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Abstract

Maintaining semantics for uncertainty is critical during
knowledge acquisition. We examine Bayesian Knowledge-
Bases (BKBs) which are a generalization of Bayesian net-
works. BKBs provide a highly flexible and intuitive repre-
sentation following a basic “if-then” structure in conjunction
with probability theory. We present theoretical results con-
cerning BKBs and how BKBs naturally and implicitly pre-
serve semantics as new knowledge is added. In particular,
equivalence of rule weights and conditional probabilities is
achieved through stability of inferencing in BKBs.

Introduction
The elicitation, encoding, and testing of knowledge by hu-
man knowledge engineers follows a necessary cycle in or-
der to obtain the required knowledge critical to construct-
ing a usable knowledge-based system. Thus, new knowl-
edge is incrementally introduced to the existing knowl-
edge base as the cycle progresses (Santos 2001; Barr 1999;
Knauf, Gonzalez, & Jantke 2000). Unfortunately, it is rarely
the case that complete knowledge is ever available except
in very specific and often simplistic domains. New knowl-
edge is often discovered and uncovered during construction
as well as even after the knowledge-based system has been
fielded. Hence, at any stage, the knowledge-base must pro-
vide sound semantics for the knowledge/information it does
have. On top of all this, uncertainty is a primary facet of
incompleteness that pervades every stage of the knowledge
acquisition cycle.

Approaches to maintaining semantic consistency either
(1) enforce strict local semantic assumptions or (2) require
extensive modifications and recomputations over the exist-
ing knowledge-base, to accommodate new knowledge. In
Bayesian networks (BNs) (Pearl 2000), the semantics of un-
certainty are represented by probabilistic conditional inde-
pendence. Additions made to a BN are reflected as changes
in the underlying graph structure. Such changes affect the
conditional independence semantics of nearly all the reach-
able nodes from the affected region. However, in BNs, local
semantics with respect to the immediate neighbors are es-
tablished directly by the knowledge engineer.
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Our goal in this paper is to address the preservation of
semantics during incremental knowledge acquisition under
uncertainty without the local assumptions levied by BNs. In
particular, we examine Bayesian Knowledge-Bases (BKBs)
which are a generalization of BNs (Santos & Santos 1999).
BKBs have been extensively studied both theoretically (Shi-
mony, Domshlak, & Santos 1997; Johnson & Santos 2000;
Shimony, Santos, & Rosen 2000) and for use in knowledge
engineering (Santos 2001; Santos et al. 1999). BKBs pro-
vide a highly flexible and intuitive representation following a
basic “if-then” structure in conjunction with probability the-
ory. BKBs were designed keeping in mind typical domain
incompleteness while BNs typically assume that a complete
probability distribution is available. Also, BKBs have been
shown to capture knowledge at a finer level of detail as well
as knowledge that would be cyclical (hence disallowed) in
BNs.

In this paper, we present new theoretical results concern-
ing BKBs and how they can naturally and implicitly preserve
semantics as new knowledge is added. In particular, the rela-
tionship between rule weights and conditional probabilities
is established through stability of inferencing in BKBs.

Bayesian Knowledge Bases
The formulation of BKBs presented here is slightly different
from existing definitions found in (Santos & Santos 1999)
but is equivalent. This formulation helps better emphasize
the incremental nature of knowledge acquisition in order to
provide better intuitions concerning our results in the next
section.

Let be a collection of finite discrete
random variables (abbrev. rvs) where denotes the set
of possible values for .

Definition 1 A conditional probability rule (CPR), , is of
the form

for some positive where such that
for all . The weight of is denoted by .

The left hand side of is said to be the antecedent of
and the right hand side the consequent of . We denote

these respectively by ant and con . When ,
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Wastes = Present pH 6.5
Wastes = Present pH = Neut
Over Feed = Y Over Crowd = Y Wastes = Present
Over Crowd = Y Wastes = Present
pH .75 Ammonia = High Fish Stress = Y
Ammonia = High Temp = Low Fish Stress = Y
Fish Stress = Y Hungry = Not
Hungry = Not Wastes = None

FIGURE 1. A sample BKB fragment for fresh water
aquarium management.

ant is the empty set and we write as

true

The weight eventually corresponds to the conditional
probability of as we shall see in the next section.

