
Comparing Alternative Methods for Inference
in Multiply Sectioned Bayesian Networks

Y. Xiang
Dept. Computing & Information Science
University of Guelph, Ontario, Canada

Abstract

Multiply sectioned Bayesian networks (MSBNs) provide one
framework for agents to estimate the state of a domain. Ex-
isting methods for multi-agent inference in MSBNs are based
on linked junction forests (LJFs). The methods are extensions
of message passing in junction trees for inference in single-
agent Bayesian networks (BNs). We consider extending other
inference methods in single-agent BNs to multi-agent infer-
ence in MSBNs. In particular, we consider distributed ver-
sions of loop cutset conditioning and forward sampling. They
are compared with the LJF method in terms of off-line com-
pilation, inter-agent messages during communication, consis-
tent local inference, and preservation of agent privacy.

Introduction
Consider a large uncertain problem domain populated by a
set of agents. The agents can be charged with many possible
tasks depending on the nature of the application. One com-
mon task is to estimate what is the true state of the domain so
that they can act accordingly. Multiply sectioned Bayesian
networks (MSBNs) (Xiang 1996) provide one framework to
conduct such a task. An MSBN consists of a set of inter-
related Bayesian subnets each of which encodes an agent’s
knowledge on a subdomain. Probabilistic inference can be
performed in a distributed fashion while answers to queries
are exact with respect to probability theory.

Existing methods for multi-agent inference in MSBNs are
extensions of a class of methods for inference in single-
agent Bayesian networks (BNs): message passing in junc-
tion trees (Jensen, Lauritzen, & Olesen 1990; Shafer 1996;
Madsen & Jensen 1998). The linked junction forest (LJF)
method (Xiang 1996) compiles the subnet at each agent
into a junction tree (JT). Inter-agent message passing is per-
formed through a linkage tree between a pair of adjacent
agents. The distributed Shafer-Shenoy propagation and dis-
tributed lazy propagation (Xiang & Jensen 1999) compile
the subnet at an agent into a set of JTs, one for each adja-
cent agent. The JT is then used for message passing with the
agent.

Inference methods, other than message passing in JTs,
have been proposed for reasoning in single-agent BNs. In

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

this work, we consider extending two of them for multi-
agent inference in MSBNs: loop cutset conditioning and for-
ward sampling. We compare their performance with the LJF
method with a focus on agent autonomy and agent privacy.

Section introduces MSBNs and the LJF inference
method. Section presents a distributed loop cutset condi-
tioning with its properties analyzed. Section analyzes dis-
tributed forward sampling.

MSBNs and inference with LJFs
An MSBN (Xiang 1996) M is a collection of Bayesian sub-
nets that together defines a BN. To ensure exact inference,
subnets are required to satisfy certain conditions. First we
introduce terminologies to describe these conditions. Let
Gi = (Vi, Ei) (i = 0, 1) be two graphs (directed or undi-
rected). G0 and G1 are said to be graph-consistent if the
subgraphs of G0 and G1 spanned by V0 ∩ V1 are identical.
Given consistent graphs Gi = (Vi, Ei) (i = 0, 1), the graph
G = (V0 ∪ V1, E0 ∪ E1) is called the union of G0 and G1,
denoted by G = G0 � G1. Given a graph G = (V, E), V0

and V1 such that V0 ∪ V1 = V and V0 ∩ V1 �= ∅, and sub-
graphs Gi of G spanned by Vi (i = 0, 1), we say that G is
sectioned into G0 and G1. The subnets in an MSBN must
satisfy a hypertree condition:

Definition 1 Let G = (V, E) be a connected graph sec-
tioned into subgraphs {Gi = (Vi, Ei)}. Let the Gi’s be
organized as a connected tree Ψ where each node is labeled
by a Gi and each link between Gk and Gm is labeled by the
interface Vk ∩ Vm such that for each i and j, Vi ∩ Vj

is contained in each subgraph on the path between Gi and
Gj in Ψ. Then Ψ is a hypertree over G. Each Gi is a
hypernode and each interface is a hyperlink.

