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Abstract 

 
We describe current research in temporal, spatial, and spatio-
temporal data mining.  In these types of data mining, a model 
of time, space, or space-time plays a nontrivial role.  As an 
example of current research, we describe our MegaMiner 
prototype software.  The DGG-Discover 5.2 module of 
MegaMiner is based on expected distribution domain 
generalization graphs (EDDGGs), which allow detailed 
domain knowledge about temporal and spatial generalization 
relationships to be specified, and then applied during the data 
mining process.  As well, user expectations about the data 
can be specified and updated during the mining process.  We 
illustrate the current state of the MegaMiner software by 
applying it to a previously unseen data set, describing the 
weather of the province of Saskatchewan for the period 1900 
to 1949.  We were able to find temporal and spatial 
relationships, but not spatio-temporal ones. 

 
Introduction 

We describe current research in temporal, spatial, and 
spatio-temporal data mining (TSST mining).  In these types 
of data mining, a model of time, space, or space-time plays 
a nontrivial role.  Rather than treating time as an attribute of 
a standard type, such as nominal, ordinal, integer, or real, 
temporal data mining employs a specific model of time that 
describes its special properties, such as the way it forms 
intervals, the periodic relationships of the calendar, the 
continuously moving point called "now", etc.  Similarly, 
spatial data mining employs a specific model of space that 
describes its three-dimensional nature, its containment 
properties, etc. Spatio-temporal data mining employs a 
model relating to both time and space. 

As an example of current research, we describe our 
MegaMiner prototype software.  The DGG-Discover 5.2 
module of MegaMiner is based on expected distribution 
domain generalization graphs (EDDGGs), which allow 
detailed domain knowledge about temporal, spatial, and 
spatio-temporal generalization relationships to be specified, 
and applied during the data mining process.  An EDDGG is 
a graph-based structure for supporting automated data 
mining where the nodes describe domains of values at some 
level of granularity, the arcs describe generalization 
functions that translate values between domains, and 
expected distributions are associated with each node.  For 
example, for a date-time attribute, the nodes represent 
concepts, such as days, the arcs represent aggregation 

relations, such as that from days to weeks, and the expected 
distribution for the day node represents the expected 
distribution for a measure attribute among the days of the 
week. Our method allows data to be automatically 
aggregated into summaries in many ways.  By using the 
relative entropy (Kullback-Leibler) distance measure, 
summaries are ranked according to their distance from user 
expectations. 

The remainder of this paper is organized as follows. First, 
we describe the major approaches to temporal, spatial, and 
spatio-temporal data mining.  In each case, we emphasize 
the model that distinguishes the approach from general data 
mining techniques.  Next, we describe an approach to data 
mining based on expected-distribution domain 
generalization graphs.  Then we give a full example of the 
data mining process, highlighting the search for temporal, 
spatial, and spatio-temporal relationships.  This example is 
based on applying our MegaMiner software to a previously 
unseen data set, describing the weather of the province of 
Saskatchewan for the period 1900 to 1949.  Finally, we 
present our conclusions and suggestions for future research. 

TSST Mining 
Let us briefly review current research in temporal data 

mining, spatial data mining, and temporal-spatial data 
mining.  In temporal data mining, most research has 
focussed on describing and comparing time series. For the 
model of time, difference equations are used for discrete 
values and differential equations for continuous values.  A 
difference equation specifies how to predict the next value 
of an attribute based on the current values of the attributes.   

To detect frequently occurring patterns in time series, 
portions of time series must be compared.  If a pattern with 
a constant period is sought, [Han et al. 1999] provide a 
method for categorical values that finds partial patterns, 
such as: Jim reads the newspaper every morning between 
7:00 and 7:30 am, but the rest of his day does not have 
much regularity.  If trend components are present in the 
series, [Yu, Ng, and Huang 2001] recommend that the 
series be decomposed into three components, a seasonal 
component, trend, and noise. 

If the series does not have a constant period or if different 
series must be compared, dynamic time warping [Berndt 
and Clifford 1994] allows elastic shifting of the X-axis 
(time) to detect similar shapes in the Y-axis (attribute 
value).  [Keogh et al. 2000] introduced a piecewise 
algorithm for approximating a time series by dividing it into 
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equal-length segments and recording the mean value of the 
data points that fall within each segment and then applying 
dynamic time warping.  [Chu et al. 2001] provide a 
different method based on comparing the sequences at 
successively doubled number of segments. 