Definition 2 Given two CPRs

and

we say that and are mutually exclusive if there exists
some and such that and

.

Definition 3 and are said to be consequent-bound if
(1) for all and , whenever ,
and (2) but .

Proposition 1 If is consequent-bound with , then
and are not mutually exclusive.

Consequent-boundedness simply indicates that the differ-
ence between and only occurs in the consequents of
both CPRs. Intuitively, and are opposing rules to
apply when both antecedents are satisfiable. Sets of mutu-
ally consequent-bound CPRs represent the possible values
the single rv in the consequents can attain given satisfiable
preconditions.

Definition 4 A Bayesian Knowledge Base is a finite set
of CPRs such that

for any distinct and in , either (1) is mutually
exclusive with or (2) con con , and
for any subset of mutually consequent-bound CPRs of

, .

Figure 1 presents a sample BKB. BKBs can also be rep-
resented graphically as depicted in Figure 2 where labeled
nodes represent unique specific instantiations of rvs. For ex-
ample, the rv “pH” has three possible values corresponding
to the three labeled nodes in the graph. Each CPR is rep-
resented by a darkened node where the parents of the node
are the antecedents of the CPR and the child of the node
denotes the consequent. Figure 3 shows the underlying rv
relationships in our BKB example. While such a cycle is
problematic in BNs, it is allowable in the BKB framework.

Inferencing over BKBs is conducted similarly to “if-then”
rule inferencing. Thus, sets of CPRs collectively form infer-
ences.

Ammonia
=High

Wastes
=Present

pH
=Neut

Over
Feed=Y

Wastes
=None

pH < 6.5 pH > 7.5

Over
Crowd=Y

Fish
Stress=Y

Temp
=Low

Hungry
=Not

0.87

0.11

0.770.68 0.20

0.85 0.36

0.92

FIGURE 2. A BKB fragment from fresh-water aquarium
maintenance knowledge-base as a directed graph.
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FIGURE 3. Underlying rv relationships for BKB in Fig-
ure 2.

Definition 5 A subset of is said to be a deductive set if
for each CPR in where

the following two conditions hold:

For each there exists a CPR in
such that con .
There does not exist some where and
con con .

The first condition states that the antecedents of a given
CPR must be supported by the consequents of other CPRs.
The second condition imposes that there is a unique chain
for supporting a particular rv assignment.
NOTATION. Given any , represents the set of
rv assignments found in and represents the random
variables that occur in . denote the finite set of ran-
dom variables that occur in .

Let represent the set of all possible sets of rv as-
signments to such that if , then for each rv

, there exists at most one rv assignment to in
. Furthermore, is said to be a complete assignment if for

each rv , there exists exactly one rv assignment
to in .

Given a set , we define as
. For any CPR in ,

we say that each is an immediate ancestor of
for and that

is an immediate descendant of each for
. We define this recursively with respect to the

CPRs in a given set for ancestor and descendant.
One typical problem with forward chaining in rule bases

is the possibility of deriving inconsistent rv assignments.

FLAIRS 2002    525  



For example, we might derive both A = false and A = true.
With such a derivation, becomes ill-defined as a po-
tential joint probability.

Definition 6 We say that is compatible with if for all
and , whenever .

Definition 7 A deductive set is said to be an inference
over if the following two conditions hold:

consists of mutually compatible CPRs.
No is an ancestor of itself in .

is said to be the probability of inference . Fur-
thermore, an inference over is said to be complete if

.

Clearly, an inference induces the set of rv assignments
. The following theorem establishes that for each set of

rv assignments , there exists at most one inference over
such that .

Theorem 2 [(Santos & Santos 1999), Corollary 4.4] If
and are two inferences over where ,
then .

The collection of inferences from can now define a
probability distribution. This is established as follows:

Definition 8 Two inferences and are said to be com-
patible if for any and , is compatible
with . Otherwise, and are incompatible.

Furthermore, we extend the definition of compatibility be-
tween a CPR and a set of CPRs and vice versa.