The interface between subnets in an MSBN must form a
d-sepset:

Definition 2 Let G be a directed graph such that a hyper-
tree over G exists. A node x contained in more than one
subgraph with its parents π(x) in G is a d-sepnode if
there exists one subgraph that contains π(x). An interface I
is a d-sepset if every x ∈ I is a d-sepnode.

In a multi-agent system, a d-sepnode is shared by more
than one agent and is called a public node. A node internal
to a single agent is called a private node. The structure of

534 FLAIRS 2002

From: FLAIRS-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

an MSBN is a multiply sectioned DAG (MSDAG) with a
hypertree organization:

Definition 3 A hypertree MSDAG G =
⊔

i Gi, where
each Gi is a DAG, is a connected DAG such that (1) there
exists a hypertree Ψ over G, and (2) each hyperlink in Ψ is
a d-sepset.

An MSBN is then defined as follows, where a potential over
a set of variables is a non-negative distribution of at least
one positive parameter, and a uniform potential consists of
1’s only.

Definition 4 An MSBN M is a triplet (V, G,P). V =
⋃

i Vi

is the domain where each Vi is a set of variables, called
a subdomain. G =

⊔
i Gi (a hypertree MSDAG) is the

structure where nodes of each DAG Gi are labeled by
elements of Vi. Let x be a variable and π(x) be all parents
of x in G. For each x, exactly one of its occurrences (in a
Gi containing {x}∪π(x)) is assigned P (x|π(x)), and each
occurrence in other DAGs is assigned a uniform potential.
P =

∏
i Pi is the joint probability distribution (jpd), where

each Pi is the product of the potentials associated with nodes
in Gi. A triplet Si = (Vi, Gi, Pi) is called a subnet of M .
Two subnets Si and Sj are said to be adjacent if Gi and Gj

are adjacent.

An MSBN supports knowledge representation of a co-
operative multi-agent system, where each subnet encodes
the partial knowledge of an agent on the domain. We de-
note by Ai the agent whose knowledge is encoded in subnet
Si. Each Ai can only observe locally. Once a multi-agent
MSBN is constructed, agents may perform probabilistic in-
ference by computing the query P (x|e), where x is any vari-
able within the subdomain of an agent, and e denotes the
observations made by all agents. The key computation is to
propagate the impact of observations to all agents, which we
term as communication. It is performed by inter-agent mes-
sage passing. Hence communication requires system-wide
inter-agent message passing. As agents are autonomous,
constant system-wide message passing is either unavailable
or undesirable. Most of the time, each agent Ai computes
the query P (x|ei, ei

′), where ei is the local observations
made by Ai and ei

′ is the observations made by other agents
up to the latest communication. Note that ei

′ is not explic-
itly available to Ai and only its impact is propagated to Ai.
This computation is termed local inference.

Each subnet may be multiply connected. Multiple undi-
rected paths may also exist across different subnets. To facil-
itate exact inference with message passing, the LJF method
compiles each subnet into a JT, called a local JT, and con-
verts each d-sepset into a JT, called a linkage tree. Local
inference is performed by message passing in the local JT
as for single-agent BNs. Inter-agent message passing during
communication is performed using the linkage trees. A com-
munication requires passing O(2 g) inter-agent messages,
where g is the number of agents. The size of the message
is linear on the number of clusters in the linkage tree and is
exponential on the cardinality of the largest cluster.

During construction of an MSBN, whether a public node
has any parent or child in a subnet (but not how many or

what they are) needs to be revealed. The conditional proba-
bility distribution of a public node may be negotiated among
relevant agents to pool the diverse expertise together. Other
than these, construction of an MSBN, its compilation into
an LJF, and communication using LJF reveal no additional
information regarding the internals of each agent.

In the following sections, we extend two common infer-
ence methods in single agent BNs to multi-agent MSBNs.
Based on agent autonomy and privacy, we assume (1) that
constant system-wide message passing is not available, (2)
that the d-sepnodes are public, but all other variables in each
subnet and their associated distributions are private to corre-
sponding agent, and (3) that only peer-to-peer coordination
is available.

