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Abstract 
The paradox of two envelopes, one containing twice as 
much money as the other, is one of several that address 
logical aspects of probabilistic reasoning. Many 
presentations of the paradox are resolved by understanding 
the need to specify the distribution of quantities in the 
envelopes. However, even if a simple distribution of 
numbers is known, a new set of reasoning problems arise. 
The puzzle as presented here shares features with other 
reasoning problems and suggests a direction for their 
resolution. 

Introduction  
The paradox of two envelopes is an old puzzle of 
probabilistic reasoning with a rich pedigree. We remark 
as a caveat that it is not a true paradox, but rather a puzzle 
whose statement is counterintuitive. It arises as a 
mathematical recreation, but has also studied by scholars 
in statistics (Christensen & Utts, 1992), philosophy 
(Rawling, 1997), and Artificial Intelligence (Neapolitan, 
1990). It is one of many puzzles used to illustrate the 
logical foundations of probabilistic inference, as it shows 
the difference between uncertainty (in the sense of a 
probability distribution) and ignorance (lacking 
knowledge of even a distribution). 
 A typical presentation of the basic puzzle goes as 
follows: Ali and Baba have each been given an envelope 
of money. (Ali is male and Baba is female so we can refer 
to each with pronouns.) Both know one envelope has 
twice as much as the other and Ali has been offered an 
opportunity to switch envelopes with Baba. Assuming 
equal probabilities for receiving either envelope, Ali 
figures that he will improve his expected gain by 
switching, since 
 

? * x/2 + ? * 2 x = 5/4 x. 
 

 Following this reasoning, the first paradox that arises is 
that, having switched envelopes, Ali can follow the same 
reasoning again to increase the expected value of the 
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contents of the envelope, and so on ad infinitum. Hence, 
some call this the puzzle of the money pump. 
 The puzzle is discussed widely, but a short answer is 
that for the equation to hold for every possible value of x, 
one requires a uniform probability distribution on an 
unbounded set. Since such a distribution does not exist, 
several papers pursue Bayesian approaches that postulate 
possible distributions.   Under such models, the prior 
distributions of the contents of the two envelopes would 
be exchangeable, and hence both envelopes would have 
the same expected value. This solution cautions against 
na?ve use of the principle of indifference to generate 
probability distributions. We concur with this advice and 
do not discuss the classic puzzle further. 
 The present work in fact discusses solutions to a 
variation of the puzzle discussed by Bickis (1998). This 
variation differs from the classic version in that the 
distribution of the money in the two envelopes is fully 
specified in advance. 
 Although the new puzzle can be generalized, the 
following captures its essence. A number x is randomly 
chosen from the interval [0,100], say. The envelopes are 
filled with (arbitrary precision) cheques for x and 2x, then 
shuffled fairly and dealt to Ali and Baba who separately 
inspect the contents. Baba may then to ask Ali to switch 
envelopes. If Ali accepts, the envelopes must be switched. 
The first interesting variation on the puzzle arises simply 
because maximum values are known. If Ali sees a cheque 
greater than $100, switching can only result in a loss.  
 If Ali sees a cheque for less than $100, there is an 
argument that he may benefit from swapping envelopes. 
Let Largest be the event that Baba holds the largest 
cheque and let f1 and f2 be the density functions of x and 
2x respectively, Bayes theorem gives  
 

    P(Largest|A=a) = f 1(a) * P( Largest) / 
    ( f1(a) * P(~Largest) +  f2(a) * P(Largest)) 
 
According to this, if a <= 100 ?  A=a, the probability that 
Baba holds the largest cheque is 2/3 and Ali would benefit 
from swapping, since f1(a)=1/100 and f2(a)=1/200. 
 Bickis (1998) points out that there is more to the 
decision than a simple (in the sense of sample space) 
counting argument. Logical information is available. 
Suppose Ali has $80 and Baba has $40 and Baba offers to 
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switch. It does not follow that Ali should accept, for the 
fact that Baba makes the offer indicates that she has less 
than $100. Since she can only hold $160 or $40, her 
willingness to switch indicates that she has only $40 and 
that Ali should decline Baba’s offer.  
 Suppose instead that Ali offers to switch. Regardless of 
probabilities, Baba will not accept if she is holding $160. 
If she does accept, Ali will know immediately that he has 
lost. That is, although a probabilistic argument exists that 
he might gain money, rationally he is guaranteed to lose. 
Therefore, he should not offer in the first place. 
 But then, by iterating the above arguments, one can 
deduce that regardless of the amount Ali gets, it is 
pointless for him to make an offer to switch, and that 
Baba should refuse any offer that is made. Ali would only 
make an offer if A <= 100, in which case Baba would 
refuse unless B <= 50, but in that case Ali would lose 
unless A <= 25. So that fact that Ali makes an offer tells 
Baba that A <= 25, so she would refuse unless B <= 
12.50, but in that case, Ali would lose unless A <= 6.25 
and so on. 
 It appears that the “ logical”  knowledge available 
contradicts the probabilistic analysis. The remainder of 
the paper provides a deeper analysis of the problem, 
suggests a solution and compares this problem to related 
problems in the literature. 

