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Abstract 
The World Wide Web is developing rapidly, but neither 
recall nor precision of traditional search engines can satisfy 
the increasing demands of users. Presently, RDF is widely 
accepted as a standard for semantic representation of 
information on the Web, which makes possible the 
advanced search among web resources. In this paper, we 
introduce an approach for semantic search by matching 
RDF graphs. New similarity between RDF graphs is defined 
and ontologies on arcs as well as on nodes are employed. 
The implementation of a demonstration system on our 
method is currently in progress. 

1 Introduction  
With the exponential growth of the Web, information 
retrieval and resource discovery is getting more and more 
challenging. However, traditional search engines, the 
majority of which are based on keyword matching 
techniques, have inherent defects. They seem more 
competent to perform full-text analysis and search for user-
specified keywords, but fail to exploit and consequently 
retrieve the content of web documents. As a result, neither 
recall nor precision can satisfy the increasing demands of 
users despite their persistent efforts on technique 
development. For better performance, we need radically 
more intelligent search techniques. 
 Recently, semantic search has become a research hotspot. 
As shown in OntoSeek (Guarino, Masolo, and Vetere 
1999), the combined use of linguistic ontologies and 
structured semantic matching can improve markedly both 
recall and precision. Designing such a system, we always 
need to first extract semantic information from online 
documents to make it understandable by machines ahead of 
performing semantic matching. Since RDF (Lassila and 
Swick 1999) has been widely accepted as a standard for 
semantic representation for the next generation of the Web, 
we propose our semantic search approach based on 
matching RDF graphs. In our method, first we collect 
information of a certain domain from the Web and build up 
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our resource RDF graph repository. Afterwards, when the 
user enquiry sentence is entered, it is interpreted into a 
query RDF graph. Then we come to the key step of 
computing the similarity between the query graph and each 
candidate resource graph. The similarity definition is based 
upon the ontology which consists of type hierarchies on 
nodes and arcs. Finally, the matching results are ranked and 
orderly returned to the user. 
 The rest of the paper is organized as follows. Section 2 
introduces some basic concepts that ground our research on 
semantic matching. Section 3 formally defines the semantic 
similarity and describes in detail our graph matching 
algorithm with a running example. Section 4 gives 
evaluation and discussions on our algorithm. Section 5 
concludes our approach through a comparison with some 
related work. 

2 Basic Concepts  

2.1 Semantic Representation 
Before semantic search can be fulfilled, semantic structures 
from unstructured information sources should be acquired 
first. We know that most web documents are described in 
natural language and users also prefer to enter natural 
language queries to retrieve them. Therefore, the ultimate 
task amounts to generate structured semantic representation 
from natural language sentences. 
 To achieve automatic generation, we restrict the field 
into a specific domain, say clothes descriptions, so that we 
can benefit from distinct domain characteristics. Zhang 
(Zhang and Yu 2001) has proposed a machine-learning 
based approach that can be trained for different domains 
and requires almost no manual rules. In his method, 
Conceptual Graph (Sowa 1984) serves as the tool for 
semantic representation while WordNet (Miller 1990) 
version 1.6 together with the manually constructed relation 
hierarchy acts as the domain ontology in the whole process 
of semantic analysis and extraction. Since some other 
researches have shown that there exist direct mapping and 
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lossless conversion between Conceptual Graph and RDF 
graph (Berners-Lee 2001; Corby, Dieng, and Hébert 2000), 
Zhang�s method is considered transferable to the generation 
of RDF graphs. A prototype named ALPHA has been 
developed, and original results from it demonstrated the 
feasibility of the approach (Li, Zhang, and Yu 2001). 
According to the transferability, we will use 
�concept/relation� and �node/arc� interchangeably in the 
remainder of the paper. 