Loop cutset conditioning
Single-agent oriented
Cutset conditioning (Pearl 1988) converts a multiply con-
nected BN into multiple tree-structured BNs and performs
the λ − π message passing in each of them. The key step
of the method is to hypothetically observe a set C of nodes,
the loop cutset, so that all loops are broken. The posterior
distribution of a variable x given observation e1 is computed
by

P (x|e1) =
∑

c

P (x|c, e1)P (c|e1), (1)

where c = (c1, ..., cn) is any configuration of C. For each
c, P (x|c, e1) is obtained by λ − π in a corresponding tree-
structured BN. P (c|e1) can be calculated as

P (c|e1) = const P (e1|c)P (c), (2)

where P (e1|c) is obtained by λ − π. To obtain P (c) in
Eq. (2), an ancestral ordering of variables is used to compute
the following factors (Suermondt & Cooper 1991) whose
product is P (c):

P (c1), P (c2|c1), ..., P (cn|c1, ..., cn−1). (3)

If the observations consist of m values e1, ..., em, the
above can be generalized to compute in sequence

P (e1|c), P (e2|c, e1), ..., P (em|c, e1, ..., em−1) (4)

to obtain

P (c|e1), P (c|e1, e2), ..., P (c|e1, ..., em), (5)

and compute in sequence

P (x|c, e1), P (x|c, e1, e2), ..., P (x|c, e1, ..., em) (6)

to obtain

P (x|e1), P (x|e1, e2), ..., P (x|e1, ..., em). (7)

Inference in MSBNs by distributed cutset
conditioning
In an MSBN, loops can exist both within local DAGs and
across multiple local DAGs. Finding a loop cutset C that
can break all loops requires a distributed search. It can be
performed using a variation of TestAcyclicity (Xiang 1998),

FLAIRS 2002 535

a polynomial algorithm for verifying acyclicity of the struc-
ture of an MSBN. A simple variation works as follows:

Start by recursively marking terminal nodes (with no
more than one adjacent node) in each agent. After all such
nodes have been marked, mark a tail-to-tail or head-to-tail
node s in any agent and add s to C by propagation as there
is no centralized control. At least one loop is now cut open.
Mark recursively new terminal nodes until no more. Repeat
the above until all nodes are marked. See (Xiang 1998) for
details on multi-agent node marking.

In Figure 1, C = {f, h, j, o} is a loop cutset. Note that f
is private to A1, h is private to A2, o is private to A0, and j
is shared by A2 and A0.

c

d

f

e

G

g

i

G

l

o

G
a

b

j

k

a

b

j

k

1

2

h

n

m

0

Figure 1: The structure of a trivial MSBN.

After such a cutset is found, the multiply connected DAG
union needs to be converted to O(2|C|) tree-structured DAG
unions, one for each configuration c of C, and distributed
λ − π message passing needs to be performed in each
of them1. We consider the computation of sequences (3)
through (7) where the observations e1, ..., em are those ob-
tained since the last communication. Note that e1, ..., em as
well as variables in C are distributed among agents.

First, consider the computation of sequence (3). This
computation needs to be performed following an ancestral
ordering of variables in the domain. The ordering can be
defined through another simple variation of TestAcyclicity
(Xiang 1998), described as follows:

Recursively mark root nodes in all g agents in multiple
rounds. At most one node per agent can be marked at ith
round and the node is given an index between i and i+g−1.
The indexes then define an ancestral ordering.

Figure 2 shows an example. The available indexes for A0

are 0, 3, 6, ... and those for A1 are 1, 4, 7, In round 0 A0,
by cooperating with A2, recognizes that the public node j
is a root and indexes it with 0. A1 indexes f with 1. A2 is
notified by A0 with the index of j, but otherwise it has no
root node to index. In round 1, A0 indexes l with 3 and A1

indexes a with 4. The process continues until all nodes are
indexed.

