs. A prototype named ALPHA has been
developed, and original results from it demonstrated the
feasibility of the approach (Li, Zhang, and Yu 2001).
According to the transferability, we will use
�concept/relation� and �node/arc� interchangeably in the
remainder of the paper.

2.2 Entry of Graph
General matching will easily suffer from the NP-complete
problem of Maximum Subgraph Matching, so including
some user input to guide the matching process is reasonable
and important. Entry of graph embodies our above thought
in the design of our system.
Entry of Graph. With ALPHA, we have comprehended
clothes descriptions from online shops into RDF graphs. In
each resource graph, the node representing the
corresponding clothes category, e.g. shirt, dress, pants, etc.,
will be designated as the entry of graph. Namely, the entry
node will serve as the start position during further graph
matching process.
 Similarly, each query graph will also have its entry. Our
system requires users to give the entries in their queries.
Though some existent techniques, such as �shallow
parsing�, can help detect the implied �headword�, the extra
work on tailored rules or exhaustive training lead us back
to direct interaction with users at the initial stages of our
work.
Ontology Based RDF Graph Index. Resource RDF
graphs will be indexed in WordNet, the domain ontology,
according to their entries. The index naturally confines
matching range to separate clothes categories, for graphs
have been clustered by their entries.
 Besides, we also use the index to enable hierarchical
matching. Since hyponymy and hypernymy of senses in
WordNet can be regarded as subsumptive relationship
between graph entries, the index makes it possible to search
all categories subsumed by the user�s querying object.

Fig. 1. An ontology segment in WordNet.
For instance, figure 1 shows an ontology segment in
WordNet. When a user inquires about a �shirt�, not only
resource RDF graphs about �shirt� but also the ones about
�jersey� or �tee shirt� will be searched to match the query,
although they are quite different in word forms.

3 Semantic Search by Matching RDF Graphs
In this section, we will present our approach that performs
the semantic search by matching RDF graphs. Let us take

the matching task of the following query graph (figure 2)
and resource graph (figure 3) as an example.

Fig. 2. Query RDF graph.

Fig. 3. One candidate resource RDF graph.
The gray nodes represent the respective entries of the two
graphs. The arc label �Mtrl� is the abbreviation for
�Material�, while �Accm� is for �Accompaniment�.
 Generally, the query is about a cotton garment with
buttoned pouch and brand emblem. To determine whether
the candidate resource graph is an appropriate match to it,
we need to find out the semantic similarity between them.

3.1 Semantic Similarity
Previous work in (Poole and Campbell 1995) defined three
kinds of similarity, i.e. surface similarity, structure
similarity and thematic similarity. Surface similarity and
structure similarity is the similarity based on the matching
of objects and relations respectively, while thematic
similarity depends on the presence of particular patterns on
objects and relations together. Some related graph
matching algorithms, such as Similarity Flooding (Melnik,
Garcia-Molina, and Rahm 2002), Cupid (Madhavan,
Bernstein, and Rahm 2001) and Anchor-PROMPT (Noy
and Musen 2001), also involved, implicitly or explicitly,
the idea to unite the linguistic similarity with structural
similarity. Hence, we introduce similarity between nodes as
well as similarity between arcs and integrate them to
construct our similarity between graphs.
Similarity between Nodes. We borrow Sowa�s classical
definition of semantic distance between concept types
(Sowa 1984) and simply calculate the similarity between
two nodes as 1 minus their distance which cumulates all the
distance from each node to their closest common parent. A
value depicting the depth information in the ontology is
assigned to every single node to help compute the distance.
 For example, we want to know the similarity between
nodes �Emblem� and �Pocket�. Consulting WordNet, we
get the ontology segments as figure 4.

jersey, T-shirt, tee shirt
 => shirt
 => garment
 => clothing, clothes, apparel, vesture, wearing apparel, wear