[Allen 1983] contributed an elegant model of time, based 
on 13 relations between intervals, for representing 
information about partially ordered events with durations.  
Given a set of partial relations between events, his 
algorithm fully propagates all constraints between intervals.  
By using reference intervals, such as major periods in a 
person's life, base level events can be related to intervals at 
successively higher levels of granularity.  Allen did not 
mention the problem of automatically choosing suitable 
reference intervals, a relevant data mining problem. 

[Chen, Petrounias, and Heathfield 1999] looked at 
discovering temporal association rules in temporal 
databases. [Rainsford and Roddick 1999] provide a method 
for adding temporal semantics to association rules based on 
structured relationships among temporal relations. [Li et al. 
2001] look at discovering calendar-based temporal 
association rules.  They also build on the Apriori algorithm 
for mining association rules to include temporal semantics. 
[Höppner 2001] uses a sliding window in combination with 
Allen's intervals to identify frequent patterns.  During pre-
processing, qualitative descriptions are used to divide the 
time series into small segments. 

[Randall et al. 1998] first described the problem of 
performing data mining based on a nontrivial calendar 
structure, which was represented by a DGG.  [Bettini et al. 
2000] provide a calendar algebra to represent granularities 
of calendar data and the relationships between those 
granularities, although they do not provide a data structure 
similar to DGGs for representing the relationships between 
these granularities. [Bertino et al. 2001] build on the work 
of Bettini et al. to specify the syntax and semantics of 
expressions involving data with multiple temporal 
granularities. [Goralwalla et al. 2001] use an ordered 
granularity hierarchy from SUP (top) to year, month, day, 
hour, minute, second, INF (bottom). 

Major approaches to spatial data mining are based on 
clusters, concept hierarchies, and spatial relations.  [Ng and 
Han 1994] used clustering to discover relationships and 
characteristics that existed implicitly in spatial databases. 
Their CLARANS model of a spatially significant 
relationship is a cluster of spatially close points. [Koperski 
et al. 1998] perform generalization-based spatial mining by 
ascending hierarchies related to either spatial or non-spatial 
attributes. [Egenhofer and Franzosa 1991] developed an 
ontology of spatial relationships based on boundaries and 
interiors and some data mining systems build on this model. 

Problems facing spatio-temporal data mining are 
described by [Erwig et al. 1999].  Since points move and 
regions move and change their shape (grow, shrink), a 
spatio-temporal database should contain information about 
moving objects.  Mining such a database would be based on 
queries such as "Find all pairs of airplanes that came closer 
to each other than 500 meters during their flights."  [Bittner 
2002] suggests that a spatio-temporal granularity hierarchy 
be represented as a cross-product of temporal and spatial 
granularity hierarchies. [Roddick et al. 2001] list existing 

research on spatio-temporal data mining, based mainly on 
finding similarities in images from different times. 

Expected Distribution Domain Generalization Graphs 

An Expected Distribution Domain Generalization 
Graph (EDDGGs) is a graph-based structure where the 
nodes describe domains of values at some level of 
granularity, the arcs describe generalization functions that 
translate values between domains, and expected 
distributions are associated with each node.  For example, 
for a date-time attribute, the nodes represent concepts, such 
as days, the arcs represent aggregation relations, such as 
that from days to weeks, and the expected distribution for 
the day node represents the expected distribution for a 
measure attribute among the days of the week.  

Our data mining approach has five steps. First, a domain 
generalization graph is created (or adapted) for every 
relevant attribute by explicitly identifying the domains 
appropriate to the levels of granularity and the mappings 
between the values in these domains. Second, a probability 
distribution is associated with each node in the graph.  
Third, the data are aggregated in all possible ways 
consistent with this graph. Aggregation is performed by 
transforming values in one domain to another, according to 
the directed arcs in the domain generalization graph. Each 
aggregation is called a summary. Fourth, the summaries are 
ranked according to their distance from the expected 
distribution for the appropriate domain using the Kullback-
Leibler distance function. Fifth, the highest ranked 
summaries are displayed. Expected distributions are then 
adjusted and steps repeated as necessary. This method 
allows user expectations to be incorporated dynamically 
during the mining process. 