Theorem 3 [(Santos & Santos 1999), Key Theorem 4.3]
For any set of mutually incompatible inferences in ,

.

Theorem 4 [(Santos & Santos 1999), Key Theorem 4.4] Let
be some inference. For any set of mutually incompati-

ble inferences such that for all , ,
.

The above two theorems establish the relationship among
the inferences and with the joint probabilities that are in-
duced by the inferences.

Definition 9 Let be a function from to . is
said to be consistent with (denoted ) if for each
complete inference , .

Hence, the structure of inferences in BKBs allows us to
construct a partial joint probability distribution based on the
available inferences which can then be extended to a com-
plete distribution. Since BKBs are by nature designed to
handle incomplete information, there is potentially a “miss-
ing mass” of probabilistic information not explicitly ac-
counted for in the BKB, thus resulting in the possibility
of multiple probability distributions that are fully consistent
with the BKB.

(Rosen, Shimony, & Santos 2001) presents a constructive
algorithm to automatically derive a single probability distri-
bution. They basically examine a single interpretation of the
“missing mass.” Assuming that no information is available
concerning said mass, Shimony et al. distribute the mass

uniformly across the unspecified distribution regions. This
specific distribution is called the default distribution of .
Hence, there exists a discrete probability distribution, over

that is consistent with , i.e., .
From this, the following relationship between probability

distributions and inferences in is also derived:

Theorem 5 [(Rosen, Shimony, & Santos 2001), Corollary
1] For any inference from , .

As we can see, unlike BNs, BKBs are organized at the in-
dividual rv assignment level instead of simply with the rvs
alone. While work has been done on capturing BNs as sets
of rules (Poole 1997) and relaxing the conditional depen-
dency requirements (Shimony 1993; Poole 1993; Boutilier
et al. 1996), a total ordering on the rvs must still be main-
tained. BKBs do not require a total ordering of the rvs or
apriori complete distribution as are needed in BNs. This
makes BKBs more flexible and capable of handling cyclical
information while fully subsuming BNs (Santos & Santos
1999).

Semantics
The process of incremental knowledge acquisition identifies
new knowledge that must be correctly introduced into the
knowledge-base. For BKBs, such changes take the form of
adding new CPRs, adding or removing antecedents in ex-
isting CPRs, changing the probability value of a CPR, and
deleting CPRs if they are found to be incorrect.

In this section we present new results on how semantics is
naturally preserved in BKBs during incremental knowledge
acquisition without local semantic assumptions. Our focus
here is to examine the value associated with a CPR
with respect to the changing probability distribution of the
BKB. We will formally prove that corresponds to the
conditional probability con ant consistent with
the probability distribution(s) as defined by the current BKB.
Also, this property is invariant as the BKB evolves in a stable
fashion as long as itself is not altered and continues to
participate in inferences.

Deductive Set Support
Let be
a consistent set of rv assignments, i.e., whenever

.

Definition 10 A deductive set is said to support if for
each , there exists some CPR in such
that con .

Definition 11 A deductive set is said to be minimal with
respect to if supports and there does not exist a de-
ductive set that also supports .

Clearly, may have many minimal supports each repre-
senting different forward chaining possibilities found in .
Minimal supports are also considered to be explanations for

(Selman & Levesque 1990).

Proposition 6 If is minimal with respect to and is an
inference, then there does not exist an inference that
also supports .
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In this case, we also say that is a minimal inference with
respect to .

Definition 12 Given a set of CPRs from , the frontier
of is the set of all rv assignments such that

con for some and has no
descendants in . We denote this set by .

Basically, the frontier of represents rv assignments that
have not participated in forward chaining. In the case that
is an inference, we can also denote by the set of unique
CPRs in whose consequents are in the frontier. Now, we
consider the impact of forward chaining in our semantics for
CPRs.

Definition 13 A deductive set is said to be consistent with
CPR if and only if is an inference.

Definition 13 above implies that continuing forward
chaining from with CPR is valid only when no incon-
sistencies in rv assignments can occur.

Proposition 7 If is consistent with , then is also an
inference.