Garment:?
Mtrl

Pouch Emblem Cotton

Part Part

Accm Accm
Button Brand

Shirt:URL
Mtrl

Pocket Crest Cotton

Part Part

Accm Accm
Button Brand

FLAIRS 2002 451

Fig. 4. Ontology segments in WordNet.
�artifact, artefact� is the closest common parent of
�emblem� and �pocket�. The depth information for
�artifact, artefact�, �emblem� and �pocket� is respectively
0.0625, 0.0078 and 0.0020. Thus, the distance between
�Emblem� and �Pocket� is (0.0625 - 0.0078) + (0.0625 -
0.0020) = 0.1152. Accordingly, the similarity is 0.8848.
 It is important that if the node from query graph
subsumes the one from resource graph, the distance
between them will be directly set 0. E.g., the distance
between �Pouch� from query graph and �Pocket� from
resource graph is 0. This can be explained by the heuristic
that a resource category is sure to be considered as an exact
match to its superclass category in query.
Similarity between Arcs. We have manually constructed a
type hierarchy on arcs according to Sowa�s theory about
thematic roles (Sowa 2000). Therefore, the similarity
definition on nodes is transferable to arcs.
 In practice, however, we make a simplification to reduce
computation complexity. That is, we take similarity as 1
only if the arc from query graph subsumes the one from
resource graph; otherwise, the similarity is set 0.
 For instance, since none of the arcs �Mtrl�, �Part� and
�Accm� is subsumed by one another in our relation type
hierarchy, the similarity between any two of them is 0.
Similarity between RDF Graphs. To avoid the NP-
complete computation of Maximum Subgraph Matching,
we only compare the nodes and arcs at peer position
referring to the entries. Nevertheless, unlike the
implementation of OntoSeek, we still try to retain the
structure of subgraph. This is carried out through recursive
computation in the similarity formula:

Here, nQ represents the entry of query graph, while nR is the
entry of resource graph. SoG(nQ,nR) is to calculate the
similarity between two graphs indicated by their respective

entries. simn(nQ,nR) is the node similarity between nQ and
nR, whereas sima(j

Qa , j
Ra) is the arc similarity between the

jth arc derived from nQ and its matching arc derived from
nR. w(nQ,n) and w(nQ,j) are the weights allocated to the
nodes and arcs within current calculation. They are
normalized in advance:

SoG(
j

Qa
Qn , j

Ra
Rn) represents the recursive calculation of the

similarity between the subgraphs with
j

Qa
Qn and j

Ra
Rn as their

respective entries;
j

Qa
Qn and j

Ra
Rn are the nodes that arc j

Qa
and j

Ra point to. ∑· indicates a cumulation operation and
max{·} selects from all possible combinations the one
which contributes the maximum cumulative similarity.

 Let us recall the example at the beginning of Section 3.
Assume that within every single recursive computation, the
entry of graph and its derived arcs share equal weights.
 The matching starts with two entries. As �garment�
subsumes �shirt� according to WordNet, simn(Garment,
Shirt) = 1.
 Then we look at the arcs derived from these two entries.
Since arc pair with zero similarity will lead to zero product
in the second part of the similarity formula, we only need
to observe arc pairs with non-zero similarity, i.e. identical
or subsumptive arc pairs. Easily, we find out that the �Mtrl�
pair is matching. As the �Cotton� nodes are derived from
the �Mtrl� arcs, we recursively calculate SoG(Cotton,
Cotton). Since there are no more arcs derived from the
�Cotton� nodes, simply we get SoG(Cotton, Cotton) =
simn(Cotton, Cotton) = 1.
 Go back to the computation of SoG(Garment, Shirt).
Now the problem remains how to settle a proper match on
the two �Part� arcs in each graph. That is to say, we have
to make a selection from two possible combinations of
derived nodes:
Comb. A: �Pouch� � �Pocket� and �Emblem� � �Crest�;
Comb. B: �Pouch� � �Crest� and �Emblem� � �Pocket�.
We need to work out SoG(Pouch, Pocket), SoG(Emblem,
Crest), SoG(Pouch, Crest) and SoG(Emblem, Pocket).

