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Abstract 
Spacecraft are key components of military operations and 
everyday life. To achieve space situation awareness, human 
operators must monitor large numbers of parameters. During 
off-nominal conditions (e.g. severe space weather storm or 
onboard anomaly), it is difficult to cohesively monitor the 
data to develop an accurate tactical picture. To aid 
operators, we have developed a prototype Multi-Agent 
Satellite System for Information Fusion (MASSIF) for event 
detection and characterization. This system integrates a 
fuzzy logic system for semantic data processing and a 
Bayesian belief network system for multi-source data fusion 
and situation assessment. This paper describes initial 
research results. 

Introduction   
Operating and commanding spacecraft is a challenging 
task. Spacecraft operators must be aware of numerous 
events (e.g. space weather) that affect vehicle performance 
and safety. Over time, experienced operators learn the 
individual characteristics of a vehicle to effectively manage 
the system. However, less experienced operators (e.g. due 
to high turnover in Air Force systems) have difficulties 
understanding system behavior, particularly as it pertains 
to acquiring situation awareness by fusing multiple data 
sources. Indeed, demanding operational requirements and 
the increasing complexity of available command, control, 
communications, computers, intelligence, surveillance, and 
reconaissance data exceed the human ability to associate 
and classify incoming data without decision aids, which 
motivates the development of automated tools that perform 
data fusion and situation assessment. This paper describes 
preliminary research in developing a multi-agent satellite 
system for information fusion (MASSIF) in ground 
operations.  
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Data Fusion and Situation Assessment 
Space weather can affect multiple onboard and offboard 
systems, sensors, and platforms. For example, a heavy 
meteor shower could break solar panels, causing immediate 
loss of power and attitude control to multiple vehicles in 
similar orbits. However, a severe attitude control system 
(ACS) failure could also cause loss of power to a single 
vehicle when the solar arrays are not pointed at the Sun. To 
distinguish between the two, a satellite operator or 
commander must fuse data from a variety of sources (e.g. 
space weather data from the 50th Space Weather Squadron, 
space tracking data on known asteroids, and satellite 
reliability).  
 
Data fusion is a process that is concerned with intelligently 
combining data from multiple sources to develop a 
meaningful perception of the environment (Waltz and 
Llinas 1990). Humans have long been able to fuse remotely 
sensed data using mental reasoning methods and manual 
aids. In recent years there has been considerable interest in 
developing automated systems capable of combining data 
from multiple sensors to derive meaningful information not 
available from any single sensor.  
 
For the military environment, the Joint Directors of 
Laboratories Data Fusion Subpanel has identified the 
following several levels of fusion processing products 
(Steinberg et al. 1998): 

• Level 0 (Sub-Object Assessment): Fused estimates 
of object signals or features 

• Level 1 (Object Assessment): Fused position and 
identity estimates 

• Level 2 (Situation Assessment): Friendly or hostile 
military situation assessments 

• Level 3 (Impact Assessment): Hostile force threat 
assessments  

 
Additionally, a fifth level of fusion processing termed 
collection management or process refinement can be added 
to this model, i.e., 

FLAIRS 2003    57  

Copyright © 2003, American Association for Artificial Intelligence  



• Level 4 (Process Refinement): Control of assets via 
process refinement 

 
Across these levels of information products, the generality 
of the results increases from the very specific (e.g., 
“surface-to-air missile launcher of type A at coordinates 
B”) to the more general (e.g., “air defense assets protecting 
target C”). Level 0 processing includes signal detection and 
feature extraction. At level 1, numeric procedures such as 
estimation (e.g., Kalman filtering) or pattern recognition 
dominate the processing operations. Level 1 information 
products arise from single and multi-source processing 
(such as target tracking) by sampling the external 
environment with available sensors and other information 
sources. The products of this processing are position and 
identity estimates for targets or platforms in the composite 
field of view (Waltz and Llinas 1990). Symbolic reasoning 
processes involving higher levels of abstraction and 
inference dominate the level 2 and 3 fusion operations. 
Situation abstraction is the construction of a generalized 
situation representation from incomplete data sets to yield a 
contextual interpretation of level 1 products. This level of 
inference is concerned with deriving knowledge from some 
type of pattern analysis of level 1 data ((Endsley 1988); 
(Endsley and Garland 2000)). The distinction between levels 
2 and 3 is that level 3 products attempt to quantify the 
threat’s capability and predict its intent by projecting into 
the future, whereas level 2 results seek to indicate current 
hostile behavior patterns. 
 
