
GLUE - A Component Connecting Schema-based Reactive to Higher-level
Deliberative Layers for Autonomous Agents

James Kramer Matthias Scheutz
University of Notre Dame

Notre Dame, IN 46556
e-mail: jkramer3,mscheutz@nd.edu

Abstract

Several problems need to be addressed when integrating re-
active and deliberative layers in a hybrid architecture, most
importantly the different time scales of operation and (pos-
sibly) different data representations of the individual layers.
This paper proposes an interface component called GLUE that
is designed to mediate between a schema-based reactive and
higher-level deliberative layer. We demonstrate the viability
of the conceptual architectural design by defining and imple-
menting a schema-based reactive architecture for a ball fol-
lowing task on an autonomous agent, which is then extended
by the GLUE component to interface with a simple delibera-
tive layer.

Introduction
Hybrid architectures for autonomous agents are layered ar-
chitectures intended to combine the benefits of the indivi-
ual layers, while eliminating or reducing the effects of their
shortcomings. Typically, hybrid architectures combine the
functionality of a fast, low-level reactive layer with that of a
slow, high-level deliberative layer. The general approach in
constructing such hybrid architectures is to add deliberative
layers “on top” of a reactive layer, keeping them conceptu-
ally separate. There are several reasons for maintaining this
separation.

For one, different designs and functional aims underwrite
the layout of the two layers. The reactive layer is meant to
provide a tight sensor/effector coupling, allowing the agent
to react continuously in response to stimulus in a dynamic
environment, whereas the deliberative layer is meant to pro-
vide higher-level functionality (e.g., planning or reasoning)
that allows the agent to do more than simply react to a par-
ticular situation.

Secondly, the functional separation of layers implies lev-
els of different computational cost. Computing sensor-
motor mappings is generally much less expensive than per-
forming complex “what-if” reasoning or maintaining an up-
dated representation of the environment.

Finally, the layers differ in the extent to which they main-
tain and keep track of internal and external states. As Gat
(Gat 1998) has pointed out, the reactive level keeps state to

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

a minimum, if any is kept at all. Sensory information contin-
uously arrives, is processed and passed on to the effectors.
In contrast, higher architectural layers store information and
use it to perform complex processing.

A major consideration of the designer of a hybrid archi-
tecture is the integration of the layers.1 Potentially, they not
only work at different time scales, but also require different
processing capacities and resources, and may even use dif-
ferent data formats and structures at the interfaces of their
components. In particular, in the domain of autonomous
agents, where fast-working, highly responsive reactive lay-
ers have proven necessary (e.g., (Jensen & Veloso 1998;
Maes 1990)), the integration of a slow deliberative layer,
which can interact with and sometimes take control of the
reactive layer, has been a challenge.

In this paper, we propose the use of a component be-
tween the reactive and deliberative layers that not only sim-
plifies the integration of layers, but also improves reactivity.
The next section details some methods of integration previ-
ously implemented, including a description of their relative
strengths and weaknesses. Then issues of integrating de-
liberative functionality with a schema-based reactive layer
are discussed and a generic link unit for (architecture) ex-
tensions is proposed that permits deliberative extensions to
schema-based reactive layers with only a minor modification
to the existing reactive layer. Finally, we demonstrate the
GLUE component by first defining a schema-based reactive
architecture for a ball-following task, and then augmenting
it with a simple deliberative extension using the GLUE com-
ponent. The architecture has been successfully implemented
on an autonomous robot, thus verifying the viability of the
conceptual design.

1Note that by “integration” we do not intend what could be
called the “Omega model”, where the layers have a sequential pro-
cessing function: sensory information comes in via low level sen-
sors, gets abstracted as it goes up through higher central layers,
until action options are proposed near the top, where some deci-
sion is taken, and control information flows down through the lay-
ers and out to the motors (e.g., see (Nilsson 1998),(Albus 1981)).
Instead, we are referring to an arrangement of layers, where each
layer keeps performing its functions on its own time scale, while
being able to interact with other layers.

22 FLAIRS 2003

Hybrid Architectures
There have been several methodologies used to integrate re-
active and deliberative layers in hybrid architectures for au-
tonomous agents. Each has its own particular strengths and
weaknesses, and none can be said to be overwhelmingly the
best. In fact, it has been noted (Nwana 1995) that hybrid
architectures generally suffer from at least three high-level
problems:

• ad hoc or unprincipled designs that not only require hand
crafting of each control module, but may also overlap
functionality

• application-specific tasks, which may very well be un-
avoidable

• unspecified supporting theory

Furthermore, there are also practical difficulties with rep-
resentations between layers, error-detection across layers,
and timing issues related to the different time scales on
which the layers operate.