A “ backwards induction”  
A few diagrams might be helpful. The cases for Ali 
holding either 160 or 80 are straightforward. The 
following diagram illustrates the possible lines of 
reasoning that may occur when Ali holds 40. He can 
reasons that Baba holds either 20 or 80. 
 
 
 
To ensure maximum readability, your paper must  
 
 
A rational Baba will hold onto 80, since she assumes Ali 
will not rationally offer to switch if he holds 160. Next 
suppose Ali has 20. Using the above diagrammatic 
technique again, we see the following: 
 
 
 
 
 
 
 
 
 
Once again, the only conditions where Baba might accept 
an offer are those where Ali is certain to lose, and so Ali 
will not rationally offer to switch at 20. 
 The arguments for Ali holding 160, 80 and 40 and 20 
seem to rest on entirely rational (e.g., simple first-order) 
grounds. The next iteration is questionable: 

 
 
 
 
 
 
 
 
 
 
At this point the argument adopts a different modality, 
which is indicated by the note that “ Ali would not offer ?  
by a previous diagram” . Ali is reasoning about how Baba 
would respond to an offer that Ali has not made, and, by 
this logic, will not make. 
 However, by iterating on this argument, the reader will 
see that Ali can always reason that he should never make 
an offer because Baba will only accept the offer when Ali 
is certain to lose the bargain. Stranger still, the argument 
is symmetric, so we could have two persons with differing 
(and possibly miniscule) amounts of money convinced 
that an accepted offer to switch guarantees a loss of 
money.  This is distinct from the argument that there is no 
expected gain from switching. Yet the base case argument 
that a player with 160 should not offer to switch, and even 
the next case, appear indisputable. The problem is 
determining where, along this apparent “ backwards 
induction”  the reasoning fails.  
 Bickis (1998) gives an argument that it comes down to 
Baba having to decide how careless Ali’s reasoning may 
be, and vice-versa. This provides a clue to the solution, 
although the problem is wider, since the argument that 
either can know in advance that the switch is hopeless for 
all sums seems flawed: consider the case of Ali and Baba 
both holding tiny cheques —  how can it be known that the 
other will accept an offer of switching if the offerer is 
guaranteed to lose? Stranger still, it seems wrong that the 
very act of offering to switch guarantees a loss. 
 The flaw in the argument is revealed by attempting to 
represent the knowledge about the two-envelopes world in 
the formal language of first order logic. Suppose the 
initial knowledge is captured as follows: 
 

1. Holds(A, X) -> (Holds(B, 2*X) or Holds(B, X/2 
).  

2. Holds(A, X) and X > 100  -> ~OfferToSwitch(A). 
3. Holds(A, X) and CantGain(A,X) -> 
          ~OfferToSwitch(A). 
4. Holds(A, X) and Holds(B, Y) and Y > 100 -> 

     Rejected(A, X). 
5. Rejected(A, X) ->CantGain(A,X). 
6. Holds(A, X) and Holds(B, Y) and Y < X ->  

     CantGain(A, X). 
 