Based on this hierarchy, Figure 1 illustrates how the overall 
scope of our proposed MASSIF falls within the overall 
environment for on-board data fusion in a distributed 
space-based reconnaissance and surveillance system. As 
shown, we begin with a specification of the external 
environment. This includes the specification of all friendly, 
hostile, and neutral forces, as well as a description of the 
local terrain and current atmospheric conditions. The 
sensor suite senses information about the external 
environment. Data from these sensors/assets are then 
fused (levels 0 and 1) to generate individual target tracks 
and to classify and characterize targets. The situation 
assessment module of the MASSIF uses this fused track 
data to generate a current and projected situational state 
from the detected events and a priori knowledge. The total 
situation assessment state is then forwarded to higher-level 
processing for threat assessment and decision-aiding.  
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Figure 1: Data Fusion Architecture  

System Architecture 
To implement the data fusion capabilities described above, 
we have developed a two-stage, software agent-based 
architecture, as illustrated in Figure 2. This architecture is 
an extension of previous work we have done in the areas of 
data fusion in general, and situation assessment (e.g. 
(Harper, Mulgund, and Zacharias 2000), (Das, Cunningham, 
and Gonsalves 2002), (Hanson 2001), and (Gonsalves and 
Rinkus 1998)). As shown in Figure 2, this architecture 
contains two major modules: an Event Detector that is 
based on Fuzzy Logic technology and a Situation Assessor 
that is based on belief network technology. 
 
The Event Detector serves to translate the primarily 
numerical data generated by the data fusion processor into 
symbolic data defining key tactical elements (e.g. ground 
moving target detected) and their states (e.g. time and 
location). The event detector “engine” can be as simple as 
a binary threshold logic that converts a numerical value 
(e.g., threat range) into a Boolean event (e.g., within range 
of threat envelope). However, we utilize fuzzy logic (FL)  
(Zadeh 1973) technology to provide a more robust 
approach to event detection 
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Figure 2: System Architecture 

Next, a Situation Assessor  takes in the detected events and 
generates an assessed situation state S(t ), which is a multi-
dimensional vector defining the belief values of a number of 
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possible situations. The situations, their relation to one 
another, and their association with detected events are all 
defined by a set of situation models, each model being a 
tree of possible situations and events. As we discuss in the 
following section, we utilize Bayesian belief networks (BNs) 
to implement both the situation models and the situation 
assessment function. This provides a way of making 
computationally explicit the extremely complex and 
inherently uncertain process of situation assessment in a 
real-time environment, while at the same time ensuring a fair 
degree of rigor in inferencing via the use of Bayesian 
reasoning logic. The net result of this stage of processing 
is the generation of an aggregated set of situation 
likelihoods (belief values) and their associated event 
probabilities, which serve to define the overall current and 
future tactical situation.  

BN Technology for Situation Assessment 
A BN (Pearl 1988) is a probabilistic model of a system. In 
the present context, the model is a semantic description of 
the effects of space weather events and satellite anomalies 
on satellites as learned by satellite engineers and space 
weather experts. BN models contain nodes and links, where 
nodes represent situations (e.g. experiencing galactic 
cosmic radiation (GCR) or single event upsets) and links 
represent causal relationships between situations (e.g. GCR 
causes single event upsets). The “strength” of a 
relationship is contained in conditional probability tables 
(CPTs) that encode the quantitative details of the causal 
relationship. 
 