We will briefly review two hybrid architectures that are
of special interest here: the first is “Atlantis”, because it
maintains the conceptual separation and functional auton-
omy of multiple layers while trying to connect them, and
“AuRA”, because it attempts to combine a schema-based re-
active layer with non-schema-based deliberative extensions.

Atlantis

Gat (Gat 1998) identified and made explicit the role of state
in separating architectural layers, which was a much-needed
explication of conceptual division. “Atlantis” is a clear ex-
ample of a three-layer architecture. The reactive layer (the
“controller”) is composed of feedback control loops that
maintain little or no state. These control loops are hand-
crafted and given the operational name of “behaviors”. The
second layer is the “sequencer”, which serves to determine
a behavior appropriate to the current environmental situa-
tion by maintaining a history of previous states. (Gat 1998)
notes that “the sequencer should not perform computations
that take a long time relative to the rate of environmen-
tal change at the level of abstraction presented by the con-
troller”. The third layer is the “deliberator”, implemented as
a query/response system. In other words, the sequencer re-
quests a plan from the deliberator that is then put into action.

While “represented state” as a criterion for the separation
of layers can be useful, it is not in and of itself sufficient
to suggest design options for linking the layers. Yet, the
linkage is a necessary step in defining an interface between
layers (generally from higher to lower), allowing informa-
tion from one to be used by the other. This is acknowledged
by Gat when he points out that a major difference between
Atlantis and other architectures is the fact that different rep-
resentations can be (and are) used in different layers of the
Atlantis architecture. While the ability to use a variety of
representations can be a major benefit in the design of an
agent’s architecture, the issue has not been explicitly ad-
dressed. Instead, it is generally only considered as part of
the implementation.

AuRA
Arkin’s (Arkin & Balch 1997) “Autonomous Robotic Ar-
chitecture” (AuRA) is an example of a schema-based archi-
tecture. The reactive layer uses two classes of schemas, a
perceptual and a motor schema, and is generally structured
as shown in Figure 1.

Processing
Sensory

Schemas
Motor

Σ
Vector

Summation

Perception
Action

Mapping
Action

Processing

(Sub) Schemas
Perceptual

PS2

PS3

PS1

MS1

MS2
Sensors Effectors

Figure 1: Basic schema-based reactive architecture

Motor schemas take as input the output from possibly sev-
eral perceptual schemas (which are themselves connected
to environmental sensors) and combine it to implement a
particular motor behavior. Output from different motor
schemas is then “summed up” and passed on to the effec-
tors.

Schemas have many benefits, including:

• coarse grain granularity (for expressing the relationships
between motor control and perception)

• concurrent actions (in a cooperative yet competing man-
ner)

• inexpensive computations (as only the current field need
be calculated)

• behavioral primitives (from which more complex behav-
iors can be constructed)

• biological plausibility

However, the basic integration principle in Aura is to turn
on or off whole sets of motor behaviors, engaging the reac-
tive layer and halting deliberative execution. Behavior se-
lection is based on “error detection”: the deliberative layer
starts by determining a set of perceptual and motor schemas
to activate, which then take over and remain in operation
until “failure” is detected (such as lack of progress towards
the goal as indicated by zero velocity or a time-out). At that
point, the planner is reinvoked one stage at a time, and the
cycle of determining an appropriate set of behaviors, run-
ning them, etc. repeats itself.

Issues with Integrating Higher Level
Components into Schema-Based Architectures
Orignially, AuRA used a rule-based system to control be-
havior selection. This was replaced by a finite state machine
implementation as the means of plan execution and control.
Both solutions work by engaging or disengaging particular
behaviors (i.e., sets of motor schemas) based on perceptual
input. For instance, the escape behavior, defined as “evade