A complete and strict representation would include facts 
to support that each player can only hold a single 
quantity, the ranges of the quantities, and perhaps mostly 
importantly, explicit axioms about arithmetic. This 
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encodes the basics of what we might call a minimally 
rational Ali and Baba, ignoring the argument of whether 
minimally rational humans have all of arithmetic at their 
disposal. Their shallow knowledge (as written) states that 
Baba holds either half or twice as much as Ali (1). (The 
axioms of arithmetic and knowledge about ranges of 
values allow a dual axiom for Baba.) If Ali holds more 
than 100, he won’t offer to switch (2). It also lets him 
reason that if he can’t possibly increase his wealth, he 
won’t offer to switch (3). Baba will reject an offer if she 
is holding more than 100, that is, Ali’s offer will be 
rejected (4). Finally, if Ali is rejected by Baba, he can’t 
gain (5), and if Baba is holding less than Ali, he can’t 
gain (6).  
 The first few proofs are straightforward. If Ali holds 
(say) 160, it follows from (1) that he will not offer to 
switch. If Ali holds 80, then Baba holds either 40 or 160 
(4). Reasoning by cases, either Baba holds more than 100, 
or less than Ali. This implies Ali is either rejected or can’t 
win, and therefore rationally should not to offer to swap.  
 Taking the argument further, suppose Ali holds 40. If 
Baba holds 80, she can reason using a contrapositive of 
(2) that Ali will not offer to switch if he holds 160 and 
therefore will reject any offer. Moreover, Ali can reason 
this much about Baba. Thus, the first three steps seem to 
define an easy induction.  
 Finally, suppose Ali holds 20. Then Ali can reason that 
Baba holds either 40 or 10 by (1). If 40, Ali then reasons 
that Baba reasons that a rational Ali with 80 would not 
have offered and that Ali holds 20 and would reject an 
offer, if one was made. The other possibility is that Baba 
holds 10, in which case Ali’s offer if made could either be 
rejected or accepted, with a worst case outcome of a loss.   
 Emphasis is added to illustrate that we are, at the level 
of discourse, reasoning about hypothetical true outcomes 
of predicates that will always be false as a consequence of 
the decision that the reasoning advises.  
 A feature of this line of reasoning is that it offers a 
technique of “ backwards induction”  that lets Ali conclude 
it is not worth making the offer to switch an envelope 
containing any amount. This bears some similarity to the 
puzzle of the unexpected hanging, where a prisoner is 
advised by the king that the prisoner will be executed one 
day at noon next week, and furthermore, the execution 
will come as a surprise. The prisoner reasons that the 
execution cannot be Saturday (last day of the week), since 
it would not be a surprise. However, this means that if the 
prisoner awakes Friday morning knowing a Saturday 
execution is impossible, then the prisoner must be hung 
Friday if the execution is to take place at all, in which 
case it would not be a surprise. The prisoner continues 
with another “ backward induction” , ultimately reasoning 
that there is no day the prisoner can be executed and be 
surprised. Hence, no execution. 
 This puzzle has its own pedigree and history of 
solutions that we do not review here, but see (Wischik, 
1996), who references a solution that distinguishes 
between imagining actions, and implementing them. In 

the discussion above, Ali imagines making an offer to 
switch, then reasons about Baba’s response. In his 
imagining of Baba’s response, Ali assumes that Baba 
reasons that Ali would not make an offer in the event he 
was certain to lose, rules out the possibility that Ali holds 
a sum larger than Baba, and in fact, does not make the 
offer. 
 This notion of the difference between imagined and 
implemented actions suggests a resolution. Our first-order 
representation must distinguish between a capricious offer 
and a reasoned offer. Logic does not prohibit us from 
reasoning about imaginary worlds, but the essential 
features of the imaginary world must be the same as our 
own. 
 Thus, the previous representation becomes the 
following: 
 

1. Holds(A, X) -> (Holds(B, 2*X) or Holds(B, X/2 ).  
2. Holds(A, X) and X > 100  -> 
        ~LogicalOfferToSwitch(A). 
3. Holds(A, X) and CantWin(A,X) ->  
       ~LogicalOfferToSwitch(A). 
4. Holds(A, X) and Holds(B, Y) and Y > 100 -> 
       LogicalRejectOffer(A, X). 
5. RejectOffer(A, X) ->CantWin(A,X). 
6. Holds(A, X) and Holds(B, Y) and Y < X -> 
        CantWin(A, X). 
7. OfferToSwitch(A) -> LogicalOfferToSwitch(A) or  
       CapriciousOfferToSwitch(A) 
8. RejectOffer(A, X) -> LogicalRejectOffer(A, X) or 
       CapriciousRejectOffer(A, X). 