Informally, a DGG can be thought of as a graph showing 
possible generalizations as paths through a graph. A formal 
definition is given in [Hilderman et al. 1999]. Each node 
corresponds to a domain of values. Each arc corresponds to 
a generalization relation, which is a mapping from the 
values in the domain of the initial node to that of the final 
node of the arc. The bottom node in the graph corresponds 
to the most specific domain of values and the top node 
corresponds to a domain called Any, containing all values. 

Each probability distribution represents the user's 
expectation for the frequency of occurrence of the values in 
the domain corresponding to the node. For example, if the 
domain is the names of countries of the world and 
expectations are based on population, the distribution could 
be specified by giving each country’s name associated with 
the ratio of that country’s population to the world 
population. 

The simplest approach is to assume uniform distribution 
for all domains. Unfortunately, this approach may suggest 
inconsistent distributions.  For example, uniform 
distribution over the domain of WeekdayName (0.14 for 
each day) is inconsistent with uniform distribution over the 
domain of WeekdayOrWeekend (0.5 for each). Two days, 
Saturday and Sunday, with a total expectation of 0.29 are 
generalized to Weekend, with a total expectation of 0.5, 
which is inconsistent. 
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To avoid inconsistencies and simplify the process of 
specifying expectations, a distribution is associated with a 
node in the EDDGG and from there it is propagated either 
upward or downward through the graph. Upward 
propagation translates a distribution from a node in the 
EDDGG up to at least one of its child node(s) and possibly 
higher as well. The distribution at the higher level is the 
original distribution proportionately weighted according to 
the relevant generalization relation. Either a uniform or a 
non-uniform distribution can be propagated upward.  
Bottom-up propagation propagates a distribution from the 
bottom node of the EDDGG to all other nodes. Downward 
propagation propagates a distribution from a node to at 
least one of its parent nodes and possibly lower as well. 
Top-down propagation propagates a distribution from the 
top node of the EDDGG to all other nodes, based on the 
assumption of uniformity at Any. 

Bottom-up propagation always creates consistent 
distributions among all nodes because the distribution at 
each node is consistent with the distribution of the base 
values at the bottom node.  However, the top-down 
approach can suggest inconsistent distributions for a 
particular node in the EDDGG based on multiple paths 
down to it. Propagating a distribution from a single child 
down to a single parent or multiple parents gives an 
unambiguous result, if the distribution of child values 
among parent values is known or assumed to be uniform. 
But when values are propagated down from multiple 
children to a single parent, it can be impossible to calculate 
consistent values without recalculating as much as the 
whole graph. 

Our EDDGG implementation allows the user to specify 
expected distributions by the four methods described below. 
The generalized relations are compared to these 
distributions to discover anomalous distributions. An 
explicit uniform distribution gives the single expected 
probability for all values at a node.  An explicit histogram 
specifies individual expected probabilities for all values at a 
node.  The data driven approach applies bottom-up 
propagation to a (typically non-uniform) distribution. The 
data dictionary approach obtains an expected distribution of 
values for any node in the EDDGG from a data dictionary, 
such as a database relation. With any of these techniques, 
the distributions can be propagated both upward and 
downward. The data driven approach applies bottom-up 
propagation to a (typically non-uniform) distribution. An 
output summary is produced as comma-separated values, 
which are readily displayed and processed with Microsoft 
Excel and other standard tools. 

The generalized relations are compared to these 
distributions to discover anomalous distributions.  We use 
the Kullback-Leibler distance function to compare 
distributions.  The formula is:   

( )
kq
kpn

k
kpd 2log

1
∑
=

=  

where n is the number of observations, pk is the observed 
probability distribution, qk is the expected probability 
distribution. 

When several attributes have EDDGGs, aggregation is 
performed to all nodes in the cross product of the EDDGGs. 

In this case, the expectation of a tuple is the product of the 
expectations of the values of its component attributes, 
unless an expectation (joint probability distribution) has 
been specified for some subset of the relevant DGG nodes. 

Example Application 

We conducted a series of experiments using data 
describing the weather in the province of Saskatchewan 
(hereafter SK) in Canada for the period 1900 to 1949.  Each 
data record gives the highest temperature (0.1 degree 
Celcius) and the total precipitation (in mm, with snow 
converted to water) for every day of every year, for every 
weather station in the province.  Other fields concerning 
low temperatures and snowfall were not used in our 
analysis.  The number of tuples was 211,534. 