2.2 Entry of Graph 
General matching will easily suffer from the NP-complete 
problem of Maximum Subgraph Matching, so including 
some user input to guide the matching process is reasonable 
and important. Entry of graph embodies our above thought 
in the design of our system. 
Entry of Graph. With ALPHA, we have comprehended 
clothes descriptions from online shops into RDF graphs. In 
each resource graph, the node representing the 
corresponding clothes category, e.g. shirt, dress, pants, etc., 
will be designated as the entry of graph. Namely, the entry 
node will serve as the start position during further graph 
matching process. 
 Similarly, each query graph will also have its entry. Our 
system requires users to give the entries in their queries. 
Though some existent techniques, such as �shallow 
parsing�, can help detect the implied �headword�, the extra 
work on tailored rules or exhaustive training lead us back 
to direct interaction with users at the initial stages of our 
work. 
Ontology Based RDF Graph Index. Resource RDF 
graphs will be indexed in WordNet, the domain ontology, 
according to their entries. The index naturally confines 
matching range to separate clothes categories, for graphs 
have been clustered by their entries. 
 Besides, we also use the index to enable hierarchical 
matching. Since hyponymy and hypernymy of senses in 
WordNet can be regarded as subsumptive relationship 
between graph entries, the index makes it possible to search 
all categories subsumed by the user�s querying object. 

Fig. 1. An ontology segment in WordNet. 
For instance, figure 1 shows an ontology segment in 
WordNet. When a user inquires about a �shirt�, not only 
resource RDF graphs about �shirt� but also the ones about 
�jersey� or �tee shirt� will be searched to match the query, 
although they are quite different in word forms. 

3 Semantic Search by Matching RDF Graphs 
In this section, we will present our approach that performs 
the semantic search by matching RDF graphs. Let us take 

the matching task of the following query graph (figure 2) 
and resource graph (figure 3) as an example. 

Fig. 2. Query RDF graph. 

Fig. 3. One candidate resource RDF graph. 
The gray nodes represent the respective entries of the two 
graphs. The arc label �Mtrl� is the abbreviation for 
�Material�, while �Accm� is for �Accompaniment�. 
 Generally, the query is about a cotton garment with 
buttoned pouch and brand emblem. To determine whether 
the candidate resource graph is an appropriate match to it, 
we need to find out the semantic similarity between them. 

3.1 Semantic Similarity  
Previous work in (Poole and Campbell 1995) defined three 
kinds of similarity, i.e. surface similarity, structure 
similarity and thematic similarity. Surface similarity and 
structure similarity is the similarity based on the matching 
of objects and relations respectively, while thematic 
similarity depends on the presence of particular patterns on 
objects and relations together. Some related graph 
matching algorithms, such as Similarity Flooding (Melnik, 
Garcia-Molina, and Rahm 2002), Cupid (Madhavan, 
Bernstein, and Rahm 2001) and Anchor-PROMPT (Noy 
and Musen 2001), also involved, implicitly or explicitly, 
the idea to unite the linguistic similarity with structural 
similarity. Hence, we introduce similarity between nodes as 
well as similarity between arcs and integrate them to 
construct our similarity between graphs. 
Similarity between Nodes. We borrow Sowa�s classical 
definition of semantic distance between concept types 
(Sowa 1984) and simply calculate the similarity between 
two nodes as 1 minus their distance which cumulates all the 
distance from each node to their closest common parent. A 
value depicting the depth information in the ontology is 
assigned to every single node to help compute the distance. 
 For example, we want to know the similarity between 
nodes �Emblem� and �Pocket�. Consulting WordNet, we 
get the ontology segments as figure 4. 
 
 

jersey, T-shirt, tee shirt 
    => shirt 
        => garment 
            => clothing, clothes, apparel, vesture, wearing apparel, wear