Node Similarity Similarity Value
simn(Pouch, Pocket) 1
simn(Emblem, Crest) 1
simn(Pouch, Crest) 0.7544

simn(Emblem, Pocket) 0.8848
simn(Button, Brand) 0.5049
simn(Brand, Button) 0.5049

Tab. 1. Node similarity values needed in the matching process.
 Take SoG(Pouch, Pocket) for example. simn(Pouch,
Pocket) = 1. The derived �Accm� arcs also matches, so we
further investigate SoG(Button, Button). Because no more
arcs are derived from node �Button�, SoG(Button, Button)
= simn(Button, Button) = 1. Thus, SoG(Pouch, Pocket) =
0.5simn(Pouch, Pocket) + 0.5sima(Accm, Accm)·
SoG(Button, Button) = 0.5*1 + 0.5*1*1 = 1.
 Similar to the computation of SoG(Pouch, Pocket), we
have:
 SoG(Emblem, Crest) = 1;

pocket
 => pouch
 => bag
 => container
 => instrumentality, instrumentation
 => artifact, artefact
 => object, physical object
 => entity, something
crest
 => emblem
 => design, pattern, figure
 => decoration, ornament, ornamentation
 => artifact, artefact
 => object, physical object
 => entity, something

}),(),(),({max

),(),(),(

∑ ⋅⋅

+⋅=

j

a
R

a
Q

j
R

j
QaQ

RQnQRQ

j
R

j
Q nnSoGaasimjnw

nnsimnnwnnSoG

for all
combinations

∑ =+
j

QQQ njnwnnw entry its as ith subgraph weach for , 1),(),(

452 FLAIRS 2002

 SoG(Pouch, Crest) = 0.6297;
 SoG(Emblem, Pocket) = 0.6949.
 Now, we learn that for Comb. A, the second part of the
similarity formula is 0.25*1*1 + 0.25*1*1 = 0.5; while for
Comb. B, the corresponding value is 0.25*1*0.6297 +
0.25*1*0.6949 = 0.3312. Obviously, Comb. A will
contribute larger similarity. Thus, by choosing Comb. A,
we conclude: SoG(Garment, Shirt) = 0.25simn(Garment,
Shirt) + 0.25sima(Mtrl, Mtrl)·SoG(Cotton, Cotton) +
(Comb. A) = 0.25*1 + 0.25*1 + 0.5 = 1. That is to say, the
candidate resource graph has a perfect match to the query
graph.

 Once started, the matching process will not end until all
the arcs in query graph have been checked. Arcs in query
graph that cannot find its match in resource graph will be
regarded as they are mapped to a default relation for we
consider it a kind of omission of default values.

3.2 Algorithm Implementation
Given a user query, the following process will be
performed to calculate the similarity between each resource
RDF graph and the query RDF graph.

1 get user query
2 interpret the query to generate query RDF

graph (with ALPHA)
3 user specifies the entry of graph E; look

up E in WordNet
4 for (each resource RDF graph indexed by E

or E�s hyponyms in WordNet)
5 { // the beginning of recursive procedure
6 calculate the similarity between query

and resource entry pair
7 for (each arc derived from the entry of

query graph paired with each arc derived
from the entry of resource graph)

8 {
9 calculate the similarity between arc

pair
10 for non-zero similarity pair, invoke

the recursive procedure (line #5 to
#13) with respectively derived node as
subgraph entries

11 select the best match from all
possible combinations, and accordingly
cumulate the similarity between
entries and the similarity between
arcs with derived subgraphs

12 }
13 } // the end of recursive procedure
14 rank and orderly return the matching

results to user
Tab. 2. Semantic search process implemented with graph
matching algorithm.
 Currently a prototype implementing our approach is
under development with IBM China Research Lab.