We began the study with no knowledge of the data set, 
although as Saskatchewan residents, we had some opinions 
about the weather!  Before beginning our study, we listed 
some "obvious" relationships that data mining should find: 

W1. Weather in SK is hot in summer, cold in winter, 
cool in spring and fall. 
W2. Weather in the south is warmer than in the north. 
W3. Weather in the southwest is warmest. 
W4. Precipitation falls mainly in the spring. 
W5. On most days, it does not rain or snow. 
W6. Most weather systems travel from west to east. 

Our hope was that a straightforward application of our 
software could automatically find these or similar 
relationships, allow these relationships to be accepted as 
part of the domain theory, and then find some novel 
relationships. 

We adapted a DGG previously created [Randall, 
Hamilton, and Hilderman 1998] for temporal attributes to 
form the simplified Date DGG shown in Figure 1.  This 
DGG indicates that a particular date (YYYYMMDD) can be 
generalized to a year, a month, or a season.  As well, years 
can be generalized to decades.   

Additional DGGs are shown in Figure 2 for the 
Temperature, Precipitation, and Station.  For the two nodes 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  DGG for Date Attribute 

in the Temperature DGG, we used the ranges shown in 
Table 1. Precipitation was handled similarly, with the 
PrecipSplit node having values of NoPrecip and 
SomePrecip.  For Station, we grouped them from south to 
north into four regions (South, LowMid, HighMid, and 
North) to create the Region node.  We also calculated an 
adjusted   distance   d  to  any  point  (Lat,  Long)  from  the 
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Figure 2.  Temperature, Precipitation, and Station DGGs 

 
DGG Node    

Nominal value Min Value Max Value 
Cold -42C (-44F) 0C (32F) 
Cool 0C (32F) 15C (61F) 

Warm 15C (61F) 25C (77F) 

TempRange 

Hot 25C (77F) 52C (126F) 
TempSplit Nominal Value Values from TempRange 

 Colder Cold, Cool 
 Hotter Warm, Hot 

Table 1. High Temperature Ranges 
 

southwest corner of the province, which is at (49°N, 
110°E), using the formula 

d = (Lat – 49) + 0.35 (110 – Long) 
This assumes that similar weather occurs along a slanted 
line across the province.  The 0.35 is an arbitrary constant 
defined based on a map of the province showing ecological 
regions [Eco 2002].  Since the northeast corner of the 
province is at (60°N, 102°E), the values for d ranged from 0 
to 13.8.  To create the DistRange node, we divided this 
range into 10 equal-sized intervals.   

We began by investigating the number of values, which 
is the simplest measure attribute.  We used the flexibility of 
the EDDGG framework to specify our expectations at 
whatever level of granularity seemed most appropriate.  
First, we specified the minimum and maximum dates at the 
YYYYMMDD node with an expected distribution of uniform 
(indicated as U), and this expectation was propagated to all 
nodes above it in the DGG.  This propagation automatically 
recorded the expectation that February would have a 
smaller count, that some years and decades would have a 
slightly smaller count due to the exact number of leap years, 
etc.  By adapting a standardized calendar DGG, we 
immediately obtained this benefit.  For Temperature, we 
assumed a uniform distribution across the TempRange, and 
propagated this assumption upward, and uniformly 
downward.  Similarly, for Precipitation, we assumed a 
uniform distribution across PrecipSplit, which means that 
an equal number of days with and without precipitation are 
expected, and propagated this distribution downwards.  
Lastly, we assumed a uniform distribution at the StationId 
node, i.e., that all weather stations are expected to have the 
same number of observations, and propagated this upward. 
Run 1. (YYYYMMDD=U, TempRange=U, 
PrecipSplit=U, StationID=U).  The results from the first 
run immediately identified false expectations.  The highest 
ranked node was MM-TempRange-PrecipRange-StationId, 
and four other nodes with MM-…-StationId and Year-…-
StationId were next, indicating that a great variation 
occurred in the number of reports from various stations 
among the years and months.  Further examination of the 