FLAIRS 2003 23

intelligent predators”, will not be activated unless and until
an “intelligent predator” is sensed. The solution of switch-
ing on or off whole sets of behaviors is a fairly general way
of connecting higher layers to a lower-level layer. It can be
successfully applied to motor schemas in a schema-based
reactive layer in the AuRA architecture, as well as for con-
trollers in the reactive layer in the Atlantis architecture. Yet,
the fact that the deliberative extensions use whole sets of
motor schemas or controllers also shows that such deliber-
ative extensions are not well integrated in the system, for
if they were truly integrated, they would not have to re-
configure the reactive layer in such a holistic manner. As
a consequence, such hybrid architectures do not really ad-
dress the kind of interplay between deliberative and reactive
control that has been part of the motivation for looking at
hybrid architectures in the first place (e.g., the integration of
a deliberative planner with a reactive plan execution mecha-
nism). In the case of a deliberative planner, for example, the
worst case scenario may require different sets of schemas
(i.e., configurations and combinations of motor schemas)
for every single plan step, which, in turn, will almost com-
pletely remove the autonomy of the lower level (besides
the computational overhead of maintaining all the different
configurations of motor schemas). Or to put it differently:
lower reactive layers “degenerate” to mere implementations
of higher level “actions” (similar to action sequencing per-
formed in contention scheduling (Norman & Shallice 1980;
Cooper & Shallice 2000)).

In order to retain in part the autonomy of lower levels and
to minimize the computational overhead and modifications
of the lower reactive layers required for an integration of
higher deliberative layers, we investigate an alternative op-
tion of integrating schema-based reactive systems with de-
liberative extensions: the modification of outputs from per-
ceptual schemas.

Inputs to motor schemas are usually outputs from percep-
tual schemas, which in turn are connected to environmental
sensors. These inputs have a particular representational for-
mat in schema-based architectures: they are force vectors.
So long as the inputs to the motor schemas take the form of
force vectors, they need not originate via the environmental
sensors, but can be fabricated through other means.

There are two requirements for input that does not come
from the environmental sensors: (1) data transformation –
it needs to be transformed into a force vector representation,
and (2) data maintenance – it needs to be provided and main-
tained at a time frame appropriate to the reactive layer.

Data Transformation
The deliberative layer generally, although not necessarily,
uses a more abstract representation of sensory data than the
reactive layer. This allows a variety of existing AI tech-
niques to be used. However, when a different representa-
tion is used, it must be transformed into data the reactive
layer can use which, in the case of schema-based reactive
layers, is a vector representation. Once data transformation
is performed, the vector can be passed as input to the motor
schema, where it will be treated as if it had originated from
one of the perceptual schemas.

Data Maintenance
If the deliberative layer operates on the same time frame as
the reactive layer, its output can be processed along with that
arriving from the environmental sensors. However, as noted
earlier, deliberative layers are generally slower than reactive
layers, which raises the problem of maintaining the repre-
sentation sent to the reactive layer and adjusting it to envi-
ronmental changes. As the agent performs actions on the en-
vironment, information originating in the deliberative layer
may become increasingly obsolete as the time differences
between deliberative and reactive processing increases. Re-
ducing this source of error is a major problem that must be
addressed by any kind of integration mechanism.

There seem to be at least two approaches to containing
time lags. The first is to allow the representation from the
deliberative layer to persist only for a limited time, contin-
gent on both the operational time scale of the deliberative
layer and the rate of environmental change (which is in turn
dependent on both the actions of the agent and external fac-
tors). The idea is to update information often enough to en-
sure that the error does not affect the operation of the agent.

The second approach attempts to minimize the error in the
deliberative layer’s representations by updating them based
on feedback from the effectors. This requires the specifi-
cation of how an agent’s actions affect its representation of
the environment. This approach may increase the amount
of time the deliberative layer has to perform its processing
enough, allowing it to update the representation. For in-
stance, if an agent’s action is to move forward for a given
distance, the stored state would be updated as if it were
sensed in the new relative position. However, this only im-
proves the first approach; it does not eliminate the discrep-
ancy between the environment and the internal representa-
tion, which will continue to grow, albeit at a reduced rate.

GLUE - A Generic Link Unit for
(Architecture) Extensions

From the analysis above, we derive a functional specification
for the GLUE component that can mediate between deliber-
ative and reactive layers. Inserted as an interface between
layers, it could be used at any level in the architecture. Here,
however, we will focus on the interface between the schema-
based reactive layer and a higher level deliberative layer.
To provide a means of interaction between these layers, so-
called sticky points are isolated, i.e., places where the GLUE
component is attached to the respective layers. On the reac-
tive layer side, the point of attachment is a motor schema,
on the deliberative side, it can be any “perceptual output” of
the deliberative layer (see below). Note that it may be neces-
sary, depending on the desired functionality, to add separate
sticky points to each individual motor schema.