 
The key feature of the new representation is that offers to 
switch are separated into logical and capricious offers. 
Symmetrically, rejections are divided the same way. 
(Additional axioms would ensure these are mutually 
exclusive and exhaustive, etc.) The conclusions of the 
backwards induction now agree with intuition. If Ali 
holds 160, the above tells him it would be illogical to 
offer to switch. However, this does not prevent Ali from 
making a capricious offer because of logical myopia or 
for sport. Baba, presented with an offer, before deciding 
whether to accept it or not, must also decide whether the 
offer is logical or capricious. 
 Going to the second case, suppose Ali has 80. If Ali 
makes a capricious offer, and if Baba has 160, she will 
logically reject the offer using (4), but this does not 
prevent her from capriciously accepting. If Baba has 40, 
she must first decide whether Ali is making a logical or a 
capricious offer before deciding to logically accept or 
reject. However, the scenario is similar to that one 
discussed earlier and it seems highly unlikely that Ali 
would make a capricious offer almost certainly knowing 
he will lose.  
 The reasoning changes slightly if we suppose Ali has 
40. Suppose Ali makes a capricious offer. If Baba holds 
80, then Baba reasons that Ali has either 160 or 40. It 
seems highly unlikely that Ali would make a capricious 
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offer if he holds 160, and it seems highly reasonable for 
Baba to conclude that she should logically reject the offer. 
But recall that this is Ali reasoning about Baba reasoning 
about whether Ali has made a reasoned offer. If we pursue 
the argument for smaller values, it is difficult to 
characterize the same events as highly likely or highly 
unlikely.  
 Thus, the special case involving certainty (when one 
player holds 160) has devolved to a case where it is highly 
unlikely (but not impossible) that a player would make an 
offer to switch given a certainty of losing. By analogy: 
two reasonably good (perfectly rational) tic-tac-toe 
players can ensure that every game ends in a tie, 
regardless of the opening move. However, it seems 
believable that one of two intelligent but inexperienced 
players might make a losing move in response to an 
opening, even if that same player would not deliberately 
make a last move that forced his opponent’s win. The tic-
tac-toe analogy ends there because that game is finite.  
 

Relationship to other work 
Two features of the new puzzle bear some relationships to 
other work.  
 Glenn Shafer (1985) discusses the idea of 
communication conventions in the context of determining 
probabilities in the puzzle of the two aces. In that puzzle, 
a deck of cards consists of an ace of hearts, an ace of 
spades, a two of hearts and a two of spades. The deck is 
shuffled and two cards are dealt to a player A. Player B 
asks A whether A holds an ace. Player A answers, “ yes, in 
fact I hold the ace of spades” . Player B then computes the 
probability that A holds the other ace. Shafer’s discussion 
revolves around whether the correct answer is determined 
by computing 

 
P( holds(A, aceOfHearts) | holds(A, aceOfSpades) ) 

 
or by computing 
 

P( holds(A,bothAces) | holds(A,oneAce) ). 
 
Had player A narrowly answered B’s question by simply 
replying “ yes” , it would only be possible to use the 
second probability. However, A has ventured some 
additional information, and the paper revolves whether B 
can use the additional information in the solution. Shafer 
conclude that B can not, since the probabilistic 
communication implies a simple yes/no answer, and A 
might throw out information to mislead B as much as help 
B. Thus, it is different to discover find information you 
are looking for, than to chance upon it. In terms of an 
objective interpretation of probability, it would be 
difficult to fully specify the sample space in advance if 
one must give an objective account of the possible 
intentions of all players. In this new puzzle of two 
envelopes, the reasoning of Ali and Baba also rests on the 
way information was obtained.  

 There also seems to be a link between the backwards 
induction of the unexpected hanging and the backwards 
induction of our puzzle. One potential flaw in the 
reasoning is that the prisoner is reasoning that the judge 
has advised that the prisoner will die and will be 
surprised. The prisoner reasons that since there cannot be 
a surprise, there cannot be an execution, contrary to the 
advice of the judge. But the judge has advised both, yet 
the prisoner does draw the less convenient conclusion that 
since there must be an execution, there cannot be a 
surprise.  
 Shapiro (1998) notices a problem with the induction, as 
does (Wischik, 1996). Both propose parallel solutions to 
the problem that seem to work, except for the case of the 
execution occurring Saturday. (The victim will still be 
surprised, but for other reasons --- the executioner must 
have lied, etc.) Shapiro’s solution is neat. However, it is 
not clear whether the puzzle cannot be posed again, 
assuming that the rational prisoner has Shapiro’s parallel 
reasoning formalism available. 
 Putting that aside, the meaning of the puzzle is resolved 
by casting it into a formal language. The following is a bit 
freewheeling, but captures the main features of the 
argument. First, the sentences establish that the prisoner is 
alive now, but will hang on some day in the upcoming 
week: 
 

1. Hang (1) or Hang(6) or ?  or Hang(7)  
2. Alive(0) 
3. Alive(N) -> Alive( N-1 ) 
4. Hang(N) <-> ~Alive(N) 
5. Hang(N) ->Surprise(N). 