data showed that stations only gradually started reporting 
across the 50 year period, and that occasionally stations 
would stop reporting for a while, or completely.  We were 
easily able to determine the date of first and last report for 
each station.  Using these dates, we specified an expected 
distribution, hereafter called A, which was uniformly spread 
across all stations between their starting and ending dates. 
This joint probability distribution was specified at the 
YYYYMMDD-StationId node of the generalization space.  
We manually propagated distribution A to the YYYYMMDD 
node in the Station DGG as distribution AY, and to the 
StationId node in the Station DGG, as distribution AS. 
Run 2. (YYYYMMDD= AY, TempRange=U, 
PrecipSplit=U, StationID= AS): The second run ranked 
MM-TempRange-PrecipRange-StationId node highest.  
Since the next few nodes also included PrecipRange, we 
looked at the distribution (hereafter called B) for ANY-
ANY-PrecipRange-ANY, which is shown in Figure 4.  We 
made B the expected distribution at the PrecipRange node, 
and deleted our previous expectation at PrecipSplit.  
Distribution B was propagated upward and uniformly 
downward.  Distribution B corresponds to relationship W5. 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 4.  PrecipRange Distribution (B). 
 

Run 3. (YYYYMMDD= AY, TempRange=U, 
PrecipRange=B, StationID= AS): The third run ranked the 
MM-TempRange-ANY-Station node as highest.  We 
accepted the distribution (C) at the TempRange node.  
Distribution C was propagated upward and uniformly 
downward. 

Overall, we found that the highest ranked node was not 
providing a clear indication of what expectation to adjust 
next.  The problem seemed to be with the Kullback-Leibler 
measure, which although widely accepted for comparing 
distributions, does not seem like an appropriate heuristic for 
guiding node selection in MegaMiner. 

We switched to checking individual nodes in the 
EDDGG that corresponded to our hypotheses. When we 
examined the results at the Season-TempRange node, we 
confirmed W1, as shown in Figure 5.   When we examined 
the results at the TempRange-Region node, we confirmed 
W2, as shown in Figure 6.  At TempRange-DistRange, we 
found that the most southwestern region was not the 
warmest, but thereafter the temperatures decreased.  Further 
examination, showed that only one station was in the first 
region and it had large gaps in its reporting periods.  From 
Season-PrecipRange, we found that most rainy days were in 
the summer not the spring, and the average at Season-
SpecificPrecip confirmed that we were wrong about W4, as 

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 <50 50-100 100-400 >400

Specific- 
Temp 

TempSplit 

TempRange 

ANY 

Specific- 
Precip 

PrecSplit 

PrecRange 

ANY 

StationID 

Region DistRange 

ANY 

484    FLAIRS 2002   



 

 

shown in Table 2.  We were unable to check W6, because 
no adequate spatio-temporal model was defined.  To do 
this, we would have searched for significant precipitation at 
western versus eastern stations on successive days, but the 
software did not support this conveniently. 

 
 

 

Figure 5.  Season vs. Counts for TempRange 
 
 
 
 
 
 
 
 
 
 

Figure 6. Region vs. Counts for TempRange. 
 

Season Average Temp Average Precip 
Winter -8.9 5.7 
Spring 14.4 13.1 
Summer 23.7 16.6 
Fall 3.8 6.9 

Table 2. Weather by Season. 

Conclusion 

Temporal, spatial, and spatio-temporal data mining 
provide many challenges.  Data mining has been applied 
using temporal models for time series, intervals, temporal 
association rules, and calendar data.  Spatial data mining is 
less developed but a variety of clustering techniques have 
been applied and containment models are beginning to be 
applied.  Spatio-temporal data mining is in its infancy.  
Some of the problems have been clearly identified, but few 
general techniques have been designed.  In particular, the 
facilities in our MegaMiner software are inadequate.   

Four possible improvements to MegaMiner were 
identified during this research.  First, the use of other 
interestingness measures [Hilderman and Hamilton 2001] 
than Kullback-Leibler distance should be explored in the 
context of providing additional guidance to the user when 
selecting among summaries.  Secondly, facilities for 
propagating joint probability distributions for combinations 
of attributes are needed.  Thirdly, additional functionality 
for specifying spatial DGGs would be helpful.  Finally, 
support for spatio-temporal data mining is required. 

References 
Allen, J. F. 1983.  Maintaining Knowledge about Temporal Intervals, 
CACM 26(11):510-521. 