Functional Specification of GLUE
As mentioned above, data from the deliberative layer must
be in a form the reactive layer can use, and then be main-
tained. To meet both of these requirements, the GLUE com-
ponent must have two forms of input: the deliberative layer’s
output and the effector feedback. The deliberative layer’s

24 FLAIRS 2003

output is transformed into a force vector, which is then added
to the data from the environmental sensors and updated with
feedback from the effectors each time new perceptual data is
available. This cycle is repeated until the deliberative layer
produces new information, at which point the “maintained”
data is discarded (see Figure 2).

An outline of the data flow progression is:

1. receive data from the deliberative layer

2. transform that data for the reactive layer

3. output transformed data to the reactive layer, adding it to
data from the environmental sensors

4. update the transformed data using the effector feedback

5. repeat from step 3 until new information is available from
the deliberative layer

6. once new information is available from the deliberative
layer, repeat from the beginning

The output of the GLUE component can have a variety
of purposes and effects. It can cancel out perceptual infor-
mation, effectively nullifying or altering environmental sen-
sors’ effect on the motor schemas. Alternatively, it can also
add perceptual information that is not actually present in the
environment.

Action
Processing

Perception
Action

Mapping

Sensory
Processing

EffectorsSensors

GLUE

Deliberative System

Figure 2: Architecture with GLUE component

An Application of the GLUE Component in an
Autonomous Robot

To verify the conceptual design of the GLUE component and
test its feasibility and viability on a real-world agent, we de-
vised a schema-based architecture for an object tracking and
following task. In this task, a robotic agent has to avoid ob-
stacles in its environment and move towards an object of a
particular color whenever it happens to spot one. The object
at hand was an orange soccer ball, which the robot could
easily identify by its color.

In a first step, we defined a schema-based architecture for
this task, which implements obstacle avoidance and object
tracking and following behavior. In a second step, we aug-
mented it by the GLUE component and a simple deliberative
extension, which adds a “ball dribbling” behavior to the ex-
isting behavioral repertoire.

Schemas
Motor

Perception
Action

Mapping

Σ
Vector

Summation

Action
Processing

(Sub) Schemas
Perceptual

Sensory
Processing

Deliberative
Layer

Key:

PS1

PS2

MS1

DL

− Obstacle Recognition

− Ball Recognition

− Motor control

− Ball Dribbling

Sensors Effectors
PS2

PS1

MS1

DL

GLUE

Figure 3: Integration of schema-based reactive layer and
simple deliberative layer using the GLUE component

The Reactive Layer
Two basic behaviors have been defined:
avoid obstacle, which uses sonar to identify objects
near the robot and avoid collisions, and follow ball,
which uses the camera to identify the ball based on its
color. The avoid obstacle acts as a repulsive force in
the operation of the robot, while the follow ball acts
as an attractive force. The combined behaviors make the
robot approach the ball whenver it happens to see it, while
avoiding obstacles (note that it may lose track of the ball
in the process of getting around obstacles). At a certain
distance from the ball, the two behaviors will cancel out;
the attraction from the follow ball behavior will be
cancelled out that of avoid obstacle. We purposely
did not implement additional behaviors, such as one that
would locate the ball or identify other players, in order to
provide an elementary base case.

The Deliberative Layer
The deliberative layer uses information from the environ-
mental sensors to determine a plan. As a proof of concept,
the generated “plan” is to continue following the ball, over-
riding the fact that it is perceived as an obstacle and acts as a
repulsive force. This results in a “dribbling” behavior – the
robot bumps into the ball, forcing it ahead, then proceeds
to follow it again. The same technique can be employed in
the context of robotic soccer, where color is used to identify
teammates, opponents, and field markers. A more complete
deliberative system would use the additional information to
determine an appropriate “play”, such as preparing to re-
ceive a pass or defending the goal.

GLUEing the Layers Together
The GLUE component was then added to the functioning
schema-based reactive layer as a means of providing an in-
terface with the deliberative layer. For the test under con-
sideration, this entailed using the information from the en-
vironmental sensors to make the ball more attractive. An
additional force vector was produced to cancel out the re-
pulsion of the avoid obstacle behavior produced by the

FLAIRS 2003 25

ball. The feedback from the effectors consists of a velocity
reading and the time elapsed since the last update, which is
used to determine how far the robot had travelled. The GLUE
component operates asynchronously from the integrated lay-
ers, generally at a time frame between that of the layers.
The fabricated force vector was then updated, reflecting the
robot’s actions.