BNs are ideal for situation assessment and data fusion. 
They have the capability to quantitatively represent key SA 
concepts such as situations and events; they include 
mechanisms to reflect both diagnostic and inferential 
reasoning; and they easily incorporate various levels and 
types of uncertainties. BNs also support many reasoning 
modes: causal reasoning from causes to effects, diagnostic 
reasoning from effects to causes, mixed causal and 
diagnostic reasoning, and intercausal reasoning. 
Intercausal reasoning refers to the situation in which a 
model contains two potential causes for a given effect. If 
we gain evidence that one of the possible causes is very 
likely, this reduces the likelihood of the other cause. 
(Russell and Norvig 1995) assert that no other uncertain 
reasoning formalism supports this range of reasoning 
modes. 
 
For automated data fusion and situation assessment in 
space systems, we input evidence from multiple sources 
and monitor the likelihood or beliefs in key nodes. When 
new evidence is input to a node in a BN, that variable 
updates its own belief vector, and then sends out messages 
indicating updated predictive and diagnostic support 
vectors to its children and parent nodes, respectively. The 
other nodes then use these messages to update their belief 

vectors and propagate their own updated support vectors.  
In this manner, a consistent tactical picture is developed 
from the data.  

Application to Space Weather and Spacecraft 
Anomalies 

Applying BN technology to automated data fusion and 
situation assessment in space systems is a three-step 
process. First, effort (e.g. knowledge engineering) is 
required to obtain a detailed understanding of the physics 
of the situation in terms of what are the causes and effects. 
Second, this understanding must be captured in a BN 
model. Third, the model must be verified and validated. We 
now consider each of these steps. 

Knowledge Engineering 
To demonstrate feasibility, we considered two classes of 
events, namely space weather and onboard anomalies that 
affect satellite operations on a generic geosynchronous 
satellite. For simplicity, we assumed correct ground 
operations. For onboard anomalies, we did not focus on 
component level anomalies (e.g. reaction wheel failures); 
but instead, focused on sub-system level anomalies (e.g. 
anomaly in the ACS). For space weather, we considered 
single event upsets (SEU) and ionospheric disturbances.  
 
Table 1 lists several known causes of these space weather 
events. For example, GCR and solar proton events 
associated with high-energy particles can cause SEUs, 
while geomagnetic storms can alter the atmosphere leading 
to scintillation. GCRs are not readily measurable, but are 
more prevalent during the solar minimum. Sensors onboard 
National Oceanic and Atmospheric Administration (NOAA) 
satellites measure solar proton events and geomagnetic 
storms .  

Table 1: Short List of Space Weather Effects on a 
Geosynchronous Communications Satellite 

Space 
Weather Event 

 
Effects 

 
Measurements 

Galactic 
Cosmic Rays 

(GCR) 

Single Event Upsets 
(SEUs) 

None, though GCR 
are highest by about 
25% during solar 
minimum  

Solar Proton 
Events 

• SEUs 
• Surface charging 

Flux of particles with 
energies > 10 MeV  

Geomagnetic 
Storms  

• Surface charging 
• Scintillation 

K or Kp index, 
ranging from 0 - 9 
where 0 = quiet & 9 = 
severely disturbed 

 
Working with satellite Subject Matter Experts (SMEs), we 
then performed a cause-effect analysis to quantify the 
effects of these events on six major satellite subsystems: 
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the attitude control (ACS), electrical power (EPS), thermal, 
payload, propulsion, and tracking, telemetry, and control 
(TTC) sub-systems. Table 2 shows a typical result. The 
magnitude of the effect is coded using a simple weighting 
system corresponding to high, medium, low, and none.  