4 Algorithm Evaluation and Discussions
It can be expected that the computation complexity of our
algorithm will not reach NP-completeness as the famous
problem of Maximum Subgraph Matching in this field.
Actually, after we introduce the element of �entry of graph�
and only compare the nodes and arcs with equal distance to
the entry, it is close to a tree-like traversal. Hence without
losing generality, suppose that the query graph and the
resource graph are both r-branch trees of i height. To
determine all the similarities between subgraph pairs
derived from one node pair, there will be at most r2 times
of recursive invocations. Then while making selection from
r! combinations, we instead employ a kind of Maximum
Flow algorithm performed with r times invocation of
Bellman-Ford algorithm. Bellman-Ford algorithm is r3
complex, so the cumulative complexity is r4. Finally, the
computation cost between i height trees can be analyzed as
follows:
Here, c is a constant representing the time to calculate the
node similarity.

 From the formula group, we may conclude that C(i) is
about r2i+2. Generally, when r is not too small, n, the
number of arcs, will approximate ri. Therefore, the
approximation of C(i) can be converted to n2r2. If r<<n, the
complexity will be O(n2). In the worst case, say that the
height of the graph equals to 1, i.e. r = n, the complexity
reaches O(n4). In a word, our algorithm is confined to
polynomial.
 The tree-like traversal might be suspected mostly. Here,
let us discuss about some graph structures other than tree.
Lattice structural graphs will be implicitly converted to
trees during matching, because the shared nodes will be
naturally split along different comparison paths. Directed
cyclic graphs may lead the split to failure and trap our
algorithm into endless loop. Optimistically, graphs of that
kind are very rare in our specific domain. Even if existed,
they can be detected and handled before the program gets
to crash.

5 Related Work
 Semantic search (or similarly so-called content retrieval)
has been raised for years. OntoSeek (Guarino, Masolo, and
Vetere 1999), as well as its XML version OSCA (O�Brien
1999), defines the semantic match on isomorphism between
query graph and a subgraph of resource graph. In order to
avoid NP-completeness of such a computation known as
Maximum Subgraph Matching, it instead adopts a classic
unification algorithm to fetch corresponding nodes and
afterwards check the arc linkage between them.
Coincidentally like OntoSeek, SCORE (Aslandogan et al.

=
=+−+=

cC
iriCrciC

)0(
,...2,1)1()(42

FLAIRS 2002 453

1995) also finds out the most similar entities between E-R
diagrams before observing the correspondence of involved
relationship. We think with that kind of simplification,
however, matching on nodes is separate from the
organization of subgraph. In contrast, we try to retain
subgraph structure in our similarity definition but confine
comparison range to mitigate as much the computation cost
as possible in matching process.
 Graph matching is another independent research topic
but highly related to semantic matching. Similarity
Flooding (Melnik, Garcia-Molina, and Rahm 2002) relies
on the intuition that elements of two distinct models are
similar when their adjacent elements are similar. In other
words, a part of the similarity of two elements propagates
to their respective neighbors. Therefore, they borrow the
conception of �flooding� from the field of communication
to iteratively compute the similarity until a fixpoint appears.
Cupid (Madhavan, Bernstein, and Rahm 2001) uses a
comprehensive name matching based on synonym tables
and other thesauri as well as a new structural matching
approach which bases matches on bottom-up traversal and
biases matches to schema leaves. Anchor-PROMPT (Noy
and Musen 2001) defines the similarity score between two
terms in respective ontology as a cumulative score
reflecting how often they appear in identical positions
along the paths considering all the possible paths between
anchors (pairs of related terms defined by the user or
automatically identified by lexical matching). The
algorithm is based on the assumption that developers link
the terms in the ontology in a similar manner even if they
do not call the terms with the same names.
 Though we think our algorithm shares the thought of
similarity propagation with Similarity Flooding, shares the
idea of bottom-up traversal with Cupid and shares the
notion of non-local matching with Anchor-PROMPT,
there still exists obvious difference. The difference mainly
derives from the distinction in matching objects from
models, schemata or ontologies to our instance
descriptions. During the design of similarity definition and
matching algorithm, they emphasize most on the handling
of heterogeneity. However, in our problem domain,
heterogeneity is rather rare for both query graph and
resource graph are generated according to the same
domain ontology. Thanks to this, we are able to
concentrate more on the matching of contents in particular
patterns.
 While we believe that we might contribute some rough
ideas to the semantic search problem, we do not claim to
have solved it. Testing is necessary to determine the
applicability of our algorithm to large-sized graphs and
massive resource graph repository. Much experimental and
comparative analysis of the algorithm is also needed to
demonstrate its strength. There still remain the
manipulation problems on matching nested graphs and
matching non-isomorphic graphs. We just expect our work
to bring more attention and further attempts to the open
issue of semantic search.