Garment:? 
Mtrl

Pouch Emblem Cotton

Part Part 

Accm Accm 
Button Brand 

Shirt:URL 
Mtrl

Pocket Crest Cotton

Part Part 

Accm Accm 
Button Brand 
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Fig. 4. Ontology segments in WordNet. 
�artifact, artefact� is the closest common parent of 
�emblem� and �pocket�. The depth information for 
�artifact, artefact�, �emblem� and �pocket� is respectively 
0.0625, 0.0078 and 0.0020. Thus, the distance between 
�Emblem� and �Pocket� is (0.0625 - 0.0078) + (0.0625 - 
0.0020) = 0.1152. Accordingly, the similarity is 0.8848. 
 It is important that if the node from query graph 
subsumes the one from resource graph, the distance 
between them will be directly set 0. E.g., the distance 
between �Pouch� from query graph and �Pocket� from 
resource graph is 0. This can be explained by the heuristic 
that a resource category is sure to be considered as an exact 
match to its superclass category in query. 
Similarity between Arcs. We have manually constructed a 
type hierarchy on arcs according to Sowa�s theory about 
thematic roles (Sowa 2000). Therefore, the similarity 
definition on nodes is transferable to arcs. 
 In practice, however, we make a simplification to reduce 
computation complexity. That is, we take similarity as 1 
only if the arc from query graph subsumes the one from 
resource graph; otherwise, the similarity is set 0. 
 For instance, since none of the arcs �Mtrl�, �Part� and 
�Accm� is subsumed by one another in our relation type 
hierarchy, the similarity between any two of them is 0. 
Similarity between RDF Graphs. To avoid the NP-
complete computation of Maximum Subgraph Matching, 
we only compare the nodes and arcs at peer position 
referring to the entries. Nevertheless, unlike the 
implementation of OntoSeek, we still try to retain the 
structure of subgraph. This is carried out through recursive 
computation in the similarity formula: 

Here, nQ represents the entry of query graph, while nR is the 
entry of resource graph. SoG(nQ,nR) is to calculate the 
similarity between two graphs indicated by their respective 

entries. simn(nQ,nR) is the node similarity between nQ and 
nR, whereas sima( j

Qa , j
Ra ) is the arc similarity between the 

jth arc derived from nQ and its matching arc derived from 
nR. w(nQ,n) and w(nQ,j) are the weights allocated to the 
nodes and arcs within current calculation. They are 
normalized in advance: 

SoG(
j

Qa
Qn , j

Ra
Rn ) represents the recursive calculation of the 

similarity between the subgraphs with 
j

Qa
Qn  and j

Ra
Rn as their 

respective entries; 
j

Qa
Qn  and j

Ra
Rn  are the nodes that arc j

Qa  
and j

Ra  point to. ∑· indicates a cumulation operation and 
max{·} selects from all possible combinations the one 
which contributes the maximum cumulative similarity. 
 
 Let us recall the example at the beginning of Section 3. 
Assume that within every single recursive computation, the 
entry of graph and its derived arcs share equal weights. 
 The matching starts with two entries. As �garment� 
subsumes �shirt� according to WordNet, simn(Garment, 
Shirt) = 1. 
 Then we look at the arcs derived from these two entries. 
Since arc pair with zero similarity will lead to zero product 
in the second part of the similarity formula, we only need 
to observe arc pairs with non-zero similarity, i.e. identical 
or subsumptive arc pairs. Easily, we find out that the �Mtrl� 
pair is matching. As the �Cotton� nodes are derived from 
the �Mtrl� arcs, we recursively calculate SoG(Cotton, 
Cotton). Since there are no more arcs derived from the  
�Cotton� nodes, simply we get SoG(Cotton, Cotton) = 
simn(Cotton, Cotton) = 1. 
 Go back to the computation of SoG(Garment, Shirt). 
Now the problem remains how to settle a proper match on 
the two �Part� arcs in each graph. That is to say, we have 
to make a selection from two possible combinations of 
derived nodes: 
Comb. A: �Pouch� � �Pocket� and �Emblem� � �Crest�; 
Comb. B: �Pouch� � �Crest� and �Emblem� � �Pocket�. 
We need to work out SoG(Pouch, Pocket), SoG(Emblem, 
Crest), SoG(Pouch, Crest) and SoG(Emblem, Pocket). 