Using the ancestral ordering, sequence (3) can be ob-
tained by extending the method of Suermondt and Cooper
(Suermondt & Cooper 1991). For the example in Figure 2
and the loop cutset C = {f, h, j, o}, the sequence

P (f), P (j|f), P (o|f, j), P (h|f, j, o)
can be computed. As there is no centralized control, to co-
ordinate the computation so that it follows the ancestral or-
dering is quite involved:

1Equivalently, one could process the same DAG union O(2|C|)
times once for each distinct c. It is a matter of implementation.

G0G1
a,4 a,4

G 2

j,0 j,0 f,1 l,3

c,7

d,10

b,12b,12

e,13
n,15

o,18
k,20

k,20
m,21

g,23

h,26

i,29

Figure 2: Ancestral ordering where the index of each node
is shown beside the label.

First, for each configuration c arranged in the given an-
cestral ordering (c1, ..., cn), the agent with ci must instanti-
ate the corresponding variable according to the order, since
messages need to be passed among agents after the instantia-
tion if ci+1 is contained in a distinct agent. Second, message
passing must be performed partially since part of the DAG
union still contains loops due to cutset variables yet to be
instantiated. For instance (Figure 2), after instantiating vari-
able f , A1 can only propagate its impact to c and e but not
beyond since the rest of the DAG union still contains loops.
Third, the message passing may involve each agent multiple
times and hence activities of agents must be carefully co-
ordinated. For example, after A0 instantiated j, its impact
needs to be propagated to l and a locally, then to c, d and b
in A1, and finally back to n and o within A0 again.

The sequence (3) needs to be computed for each configu-
ration c and the results need to be propagated to at least one
agent to compute P (C). The agent can then send P (C) to
every other agent for their local usage.

Next, consider the computation of sequence (4). Given
c, sequence (4) can be obtained by m message propaga-
tions in each corresponding DAG union. Since e1, ..., em

are distributed and the sequence needs to be computed in
order, agents must coordinate the computation. After the
first propagation over the system, the agent with e1 obtains
P (e1|c). It then enters e1, followed by the second propaga-
tion over the system. The agent with e2 obtains P (e2|c, e1),
and the process continues. Note that results for sequence (4)
are distributed. Sequence (6) can be obtained through the
same process with each agent selecting its local x.

From sequence (4), sequence (5) can be obtained simi-
larly to Eq. (2). Since the results for sequence (4) are dis-
tributed, this computation needs to be coordinated. The
agent with P (e1|c) computes P (c|e1) through Eq. (2). Note
that to derive the normalizing constant, the computation can-
not be performed until sequence (4) has been computed for
each c. It then sends P (c|e1) to other agents. The agent
with P (e2|c, e1) will then compute P (c|e1, e2) and sends
it. The process continues then at the next agent.

From the results of sequences (5) and (6), each agent will
be able to compute sequence (7). Note that although the
computation for sequences (4) through (7) can be performed
in any order of e1, ..., em, the order must be agreed and fol-
lowed consistently by all agents for all four sequences.

Local evidential inference cannot be performed when the
system-wide message passing is absent. For instance, A0

cannot perform local cutset conditioning using its subnet

536 FLAIRS 2002

only, since the dependence through subdomains in other
agents cannot be counted for. Between communications,
approximate local inference using only the local subnet is
possible, but the posteriors obtained is not exact, and can
be significantly different from what will be obtained after
global communication. We summarize as follows:

1. Distributed search for loop cutset and ancestral ordering
can be performed off-line. The rest of the computation
must be performed on-line since the computation depends
on the observations e1, ..., em. Note that P (C) must be
computed on-line.

2. The computation of P (C) for each c requires O(|C|)
rounds of system-wide message passing. If computations
for all c’s are performed sequentially, O(|C| 2|C|) rounds
of message passing are needed. To reduce inter-agent
message passing, the O(2|C|) messages, one for each c,
may be batched, making O(|C|) rounds of message pass-
ing sufficient with each message O(2|C|) times long. The
computation of sequences (4) through (7) requires one
round of system-wide message passing for each element
in sequences (4) and (6). Hence O(m) rounds of mes-
sage passing are needed, with message batching. Overall,
O(|C| + m) rounds of message passing are needed.