We can now derive the following theorem relating the
CPR weight to deductive sets.
NOTATION. is the set of all minimal deductive sets
(inferences) supporting and consistent with .

Lemma 8 ant con if and only if
both ant and .

Lemma 8 proves that there exists a one-to-one and
onto mapping between deductive sets in ant
con and ant .

Theorem 9

ant con

ant
(1)

Examining Theorem 9, the fraction seems closely related
to the definition of conditional probabilities where the nu-
merator reflects ant con and the denominator,

ant . In the next sections, we will be formally study-
ing the relationship between the fraction in the above theo-
rem and conditional probabilities. In particular, we will be
formally identifying when such situations/conditions occur.

Assignment Completeness
The inequalities found in Theorems 3 and 4 reflect the in-
completeness of information that may occur in a BKB.
While a consistent distribution exists, there may be more
than one such distribution. In this subsection, we examine a
special class of BKBs.

Definition 14 is said to be assignment complete if for ev-
ery complete assignment , there exists a complete
inference , such that .

For this subsection, we only consider assignment com-
plete BKBs and further assume that the sum of the prob-
abilities of all complete inferences in is 1 (also called
probabilistically complete. Clearly, defines a unique joint

probability distribution where . It follows from
Theorems 3, 4, and 5 that is the sum of all complete
inferences over such that . We now prove that

can be computed by summing carefully selected infer-
ences (not necessarily complete) that are consistent with .
NOTATION. denotes the set of all inferences over
such that for each inference , is minimal with
respect to .

Intuitively, represents all inferences that “con-
clude” with only consequents found in .

Proposition 10 Given any two distinct inferences and
from , is incompatible with .

In other words, Proposition 10 states that there exists
some rv assignment in that is incompatible with

.

Theorem 11 For any set defined above,

Theorem 11 demonstrates that for our special class of as-
signment complete BKBs, the joint probability, , can be
calculated directly from the set of inferences in . In
the following subsection, we take this observation and ex-
amine the relationship to conditional probabilities discussed
earlier.

Conditional Probabilities
Returning to the sets of inferences ant con
and ant in Theorem 9, these sets reflect infer-
ences that support ant con and ant , respec-
tively, and whose frontiers are bounded by ant con
and ant , respectively. We now examine the relationships
between the sets ant and ant con
to the sets ant and ant con .

Let be a set of CPRs in such
that con ant for .

Definition 15 is said to be unstable if
con and ant . (Note that and
need not be distinct.) is said to be stable if it does not
have any unstable subsets.

In graph-based terms, for unstable sets there exists a di-
rected path between and in the BKB.
This does not preclude cycles in the underlying rv graph
such as the BKB in Figures 1 through 3.

Theorem 12 ant con ant
con .

Lemma 13 ant ant

Theorem 14 If is stable, then ant
ant .

Combining Theorems 11, 12, and 14 above, we get the
following:

Theorem 15 If is stable, assignment complete, and prob-
abilistically complete, then for all , is a condi-
tional probability consistent with .
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When is not probabilistically complete, the
summations ant con and

ant approaches ant con
and ant , respectively, as is completed.

Clearly, changes to affect the various joint probabil-
ities found in the BKB. However, from Theorem 9, such
changes do not affect the original semantics imposed by
the knowledge engineer on the individual CPRs unless they
themselves are altered. As long as the BKB is stable, the se-
mantics correspond to conditional probabilities throughout
a BKB’s life-cycle.

The check for stability in a BKB can be accomplished
in polynomial time by using a variant on depth-first search
on the graphical representation for BKBs. While problems
of stability arise from cyclicity, stability does not preclude
all forms of cyclicity. Figure 1 with underlying rv cyclic-
ity is stable. Furthermore, stable BKBs properly subsume a
special class of BKBs called causal BKBs (Santos & San-
tos 1999). Causal BKBs admit a polynomial time reasoning
algorithm.

Finally, assume that is modified to during an incre-
mental knowledge acquisition state and both and are
stable. Due to incompleteness, some CPRs may not partic-
ipate in any inference over . We say that such CPRs are
ungrounded.