Node Similarity Similarity Value 
simn(Pouch, Pocket) 1 
simn(Emblem, Crest) 1 
simn(Pouch, Crest) 0.7544 

simn(Emblem, Pocket) 0.8848 
simn(Button, Brand) 0.5049 
simn(Brand, Button) 0.5049 

Tab. 1. Node similarity values needed in the matching process. 
 Take SoG(Pouch, Pocket) for example. simn(Pouch, 
Pocket) = 1. The derived �Accm� arcs also matches, so we 
further investigate SoG(Button, Button). Because no more 
arcs are derived from node �Button�, SoG(Button, Button) 
= simn(Button, Button) = 1. Thus, SoG(Pouch, Pocket) = 
0.5simn(Pouch, Pocket) + 0.5sima(Accm, Accm)· 
SoG(Button, Button) = 0.5*1 + 0.5*1*1 = 1. 
 Similar to the computation of SoG(Pouch, Pocket), we 
have: 
 SoG(Emblem, Crest) = 1; 

pocket 
 => pouch 
  => bag 
   => container 
    => instrumentality, instrumentation 
     => artifact, artefact 
      => object, physical object 
       => entity, something 
crest 
 => emblem 
  => design, pattern, figure 
   => decoration, ornament, ornamentation 
    => artifact, artefact 
     => object, physical object 
      => entity, something 
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 SoG(Pouch, Crest) = 0.6297; 
 SoG(Emblem, Pocket) = 0.6949. 
 Now, we learn that for Comb. A, the second part of the 
similarity formula is 0.25*1*1 + 0.25*1*1 = 0.5; while for 
Comb. B, the corresponding value is 0.25*1*0.6297 + 
0.25*1*0.6949 = 0.3312. Obviously, Comb. A will 
contribute larger similarity. Thus, by choosing Comb. A, 
we conclude: SoG(Garment, Shirt) = 0.25simn(Garment, 
Shirt) + 0.25sima(Mtrl, Mtrl)·SoG(Cotton, Cotton) + 
(Comb. A) = 0.25*1 + 0.25*1 + 0.5 = 1. That is to say, the 
candidate resource graph has a perfect match to the query 
graph. 
  
 Once started, the matching process will not end until all 
the arcs in query graph have been checked. Arcs in query 
graph that cannot find its match in resource graph will be 
regarded as they are mapped to a default relation for we 
consider it a kind of omission of default values. 

3.2 Algorithm Implementation  
Given a user query, the following process will be 
performed to calculate the similarity between each resource 
RDF graph and the query RDF graph. 

1 get user query 
2 interpret the query to generate query RDF 

graph (with ALPHA) 
3 user specifies the entry of graph E; look 

up E in WordNet 
4 for (each resource RDF graph indexed by E 

or E�s hyponyms in WordNet) 
5 { // the beginning of recursive procedure 
6 calculate the similarity between query 

and resource entry pair 
7 for (each arc derived from the entry of 

query graph paired with each arc derived 
from the entry of resource graph) 

8 { 
9 calculate the similarity between arc 

pair 
10 for non-zero similarity pair, invoke 

the recursive procedure (line #5 to 
#13) with respectively derived node as 
subgraph entries 

11 select the best match from all 
possible combinations, and accordingly 
cumulate the similarity between 
entries and the similarity between 
arcs with derived subgraphs 

12 } 
13 } // the end of recursive procedure 
14 rank and orderly return the matching 

results to user 
Tab. 2. Semantic search process implemented with graph 
matching algorithm. 
 Currently a prototype implementing our approach is 
under development with IBM China Research Lab. 

4 Algorithm Evaluation and Discussions 
It can be expected that the computation complexity of our 
algorithm will not reach NP-completeness as the famous 
problem of Maximum Subgraph Matching in this field.  
Actually, after we introduce the element of �entry of graph� 
and only compare the nodes and arcs with equal distance to 
the entry, it is close to a tree-like traversal. Hence without 
losing generality, suppose that the query graph and the 
resource graph are both r-branch trees of i height. To 
determine all the similarities between subgraph pairs 
derived from one node pair, there will be at most r2 times 
of recursive invocations. Then while making selection from 
r! combinations, we instead employ a kind of Maximum 
Flow algorithm performed with r times invocation of 
Bellman-Ford algorithm. Bellman-Ford algorithm is r3 
complex, so the cumulative complexity is r4. Finally, the 
computation cost between i height trees can be analyzed as 
follows: 
Here, c is a constant representing the time to calculate the 
node similarity. 