 
This captures some of the salient features of the effect of 
hanging. Implicitly, by contraposition, (3) also states that 
if you are not alive at N-1 then you are also not alive at N. 
This would seem to be straightforward enough. However, 
this set of axioms asserts, perhaps stupidly, that a hanging 
is a surprise, albeit a nasty one, whether one is expecting 
it or not. 
 A better first-order definition of  “ surprise”  is a worthy 
puzzle in itself. In the above, a surprise could be when 
you discover information you simply did not know 
(equivalently, you determine an atom, for example, 
Hang(X), is true). Alternately, and more appropriately for 
this puzzle, a surprise might be defined as discovering 
that the truth of a fact in the world is contrary to a proof 
in the language L consisting of the above axioms plus the 
first-order logic.  
 Kyburg (1984) says that every experiment is at once a 
test of a hypothesis and of a measurement. If the 
measurement obtained by the experiment contradicts the 
theory, when do we toss out the theory and when do we 
toss out the data? (Pople (1982) states that physicians 
discard data in the process of differential diagnosis once a 
certain amount of effort has been invested in a hypothesis. 
This puzzle is not different. On one hand, the puzzle 
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defines a prima facie sensible theory of hanging and 
surprises.) 
 There are many avenues to pursue in trying to replace 
Axiom 5. One approach that follows our solution to the 
Ali-Baba paradox is to define two kinds of surprise, first-
order surprise (surprise1) and second-order surprise 
(surprise2). A first-order surprise occurs on day N if the 
prisoner cannot use axioms 1 to 4 to deduce whether the 
hanging will occur on day N, and that the hanging does 
occur that day. The following first-order formulation is 
clumsy, but serves. To handle this, 
 

5’.HangPossible(M != N)  
 & HangPossible(N) & Hang(N) -> Surprise1(N). 

 
The first predicate is shorthand notation meaning that if 
hanging is possible on some day other than day N, then it 
is possible for a surprise1 to occur. For now, we will 
simply assert that hanging is not possible on the seventh 
day: 
 

5.1 ~HangPossible(7). 
 

Finally, we need to add some notion of time. We add 
 
 5.2  OnDay(N) -> ~HangPossible(N-1) & ~Hang(N-1). 
This just says that if day N has happened, hanging was not 
possible the previous day. We also rewrite 5’ and 5.2 as 
 

5.3 OnDay(N) & HangPossible(M != N)  
  & HangPossible(N) & Hang(N) -> Surprise1(N). 

5.4 OnDay(7) ->~HangPossible(7). 
 

We do not complete the biconditional in 5.3. This makes 
it possible to state that if the prisoner is not hung on day 
N, then hanging is not possible on day N. This is clumsy, 
but spares us the burden of adding time to the ontology. 
On the other hand, if hanging is not possible on day N 
(~HangPossible(N)), we still wish Hang(N) to be possible. 
 The predicates Hang() and HangPossible() decouple 
the prisoner’s reasoning ability from actual reality. We 
could then define a second-order surprise as follows: 
 

5.3 OnDay(N) & ~HangPossible(N) & Hang(N) -> 
Surprise2(N). 

 
However, it is fairly straightforward to show that 
HangPossible(N) is false for all N and thus, a first-order 
surprise is not possible. However, this does not preclude a 
second order surprise, which we can simplify, using the 
knowledge that ~HangPossible(N) is always false, to the 
almost trivial  
 
 5.3 Hang(N) -> Surprise2(N). 
 
This definition, surprisingly, is identical to our first 
definition of Surprise in the “ stupid”  axioms, that a 
hanging is always a surprise. It seems to make sense in a 

world where we have deduced that hanging is not 
possible.  

Conclusions and Future Research 
The puzzle of the two envelopes continues to interest 
many scholars. The new version of the puzzle presented 
here rests on an apparently reasonable reverse induction 
on the quantity of money in the envelope. The flaw in the 
argument is not with the induction, but on the fact that the 
teller of the puzzle is identifying a reasoned offer to 
switch envelopes with a hypothetical arbitrary offer. The 
subsequent solution of clearly distinguishing the kinds of 
offer in a formal language appears to have some 
application in disambiguating other puzzles. 
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