3. Local inference cannot be performed exactly.

4. At least the number of nodes in the loop cutset and the
number of variables observed system-wide must be re-
vealed. Partial information regarding the ancestral order-
ing of domain variables is also revealed.

Inference in MSBNs by distributed forward
sampling

According to forward sampling (Henrion 1988), simulation
must be performed in an ancestral ordering. That is, the
value of a child node is determined after the values of all its
parents have been determined. The ordering can be obtained
by a distributed search similar to that for distributed cutset
conditioning. In an MSBN, the parents of a node may be
located in an adjacent agent. To simulate the value of the
node, an inter-agent message must be passed.

Consider the following scenario: An agent A0 contains a
variable x but its parents π(x) are contained only in another
agent A1. Thus, to determine the value of x, A0 needs to
wait until A1 sends the values of π(x) to it. Furthermore, A1

contains a variable y but its parents π(y) are contained only
in A0, and x is an ancestor of y. Hence A1 cannot determine
the values for all variables it shares with A0 and as a result
cannot send them in one batch. Instead, A1 must wait until
A0 sends the values of π(y). Figure 3 illustrates the situa-
tion, where A0 must wait for the value of a from A1, and A1

must wait for the value of b from A0. Since the DAG union
of an MSBN is acyclic, a deadlock is not possible. However,
if a directed path crosses the interface between two agents k
times, then messages must be passed back and forth k times
between the two agents before values for all variables on the
path are simulated. Note that a directed path may pass across
multiple agent interfaces. Hence during simulation of each
case, the number of messages between each pair of adjacent

G G0 1

x

y

a a

b

c c

b

Figure 3: Two adjacent local DAGs in an MSBN.

agents are upper-bounded by the number of d-sepnodes be-
tween them. This implies that O(g d) inter-agent messages
are needed to simulate one case, where g is the number of
agents and d is the cardinality of the maximum d-sepset.

If the cases are generated one by one, the above men-
tioned cost for inter-agent message passing will be multi-
plied by the sample size. To reduce this cost, inter-agent
messages can be batched. For example, A1 may generate K
values for a and pass all of them to A0 and later receives K
values for each of b and c. The price to be paid is that all K
values for each variable must be saved in some way until the
compatibility of each case with observations is resolved as
discussed below and the contributions of the K cases to the
posteriors are counted.

When the cases are generated one by one, the genera-
tion of a case can be terminated early as soon as one agent
found the partial case to be incompatible with its local ob-
servations. Because batched sampling is intended to reduce
inter-agent message passing, such finding by an agent can-
not be communicated to other agents immediately. After a
sample of cases is simulated, it is necessary to determine
which cases are compatible with the observations. This can
be achieved by letting each agent label each case that is in-
compatible with its local observations. All such labels must
then be passed among all agents to weed out each case that
is labeled as incompatible by any agent.

Since parents of a variable may not be contained in an
agent, local inference in the absence of system-wide mes-
sage passing cannot be performed equivalently. An alterna-
tive is that, at the end of each communication, each agent
records down the posterior distribution of each shared vari-
able that is a root locally, and use the local subnet thus ob-
tained for local inference. For the example in Figure 3, A1

may record down P (b|e) and P (c|e), where e stands for the
observations made by all agents before the last communi-
cation. After new local observations are made, A1 can then
perform a local inference with a local forward sampling. The
result, however, is not equivalent to what would be obtained
with system-wide message passing, even when there is no
observation other than that from A0, since the dependence
between b and c through the loops in A0 is not counted for.
We summerize as follows:

1. Distributed search for an ancestral ordering is needed.

2. With message batching, O(d g) inter-agent messages are
needed. The length of each message is in the order
O(K d), where K is the sample size. Both values for
shared variables and compatibility labels for cases need

FLAIRS 2002 537

to be transmitted between agents. In comparison, commu-
nication using a LJF passes O(2g) inter-agent messages,
which requires d/2 times less inter-agent message pass-
ing.