Reference
Aslandogan, Y. A., Thier, C., Yu, C. T., Liu, C., and Nair,
K. R. 1995. Design, Implementation and Evaluation of
SCORE (a System for COntent based REtrieval of pictures).
In Proceedings of the Eleventh International Conference
on Data Engineering (ICDE), 280-287. Taipei, Taiwan.
Berners-Lee, T. 2001. Conceptual Graph and the Semantic
Web. Tim Berners-Lee�s Design Issues. Available at
http://www.w3.org/DesignIssues/CG.html
Corby, O., Dieng, R., and Hébert, C. 2000. A Conceptual
Graph Model for W3C Resource Description Framework.
In Proceedings of the Eighth International Conference on
Conceptual Structures (ICCS�2000).
Guarino, N., Masolo, C., and Vetere, G. 1999. OntoSeek:
Content-Based Access to the Web. IEEE Intelligent
Systems 14(3): 70-80.
Lassila, O., and Swick, R. 1999. Resource Description
Framework (RDF) Model and Syntax Specification. W3C
Tech. Reports and Publications. Available at
http://www.w3.org/TR/PR-rdf-syntax
Li, J., Zhang, L., and Yu, Y. 2001. Learning to Generate
Semantic Annotation for Domain Specific Sentences. In
Proceedings of the Workshop on Knowledge Markup and
Semantic Annotation (K-CAP�2001).
Madhavan, J., Bernstein, P. A., and Rahm, E. 2001.
Generic Schema Matching with Cupid. In Proceedings of
the 27th International Conference on Very Large
Databases (VLDB). Rome, Italy.
Melnik, S., Garcia-Molina, H., and Rahm, E. 2002.
Similarity Flooding: A Versatile Graph Matching
Algorithm. In Proceedings of the 18th International
Conference on Data Engineering (ICDE). San Jose. CA.
Miller, G. A. 1990. WordNet: An On-line Lexical Database.
The International Journal of Lexicography 3(4): 235-244.
Noy, N. F., and Musen, M. A. 2001. Using Non-Local
Context for Semantic Matching. In Proceedings of the
Workshop on Ontologies and Information Sharing at the
Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI-2001). Seattle, WA.
O�Brien, P. 1999. OSCA: An Ontology Based Sales
Consultant�s Assistant. In Proceedings of the 10th
Australasian Conference on Information Systems.
Poole, J., and Campbell, J. A. 1995. A Novel Algorithm for
Matching Conceptual and Related Graphs. In Proceedings
of the Third International Conference on Conceptual
Structures (ICCS�95), 293-307. Santa Cruz, CA.
Sowa, J. F. 1984. Conceptual Structures: Information
Processing in Mind and Machine. Addison-Wesley.
Sowa, J. F. 2000. Knowledge Representation: Logical,
Philosophical, and Computational Foundations. Pacific
Grove, CA: Brooks/Cole.
Zhang, L., and Yu, Y. 2001. Learning to Generate CGs
from Domain Specific Sentences. In Proceedings of the 9th
International Conference on Conceptual Structures
(ICCS�2001).

454 FLAIRS 2002