Experimental Setup and Results
The architecture was implemented on an a Pioneer P2-DXe
mobile robot from ActivMedia using the AgeS agent devel-
opment environment (under development in our laboratory).
The robot gathers information about objects in the environ-
ment using a ring of sixteen sonar sensors for distance and
angle information and a camera with supporting software
for color and blob detection. Every object that does not have
the color of the target object is considered an obstacle. The
environment is a square area of about 20 by 20 feet, contain-
ing one ball of the target color and a few obstacles of other
colors. All processing was performed on board, making the
robot completely autonomous.

When only engaging the reactive layer, the robot displays
two types of behavior, dependent on whether the ball is in
motion or not. If a moving ball enters the robot’s field of
vision, the robot will follow it while avoiding obstacles. If
a stationary ball is within the robot’s field of vision, it will
move to the vicinity of the ball and then sit in front of it.
With the deliberative layer GLUEed onto the reactive layer,
the robot proceeded to exhibit dribbling behavior.

Figure 4: The robot used in the experiment equipped with a
kicking mechanism used for ball dribbling

Discussion
GLUE components provide a methodology for integrating
layers in a hybrid architecture, useful both in conceptual
design and actual implementation. Conceptually, they pre-
serve the functional separation between layers by providing
a designated place to interface layers and necessitating the
clear definition of the data transformation. In implementa-
tion, GLUE has additional practical benefits. First, it is non-
intrusive; by adhering to the conceptual division GLUE en-

forces, integration between layers makes use of already ex-
isting structures. Further, since the use of those pre-existing
structures requires little or no modification to the structures
themselves, the operation of previously tested components
will not be altered. Second, the GLUE component should be
usable in a variety of systems, so long as it is possible to
transform data between layers. Lastly, by providing a means
of data persistence and maintenance, it is possible for lay-
ers to operate in different time frames. The need for such
a mechanism becomes apparent when considering that the
deliberative layer is typically much more computationally
intensive than reactive mechanisms and therefore requires
more time to produce useful results. Allowing data from a
“slow” layer to persist in a form usable by a “fast” layer in-
creases the interplay between the two. This provides a more
coherent integration between layers than turning entire be-
haviors on or off.

To prove the viability of GLUEing layers together, first
a simple schema-based, reactive system was implemented
which followed a ball while avoiding obstacles. Then, a
simple deliberative task was chosen – use the identification
of the ball to override its status as an obstacle. Although this
functionality could be built directly into the reactive layer,
it served as an appropriate test case for a GLUE component.
Future work will expand the number of behaviors available
in the reactive layer, in addition to extending the function-
ality of the deliberative layer to be able to test the GLUE
component in a more complex agent.

References
Albus, J. 1981. Brains, Behaviour and Robotics. Peterbor-
ough, N.H.: Byte Books, McGraw Hill.
Arkin, R. C., and Balch, T. R. 1997. Aura: principles and
practice in review. JETAI 9(2-3):175–189.
Cooper, R., and Shallice, T. 2000. Contention scheduling
and the control of routine activities. Cognitive Neuropsy-
chology 17(4):297–338.
Gat, E. 1998. On three layer architectures. In Kortenkamp,
D.; Bonnasso, R. P.; and Murphey, R., eds., Artificial Intel-
ligence and Mobile Robots. AAAI Press.
Jensen, R., and Veloso, M. 1998. Interleaving delib-
erative and reactive planning in dynamic multi-agent do-
mains. In Proceedings of the AAAI Fall Symposium on on
Integrated Planning for Autonomous Agent Architectures.
AAAI Press.
Maes, P. 1990. Situated agents can have goals. In Maes,
P., ed., Designing Autonomous Agents, 49–70. MIT Press.
Nilsson, N. 1998. Artificial Intelligence: A New Synthesis.
San Francisco: Morgan Kaufmann.
Norman, D., and Shallice, T. 1980. Attention to action:
Willed and automatic control of behaviour. Technical re-
port, University of California, San Diego, CA.
Nwana, H. S. 1995. Software agents: An overview. Knowl-
edge Engineering Review 11(2):205–244.

26 FLAIRS 2003