Definition 16 is said to be grounded if there exists an
inference over such that . Otherwise, we say that

is ungrounded.

Theorem 16 If is grounded in both and and was
not modified, then satisfies Equation 1 in both and

.

Conclusions

In this paper, we presented new results regarding how
Bayesian Knowledge-Bases naturally capture and preserve
uncertainty semantics especially during incremental knowl-
edge acquisition. In particular, we demonstrated that by
using the BKB model, the numerical values of uncertainty
assigned to each conditional probability rule (BKB’s “if-
then” rule equivalents) implicitly correspond to conditional
probabilities in the target probability distribution being con-
structed. This is achieved without levying explicit seman-
tics assumptions on the values but by properly guarantee-
ing stability in inferencing for the BKB. Furthermore, we
also demonstrated that the semantics are preserved in a BKB
while changes are made during incremental knowledge ac-
quisition. Hence, the initial value and semantics assumed
by the knowledge engineer remains constant as the BKB
changes and grows. From these results, we believe BKBs
to be an ideal knowledge representation for constructing
knowledge-based systems.
Acknowledgments. This paper was supported in part by
AFOSR Grant Nos. #940006 and F49620-99-1-0244 and
the Paul Ivanier Center for Robotics and Production Man-
agement, BGU.

References
Barr, V. 1999. Applying reliability engineering to expert
systems. In Proceedings of the 12th International FLAIRS
Conference, 494–498.
Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller,
D. 1996. Context-specific independence in Bayesian net-
works. In Proceedings of the Conference on Uncertainty in
Artificial Intelligence. San Francisco, CA: Morgan Kauf-
mann Publishers.
Johnson, G., and Santos, Jr., E. 2000. Generalizing knowl-
edge representation rules for uncertain knowledge. In Pro-
ceedings of the 13th International FLAIRS Conference,
186–190.
Knauf, R.; Gonzalez, A. J.; and Jantke, K. P. 2000. To-
wards validation of rule-based systems – the loop is closed.
In Proceedings of the Thirteenth International FLAIRS
Conference, 331–335. AAAI Press.
Pearl, J. 2000. CAUSALITY: Models, Reasoning, and In-
ference. Cambridge University Press.
Poole, D. 1993. The use of conflicts in searching Bayesian
networks. In Uncertainty in AI, Proceedings of the 9th
Conference.
Poole, D. 1997. Probabilistic partial evaluation: Exploiting
rule structure in probabilistic inference. In IJCAI, 1284–
1291.
Rosen, T.; Shimony, S. E.; and Santos, Jr., E. 2001. Rea-
soning with bkbs – algorithms and complexity. Technical
Report IDIS Technical Report 103, Intelligent Distributed
Information Systems Laboratory, University of Connecti-
cut.
Santos, Jr., E., and Santos, E. S. 1999. A framework
for building knowledge-bases under uncertainty. Jour-
nal of Experimental and Theoretical Artificial Intelligence
11:265–286.
Santos, Jr., E.; Banks, S. B.; Brown, S. M.; and Bawcom,
D. J. 1999. Identifying and handling structural incom-
pleteness for validation of probabilistic knowledge-bases.
In Proceedings of the 12th International FLAIRS Confer-
ence, 506–510.
Santos, Jr., E. 2001. Verification and validation of
knowledge-bases under uncertainty. Data and Knowledge
Engineering 37:307–329.
Selman, B., and Levesque, H. J. 1990. Abductive and
default reasoning: A computational core. In Proceedings
of the AAAI Conference, 343–348.
Shimony, S. E.; Domshlak, C.; and Santos, Jr., E. 1997.
Cost-sharing heuristic for Bayesian knowledge-bases. In
Proceedings of the Conference on Uncertainty in Artificial
Intelligence, 421–428.
Shimony, S. E.; Santos, Jr., E.; and Rosen, T. 2000. Inde-
pendence semantics for bkbs. In Proceedings of the 13th
International FLAIRS Conference, 308–312.
Shimony, S. E. 1993. The role of relevance in explana-
tion I: Irrelevance as statistical independence. International
Journal of Approximate Reasoning 8(4):281–324.

528    FLAIRS 2002   