3. Local inference in the absence of system-wide message
passing does not converge to the correct posteriors in gen-
eral.

4. Partial information regarding the ancestral ordering of do-
main variables is revealed.

Conclusion
In this work, we compare three alternative methods for in-
ference in multi-agent MSBNs along four dimensions: the
complexity of off-line compilation, the amount of inter-
agent messages during communication, the support of con-
sistent local inference, and the private information revealed.

The LJF method requires off-line compilation of the
LJF. Distributed cutset conditioning (DCC) requires off-line
search for a loop cutset and an ancestral ordering. Dis-
tributed forward sampling (DFS) requires off-line search of
an ancestral ordering. The amount of off-line compilation
compares as

LJF > DCC > DFS.

With g agents, communication by LJF can be performed
with O(2g) inter-agent messages. The order is O((|C| +
m) g) for DCC where C is the cutset and m is the number
of observed variables. Note that |C| is upper-bounded by the
number of loops in the MSDAG. DFS passes O(d g) inter-
agent messages where d is the cardinality of the maximum
d-sepset. Commonly, we have |C|+ m > d. The amount of
inter-agent messages during communication compares as

DCC > DFS > LJF.

In this comparison, we have focused on the number of
inter-agent messages (vs. the length of each message). This
is based on the assumption that each message has a cost
function αC1 + C2, where C1 is the connection cost be-
tween a given pair of agents, C2 is the cost depending on the
length of the message, and α quantifies how undesirable it
is to pass messages between agents frequently. It is assumed
that αC1 is identical across methods (which is valid) and is
much larger than C2 no matter which method is used (which
is a reasonable approximation).

LJF is the only method among the alternatives that sup-
ports consistent local inference. Local inference using the
other methods may lead to errors of more or less arbitrary
size.

The LJF method reveals no private information. DCC re-
veals the size of cutset and the number of observed variables,
as well as partial information on ancestral ordering. DFS re-
veals partial information on ancestral ordering.

This analysis and comparison not only provide insight to
the issues involved in multi-agent probabilistic reasoning,
but also serve to those who implement such inference sys-
tems as a guide about the pros and cons of alternatives.

Acknowledgements
This work is supported by Research Grant OGP0155425
from NSERC of Canada.

References
Henrion, M. 1988. Propagating uncertainty in Bayesian net-
works by probabilistic logic sampling. In Lemmer, J., and Kanal,
L., eds., Uncertainty in Artificial Intelligence 2. Elsevier Science
Publishers. 149–163.

Jensen, F.; Lauritzen, S.; and Olesen, K. 1990. Bayesian updating
in causal probabilistic networks by local computations. Compu-
tational Statistics Quarterly (4):269–282.

Madsen, A., and Jensen, F. 1998. Lazy propagation in junction
trees. In Proc. 14th Conf. on Uncertainty in Artificial Intelligence.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann.

Shafer, G. 1996. Probabilistic Expert Systems. Society for Indus-
trial and Applied Mathematics, Philadelphia.

Suermondt, J., and Cooper, G. 1991. Initialization for the method
of conditioning in Bayesian belief networks. Artificial Intelli-
gence 50:83–94.

Xiang, Y., and Jensen, F. 1999. Inference in multiply sectioned
Bayesian networks with extended Shafer-Shenoy and lazy prop-
agation. In Proc. 15th Conf. on Uncertainty in Artificial Intelli-
gence, 680–687.

Xiang, Y. 1996. A probabilistic framework for cooperative multi-
agent distributed interpretation and optimization of communica-
tion. Artificial Intelligence 87(1-2):295–342.

Xiang, Y. 1998. Verification of dag structures in cooperative
belief network based multi-agent systems. Networks 31:183–191.

538 FLAIRS 2002