Antunes, C., and Oliveira, A. 2001.  Temporal Data Mining: An Overview, 
KDD 2001 Workshop on Temporal Data Mining, San Francisco. 
Bertino, E., Ferrari, E., Guerrini, G., and Merlo, I. 2001. Navigating 
Through Multiple Temporal Granularity Objects. In Proc. 8th 
International Symposium on Temporal Representation and Reasoning 
(TIME'01), Cividale del Friuli, Italy. 
Bettini, C., Jajodia, S., and Wang, X. S. 2000. Time Granularities in 
Databases, Data Mining, and Temporal Reasoning. Springer. 
Bittner, T., Granularity in Reference to Spatio-Temporal Locations and 
Relations, Proc. FLAIRS'2002, this volume. 
Chen, X., Petrounias, I., and Heathfield, H. 1999. Discovering Temporal 
Association Rules in Temporal Databases, Proc. Third European 
Conference on Principles of Data Mining and Knowledge Discovery 
(PKDD'99), 295-300, Prague. 
Chu, S., Keogh, E., Hart, D., and Pazzani, M. 2002.  Iterative Deepening 
Dynamic Time Warping for Time Series, SIAM KDD 2002. 
Eco 2002.  http://interactive.usask.ca/skinteractive/modules/environment/ 
ecoregions. 
Egenhofer, M. J. and Franzosa, R. D. 1991. Point-set topological spatial 
Relations, Int. J. Geographical Information Systems, 5(20): 161-174. 
Erwig, M., Guting, R. H., Schneider, M., and Vazirgiannis, M. 1999. 
Spatio-Temporal Data Types:  An Approach to Modeling and Querying 
Moving Objects in Databases, GeoInformatica, 3(3). 
Goralwalla, I., Leontiev, Y., Özsu, M. T., Szafron, D., and Combi, C. 
2001.  Temporal Granularity: Completing the Puzzle, Journal of Intelligent 
Information Systems, 16 (1):41-63. 
Hamilton, H. J., Hilderman, R. J., and Cercone, N. 1996. Attribute-
oriented Induction using Domain Generalization Graphs. In Proc. Eighth 
IEEE International Conference on Tools with Artificial Intelligence 
(ICTAI'96), 246-253, Toulouse, France. 
Han, J., Dong, G., and Yin, Y. 1999. Efficient Mining of Partial Periodic 
Patterns in Time Series Database, In IEEE Conf. on Data Engineering 
(ICDE'99), 106-115. 
Hilderman, R. J., Hamilton, H. J., and Cercone, N. 1999. Data Mining in 
Large Databases using Domain Generalization Graphs, Journal of 
Intelligent Information Systems, 13:195-234. 
Hilderman, R. J., and Hamilton, H. J.  2001.  Knowledge Discovery and 
Interest Measures, Kluwer, 2001. 
Höppner, F. 2001.  Discovery of Temporal Patterns: Learning Rules about 
the Qualitative Behaviour of Time Series, Principles of Data Mining and 
Knowledge Discovery (PKDD'2001). 
Koperski, K., Han, J., and Adhikary, J. 1998. Mining Knowledge in 
Geographical Data, CACM. 
Li, Y., Ning, P., Wang, X. S., and Jajodia, S. 2001, Discovering Calendar-
based Temporal Association Rules, in Eighth Int'l Symposium on Temporal 
Representation and Reasoning (TIME'01), 111-118 Cividale del Friuli 
Italy. 
Ng, R. T., and Han, J. 1994. Efficient and Effective Clustering Methods for 
Spatial Data Mining. In Proceedings of the 20th VLDB Conference, 144--
155, Santiago, Chile. 
Rainsford, C. P., and Roddick, J. F. 1999.  Adding Temporal Semantics to 
Association Rules, in Proc. PKDD'99, 504-509, Prague. 
Randall, D. J., Hamilton, H. J., and Hilderman, R. J. 1998.  Generalization 
for Calendar Attributes Using Domain Generalization Graphs, Fifth Int'l 
Workshop on Temporal Representation and Reasoning (TIME'98), 177-
184, Sanibel Island, FL. 
Roddick, J., Hornsby, K., and Spiliopoulou, M. 2001.  An updated 
bibliography of temporal, spatial and spatio-temporal data mining research, 
Temporal, Spatial, and Spatio-temporal Data Mining, Springer, 147-163. 

0%

20%

40%

60%

80%

100%

Winter Spring Summer Fall

Hot

Warm

Cool

Cold

0%

20%

40%

60%

80%

100%

South LowMid HighMid North

Hot

Warm

Cool

Cold

FLAIRS 2002    485  


	TSST Mining
	Example Application
	Conclusion
	References