 From the formula group, we may conclude that C(i) is 
about r2i+2. Generally, when r is not too small, n, the 
number of arcs, will approximate ri. Therefore, the 
approximation of C(i) can be converted to n2r2. If r<<n, the 
complexity will be O(n2). In the worst case, say that the 
height of the graph equals to 1, i.e. r = n, the complexity 
reaches O(n4). In a word, our algorithm is confined to 
polynomial. 
 The tree-like traversal might be suspected mostly. Here, 
let us discuss about some graph structures other than tree. 
Lattice structural graphs will be implicitly converted to 
trees during matching, because the shared nodes will be 
naturally split along different comparison paths. Directed 
cyclic graphs may lead the split to failure and trap our 
algorithm into endless loop. Optimistically, graphs of that 
kind are very rare in our specific domain. Even if existed, 
they can be detected and handled before the program gets 
to crash. 

5 Related Work 
 Semantic search (or similarly so-called content retrieval) 
has been raised for years. OntoSeek (Guarino, Masolo, and 
Vetere 1999), as well as its XML version OSCA (O�Brien 
1999), defines the semantic match on isomorphism between 
query graph and a subgraph of resource graph. In order to 
avoid NP-completeness of such a computation known as 
Maximum Subgraph Matching, it instead adopts a classic 
unification algorithm to fetch corresponding nodes and 
afterwards check the arc linkage between them. 
Coincidentally like OntoSeek, SCORE (Aslandogan et al. 
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1995) also finds out the most similar entities between E-R 
diagrams before observing the correspondence of involved 
relationship. We think with that kind of simplification, 
however, matching on nodes is separate from the 
organization of subgraph. In contrast, we try to retain 
subgraph structure in our similarity definition but confine 
comparison range to mitigate as much the computation cost 
as possible in matching process. 
 Graph matching is another independent research topic 
but highly related to semantic matching. Similarity 
Flooding (Melnik, Garcia-Molina, and Rahm 2002) relies 
on the intuition that elements of two distinct models are 
similar when their adjacent elements are similar. In other 
words, a part of the similarity of two elements propagates 
to their respective neighbors. Therefore, they borrow the 
conception of �flooding� from the field of communication 
to iteratively compute the similarity until a fixpoint appears. 
Cupid (Madhavan, Bernstein, and Rahm 2001) uses a 
comprehensive name matching based on synonym tables 
and other thesauri as well as a new structural matching 
approach which bases matches on bottom-up traversal and 
biases matches to schema leaves. Anchor-PROMPT (Noy 
and Musen 2001) defines the similarity score between two 
terms in respective ontology as a cumulative score 
reflecting how often they appear in identical positions 
along the paths considering all the possible paths between 
anchors (pairs of related terms defined by the user or 
automatically identified by lexical matching). The 
algorithm is based on the assumption that developers link 
the terms in the ontology in a similar manner even if they 
do not call the terms with the same names.  
 Though we think our algorithm shares the thought of 
similarity propagation with Similarity Flooding, shares the 
idea of bottom-up traversal with Cupid and shares the 
notion of non-local matching with Anchor-PROMPT, 
there still exists obvious difference. The difference mainly 
derives from the distinction in matching objects from 
models, schemata or ontologies to our instance 
descriptions. During the design of similarity definition and 
matching algorithm, they emphasize most on the handling 
of heterogeneity. However, in our problem domain, 
heterogeneity is rather rare for both query graph and 
resource graph are generated according to the same 
domain ontology. Thanks to this, we are able to 
concentrate more on the matching of contents in particular 
patterns. 
 While we believe that we might contribute some rough 
ideas to the semantic search problem, we do not claim to 
have solved it. Testing is necessary to determine the 
applicability of our algorithm to large-sized graphs and 
massive resource graph repository. Much experimental and 
comparative analysis of the algorithm is also needed to 
demonstrate its strength. There still remain the 
manipulation problems on matching nested graphs and 
matching non-isomorphic graphs. We just expect our work 
to bring more attention and further attempts to the open 
issue of semantic search. 
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