Table 2: Qualitative Effects of Space Weather Events on a 
Geosynchronous Communications Satellite – Moderate 

Event 

 External Cause 

Subsystem Single Event Upset Ionospheric 
Disturbance 

Attitude Control  High Low  

Electrical Power High Low  

Thermal Low  Low  

Payload High High 

TTC High High 

Propulsion Low  Low  

 

BN Development 
Based on the above information, two preliminary belief 
networks were developed. Using BNET 2000, our in-house 
BN model engine, Figure 3 shows a model developed for 
assessing space weather effects. The model is a graphical, 
interpretation of the cause and effect analysis and results 
discussed above. For example, the BN model shows that 
SEUs are caused by high-energy solar particles (e.g. optical 
flares) and random galactic cosmic radiation, which is 
causally related to solar cycle time. Together, SEUs and 
ionospheric disturbances produce effects on satellites that 
can be quantified in terms of problems in the ACS, EPS, 
thermal, propulsion, TTC, and payload subsystems. It is 
assumed that telemetry data is processed in by an external 
method (e.g. a neural network telemetry processor) to 
provide this quantification. Each subsystem node has two 
states – either ‘yes’ or ’no’ for reflecting a belief 
concerning whether or not there is a sub-system error. 
 
The strength or magnitude of the effects on each 
subsystem was derived from the qualitative effects 
knowledge (i.e. high, medium, low, and none) provided by 
the SMEs. Each sub-system CPT contains four 
independent values, which were developed by applying a 
simple expert system, which stated that the minimum value 
for a given CPT element is equal to the maximum of the 
individual values from the SME tables. For reference, Figure 
4 shows the actual CPT for the EPS problems node. 
According to Table 2, the likelihood of an EPS problem 
given SEUs is high and low given ionospheric 
disturbances. This is reflected in Figure 4 where the 
likelihood of an EPS problem given only an ionospheric 
event is 0.2 and 0.95 given only an SEU. If a SEU and 
ionospheric event occur simultaneously, the likelihood 
must be greater than or equal to the likelihood of an SEU by 
itself. Here, we defined it to be equal. 
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Figure 3: BN for Space Weather Assessments  

 

Figure 4: CPT Example 

Model Verification and Validation 
We used two major test classes to verify and validate the 
BN models. First, to verify that the networks accurately 
reflected the cause-and-effects information, we performed 
deductive and abductive tests. In deductive tests, we input 
data into an individual parent node (e.g. evidence that says 
there are SEUs) and observed the resulting belief in the 
child nodes (e.g. what is the resulting belief in ACS 
problems). We then qualitatively compared the belief 
values with the high, medium, low, and none descriptions 
obtained from the SMEs. These tests assess how acurate 
the models capture forward reasoning. In abductive tests, 
we input data into an individual child node and observed 
the resulting change in the parents. These tests assess 
correlation between the parents.  
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The second test class involved entering patterns of data to 
the models (e.g. a simulated SEU). Figure 5 shows the 
results of simulated a TTC anomaly as a function of 
evidence posted for each sub-system (1 = apriori values, 2 
= ACS, 3 = EPS, 4 = thermal, 5 = payload, 6 = TTC, and 7 = 
propulsion). As expected, the model correctly detected and 
identified the anomaly. In reaching this conclusion, the 
belief states for other nodes increased and decreased based 
on the evidence presented. This pattern is consistent with 
actual human decision-making where new information 
influences beliefs. 

Belief Network Results for Simulated TTC 
Anomaly
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Figure 5: BN Results for Simulated TTC Anomaly 

Conclusions 
Automated data fusion and situation assessment tools are 
crucial in helping satellite operators accurately detect, 
identify, and characterize events that influence operations. 
A s  part of on-going research into data fusion and the 
application of Bayesian belief networks, we performed 
preliminary research on developing an automated data 
fusion and situation assessment tool for space system 
operators. Working with spacecraft satellite engineers, we 
developed and verified initial BN models for event-based, 
on-line situation assessment of space weather and satellite 
anomalies for a generic geosynchronous communications 
satellite. We feel that this is an important step towards 
future embedded situation assessment tools for operators. 
 
In follow-on work, we plan to refine the initial BN models by 
considering additional events and operational issues, 
incorporating temporal belief networks, and developing 
models from data. We plan to continue validation efforts 

using a high-fidelity simulation test environment and real 
spacecraft data.  
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